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Abstract
The need to search for new, alternative treatments for various diseases has prompted scientists and physicians to focus their
attention on regenerative medicine and broadly understood cell therapies. Currently, stem cells are being investigated for
their potentially widespread use in therapies for many untreatable diseases. Nowadays modern treatment strategies willingly
use mesenchymal stem cells (MSCs) derived from different sources. Researchers are increasingly aware of the nature of MSCs
and new possibilities for their use. Due to their properties, especially their ability to self-regenerate, differentiate into several
cell lineages and participate in immunomodulation, MSCs have become a promising tool in developing modern and efficient
future treatment strategies. The great potential and availability of MSCs allow for their various clinical applications in the
treatment of many incurable diseases. In addition to their many advantages and benefits, there are still questions about the use
of MSCs. What are the mechanisms of action of MSCs? How do they reach their destination? Is the clinical use of MSCs safe?
These are the main questions that arise regarding MSCs when they are considered as therapeutic tools. The diversity of MSCs,
their different clinical applications, and their many traits that have not yet been thoroughly investigated are sources of dis-
cussions and controversial opinions about these cells. Here, we reviewed the current knowledge about MSCs in terms of their
therapeutic potential, clinical effects and safety in clinical applications.
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Introduction

In the 1960s, Friedenstein et al. identified a population of

fibroblast-like cells that formed clonal colonies in vitro

(CFU-F, Colony Forming Unit-Fibroblast)1. Friedenstein’s

observations allowed for the discovery of a specific type of

cell, currently referred to as mesenchymal stem cells

(MSCs). MSCs are primary, non-specialized, nonhemato-

poietic, plastic adherent cells with great proliferation poten-

tial and the capacity for self-renewal and differentation2.

In 2006, the International Society of Cellular Therapy

(ISCT) proposed basic criteria for defining human multipo-

tent mesenchymal stromal cells whose name then evolved to

MSCs. In addition to their plastic adherent properties under

standard culture conditions and trilineage differentiation

capacity into osteoblasts, chondrocytes and adipocytes,

> 95% of the MSCs population is positive for the three

specific surface markers—CD73 (SH3/4), CD90 (Thy-1),

and CD105 (SH2)—and do not express CD45, CD34,

CD14, CD11b, CD79a, CD19, or major histocompatibility

complex (MHC) class II3,4. MSCs also express others mar-

kers, including CD9, CD10, CD13, CD29, CD44, CD49,

CD51, CD54 (ICAM-1), CD117 (c-kit), CD146 (MCAM),

CD166 (ALCAM), and Stro-1, but the expression of specific

combinations of the markers appear to be host tissue depen-

dent5. Although a wide range of positive markers describing

MSCs has been identified, no single marker has been indi-

cated as specific for MSCs.

It should be also noted that the potential of MSCs for

differentiation and proliferation may vary considerably

between different MSC sources6,7. It has been suggested that

these differences are a result of the direct influence of the

specific microenvironments in which they primarily reside8,9.

Despite increasing numbers of reports describing MSCs,

numerous controversies have arisen regarding the proper
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identification of MSCs. It appears that the criteria proposed

by the ISCT are not sufficient because MSCs isolated from

different tissues represent a relatively heterogeneous group

of cells in terms of differentiation, proliferation abilities, and

cell surface expression6,10–13.

Mesenchymal Stem Cells—the Main
Players in Cell Therapy

The fact that MSCs can be isolated from numerous

sources1,2,6–8,10 (Fig. 1), their relative ease to culture in vitro,

their ability to differentiate into several different cell types,

and their special immunological properties make MSCs a

promising tool for cell therapy and tissue regeneration. The

best known and the most commonly used source of MSCs is

bone marrow (BM)14. BM is the tissue in which MSCs were

first identified. Another easily accessible source of MSCs is

adipose tissue15. Obtaining MSCs from these sources

requires invasive procedures. Interestingly, rich sources of

MSCs include birth-associated tissues that are treated as

medical waste, such as placenta, umbilical cord, amniotic

fluid, and amniotic membrane. Among those tissues, umbi-

lical cord blood16 is believe to contain MSCs; however, the

use of this source is questioned by some researchers because

of low efficiency of their isolation17. MSCs derived from

Wharton’s jelly of the umbilical cord (WJ-MSCs) appear

to have great future clinical utility due to their limited het-

erogeneity and some unique properties, such as ease of their

isolation and culture, availability in several tissues, their

immunomodulatory properties, ability to self-regenerate,

differentiate into several cell lineages, and the lack of ethical

problems resulting from their use18. Moreover, in contrast to

BM or adipose tissue, the acquisition and isolation of birth-

associated tissues, including WJ-MSCs, do not require inva-

sive surgical procedures; therefore, the isolation process

does not pose any risk of complications for the donor, giving

them an advantage over other MSC sources. Currently, new

sources of MSCs have been proposed. MSCs are found in

dental pulp, periodontal ligament, tendon, skin, muscle, and

other tissues19 (Fig. 1). However, there are differences in

isolation efficiency that are related to the availability, con-

dition, and age of the donor tissue. A very important issue is

the age of the donor’s cells20. Cells obtained from younger

donors are less susceptible to oxidative damages and

changes, they age considerably more slowly in culture, and

they have a higher proliferation rate21,22.

Currently, many studies focus on the use of MSCs in cell

therapy. MSCs are used as a tool to treat degenerative

changes in joints and to reconstruct bones and cartilage,

and are used in plastic surgeries, aesthetic medicine,
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Fig. 1. Mesenchymal stem cells sources.
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cardiovascular diseases, endocrine and nervous system dis-

eases, cell transplantation, and in the repair of damaged

musculoskeletal tissues23. Due to the special properties of

these cells, such as their rapid proliferation, high differentia-

tion capacity, and the ability to migrate into the site of

damage, new clinical applications are being tested.

BM-MSCs are the most frequently used in clinical set-

tings24. BM-MSCs were also first to be registed by the Food

and Drug Administration as a drug against Graft versus Host

Disease called “Prochymal”25. Recently, “Alofisel” has been

registered by the European Medicines Agency to treat com-

plex perianal fistulas. The drug is based on expanded

adipose-derived stem cells26. In both cases the drugs are

allogeneic, which provides strong advantage other autolo-

gous products due to possibility of detailed testing regarding

both safety and potency before release. Nowadays other

sources of MSCs are also used for clinical therapies. Our

research group used MSCs isolated from Wharton Jelly to

treat patients with acute myocardial infarction, showing the

safety and feasibility of such therapy27. Currently, we are

conducting phase II/III randomized, double-blinded clinical

trials with the use of the product “CardioCell” that is based

on WJ-MSCs in three indications: acute myocardial infarc-

tion (AMI-Study, EudraCT Number: 2016-004662-25),

chronic ischemic heart failure (CIHF-Study, EudraCT Num-

ber: 2016-004683-19), and non-option critical limb ischemia

(N-O CLI-Study, EudraCT Number: 2016-004684-40).

However, it should be noted that although we possess

great knowledge about their in vitro characteristics, we still

know much less about the in vivo behaviors of MSCs. They

can act both directly—due to their ability to differentiate28—

and indirectly, by producing and secreting many factors

that enhance the endogenous regeneration potential of

injured tissue19.

The new approach in stem cell therapy is the use of extra-

cellular vesicles (EVs), which can be used as a substitute for

MSCs29. EVs as a therapeutic vector have the paracrine

effect without the direct involvement of the cells. They are

released from stem cells and they supply many components

such as mRNA, DNA, and proteins to the target site30. This

approach is described in many recent studies31,32 but a thor-

ough understanding of the mechanism of action of EVs is

still required.

Migration and Homing of Mesenchymal
Stem Cells

The therapeutic effect of MSCs depends on their ability to

reach the injured site, which is possible due to their ability to

migrate, adhere, and engraft into a target tissue. Several

factors affect the therapeutic efficacy of MSCs’ homing.

Among them, culture conditions, the number of passages,

donor age, delivery method, and host receptibility play

important roles33–36. It has been shown that freshly isolated

cells compared with in vitro-cultured cells have a higher

engraftment efficiency37, which can be a result of the

aging/differentiation process that cells undergo in in vitro

culture conditions38,39. Culture conditions also have a sig-

nificant impact on homing capacity, as they can modify the

expression of the surface markers involved in this process.

As an example, CXCR4, a chemokine receptor, is involved

in the migration of MSCs. It has been shown that CXCR4

expression is lost on BM-MSCs during culture37,40,41,

whereas the presence of cytokines (e.g., HGF, IL-6), hypoxic

conditions, or direct introduction using viral vectors allow

for restoration of its expression42–44.

In addition, MSCs isolated from older donors show

altered compositions and functions of membrane glycero-

phospholipids45. All of these aspects affect MSCs’ ability

to migrate, home, and engraft into a site of injury.

The efficacy of cell therapy largely depends on the deliv-

ery method. The most common method of administration of

MSCs is intravenous infusion46–48. However, before the cells

reach their target, the majority are trapped within capillaries

of various organs, especially in the lungs46,49–52. This

attrition can be explained by the fact that MSCs are rela-

tively large cells and express various adhesion molecules.

Despite the fact that MSCs can become trapped in the lungs,

numerous pieces of evidence suggest that they are able to

home to injured tissue50,53. Interestingly, recent data also

suggest that despite the problems associated with intrave-

nous infusions, this route results in similar efficacy as other

modes of delivery of MSCs54. In some instances, intra-

arterial injection seems to be a more effective route. It has

been shown that delivery of MSCs through the internal car-

otid artery more effectively facilitates their migration and

homing into injured brain compared with administration via

the femoral vein. The risk associated with this route of deliv-

ery includes occlusions, which can arise in microvessels53.

When the MSCs were delivered directly to the heart, near the

damaged area, the number of cells that reached the peri-

infarct region was much higher55.

As has already been mentioned, the necessary condition

for effective MSC-based therapy is for the cells to reach the

site of injury and home to the affected tissue. There is no

doubt that specific receptors and adhesion molecules and

interactions with endothelial cells play crucial roles in this

migration and homing. Cell adhesion proteins are expressed

in the plasma membrane, such as integrins, which are

involved in cell adhesion to extracellular matrix proteins

(EMC), such as collagen, fibronectin, and laminin38,56–60.

In vivo studies have shown that MSCs exhibit chemotactic

properties and, after intravenous injections, are able to attach

to endothelium and migrate between endothelial cells toward

injured tissue in response to factors that are upregulated

under the inflammatory conditions61–64. However, the

detailed mechanisms of their transendothelial migration

(TEM), diapedesis, and homing to sites of injury and inflam-

mation have not yet been explained in detail. It is presumed

that this mechanism may be similar to that of leukocytes

(Fig. 2)65–67 but is performed with the participation of dif-

ferent adhesion molecules. To date, many chemokines and
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growth factors have been identified (e.g., EGF, VEGF-A,

FGF, PDGF-AB, HGF, TGF-b1, TNF-a, SDF-1a, IL-6,

IL-8, IGF-1), including their receptors, adhesion molecules,

and metalloproteinases, that are involved in the MSCs

migration process (e.g., CXCL-12, CCL-2, CCL-3, CCR4,

CXCR4, VCAM, ICAM)55,59,65,68–71. Many reports suggest

that damaged tissue expresses specific factors that act as

chemoattractants to facilitate the migration, adhesion, and

infiltration of MSCs to sites of injury, as in the case of

leukocytes trafficking to sites of inflammation. However,

although the leukocyte recruitment process (i.e., binding to

endothelial cells, rolling, adhesion, and TEM) is well

understood, the mechanism of the interaction between

MSCs and endothelial cells will require more detailed

investigations. Studies by Rüster et al. showed that the

ability of MSCs to bind and roll on endothelial cells was

derived from human umbilical cord vein cells. Once the

MSCs adhere to endothelium, they become shaped like

protrusions and roll. The molecules involved in this process

have been identified and include P-selectin and VLA-4

expressed on MSCs and VCAM-1 on endothelial cells

(VLA-4/VCAM-1 interaction)65. It has also been con-

firmed that a vital role in the homing and migration of

MSCs is played by the proteolytic enzymes matrix metal-

loproteinases (MMPs)37,41.

Immunological Properties of Mesenchymal
Stem Cells

It is generally accepted that MSCs do not display immuno-

genic properties, so they can be transplanted to an allogenic

host without need for immunosuppression. The mechanism

of their action is based on their immunomodulatory proper-

ties as well as immunosuppressive activity. They are able to

suppress proliferation and activation of different cells of the

immune system. These interactions may occure directly (i.e.,

cell–cell interaction) and indirectly (via soluble factors), and

this pathway of suppression is independent of MHC match-

ing between MSCs and T cells 39,72,73. The immunomodulat-

ing effect of MSCs is reflected in many T-cell properties,

such as activation and proliferation, and in this way they

efficiently suppress an immune response73. The MSCs sup-

press the proliferation of activated T cells by secreting sub-

stances, such as indoleamine 2,3-dioxygenase (IDO) and

prostaglandin E2 (PGE2)74–76. They also suppress the devel-

opment of pro-inflammatory Th17 cells and stimulate reg-

ulatory T cells by secreting immunosuppressive cytokines

including IL-6, IL-8, IL-10, TGF-b, and HGF. In addition,

the nonclassical HLA class I molecules (HLA-G) expressed

by MSCs exert immunosuppressive effects on various

immune cells; that is, they inhibit T-cell proliferation and

cytotoxic T lymphocyte-mediated cytolysis, and they also

induce the development of tolerogenic dendritic cells and

inhibit natural killer cell cytolytic functions77–80. It has been

shown that HLA-G contributes to decrease graft rejection81.

MSCs also participate in regulation of Th1/Th2 balance (T

helper cells) by affecting the level of interleukin-4 (IL-4) and

interferon (IFN)-g in effector T cells. MSCs disturb matura-

tion, differentiation, and functions (i.e. cytokine secretion)

of dendritic cells (DCs), which play a crucial role in antigen

presentation. There is much evidence that MSCs inhibit the

proliferation, differentiation, and chemotaxis of B

cells75,82,83. They also prevent monocyte differentiation into

DCs. Because of their immunoregulatory properties, they are
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Fig. 2. Schematic of leukocyte transmigration through the endothelium. It is supposed that MSCs migration occurs in a similar manner.
The graphic was prepared using modified art elements from Servier Medical Art, found at https://smart.servier.com.
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protected against cell lysis and the cytotoxic effects of the

host’s immune system.

The immunophenotype of MSCs is generally described

as: MHC Iþ, MHC II-. They also do not express the costi-

mulatory molecules (CD40, CD80, CD86) and hematopoie-

tic markers CD45, CD34, CD14, CD11, CD19, and CD18

(LFA-1; leukocyte function-associated antigen-1), which

makes them non-immunogenic. MHC class I may activate

T cells, but with the absence of costimulatory molecules, the

T cells are non-reactive84–88.

Safety of Mesenchymal Stem Cell
Therapies

Many studies have been conducted thus far to investigate

the safety of MSC-based therapies. Clinical trials show

that in vitro-cultured human MSCs are less susceptible to

adverse changes.

A Canadian group analyzed clinical trials in which BM-

MSCs were used. After a thorough analysis of 36 studies, they

found that there was no relationship between the use of MSCs

and tumorigenic potential, and no serious side effects of the

therapy were reported89. The safety and impact of MSCs ther-

apy were also investigated by Karussis et al. in patients with

multiple sclerosis and amyotrophic lateral sclerosis90. In 34

examined patients, during a study lasting 25 months, no serious

adverse effects resulting from the therapy were observed. In

addition, 20 patients were examined 1 year after transplanta-

tion, and the MRI results did not show any disturbing

changes90. However, more long-term studies and observations

regarding the safety of using MSCs therapies will be required.

However, one study reported that the use of autologous

adipose tissue-derived MSCs (AT-MSCs) in a patient with

chronic kidney disease resulted not only in the improvement

of renal function but also in fibrosis of the interstitial tissue

and atrophy of the tubules, which could suggest nephrotoxi-

city of the applied MSCs91. Another group investigated the

efficacy of the allogeneic treatment of MSCs administered to

the aortas of patients with acute kidney injury after cardiac

surgery. No differences were observed between the treated

group and the control group in terms of improvement of

renal function or in the occurrence of adverse events92.

Tatsumi et al. demonstrated in an in vivo model that the

administration of AT-MSCs may result in thrombus forma-

tion around the cells through a coagulation mechanism,

which can also cause pulmonary embolism due to the accu-

mulation of cells in the lung region93. This finding was con-

firmed by other studies performed using umbilical cord

MSCs, which showed the procoagulant properties of these

cells after peripheral vein injection94. Many researchers cur-

rently focus on thromboinflammation, also known as the

instant blood-mediated inflammatory reaction, which can

occur after transplantation of MSCs95,96. Taking into

account all of these issues, it is clear that more long-term

studies and observations regarding the safety of using MSCs

are required.

Despite the many cons for using MSCs in clinical set-

tings, there are still a few issues that need to be resolved for

the successful application of MSCs. One of them involves

obtaining sufficient numbers of the cells. Unfortunately, dur-

ing in vitro culture, cells at higher passages age due to

decreased telomerase activity97. In addition, during long-

term culture, MSCs lose their potential to differentiate and

begin to exhibit morphological changes98. Even more impor-

tantly, long-term culture might lead to the increased prob-

ability of malignant transformation99,100. Certain

components of the culture medium and growth factors may

predispose the cells to such processes. There is also a risk of

viral and prion transmission after administration of the

cells101.

The Dark Side of Mesenchymal Stem
Cell Biology

When using stem cell-based therapies, all possible undesir-

able effects should be considered. The risk associated with

tumorigenesis after stem cell transplantation is widely dis-

cussed in the literature. In a certain sense, stem cells can be

compared to tumor cells because of their ability to prolifera-

tion for a long period of time, high viability, and resistance to

apoptosis102. Many components may affect the potential

tumorigenesis after MSCs transplantation, including the

donor’s age, host tissue, growth regulators expressed by

recipient tissue, and mechanisms that control the behavior

of the MSCs at the target site103–105. Also, manipulations

and long-term in vitro cultures of MSCs can cause genetic

instability and chromosomal abberations105. Many

cumulative factors can give a response in the form of a

spontaneous tumor transformation. Patients who are trans-

planted with stem cells often undergo long-term che-

motherapy or radiotherapy, so their immune system

does not work properly, which may also be associated

with the risk of tumorigenesis106.

Protumorigenic Effect of Mesenchymal
Stem Cells

The direct role of MSCs in promoting tumorigenesis has

been investigated by several research groups in animal

models. Results obtained for BM-MSCs show that the

cells can engraft and home to many different types of

solid tumors107–111. MSCs have been injected simultane-

ously with tumor cells in vivo. BM-MSCs promoted

tumor growth in a colon cancer model109 and in breast

cancer108, colorectal cancer112, ovarian113, prostate114,

lung107, and gastric carcinoma115.

A highly complex tumorigenesis process involves many

factors that promote tumor growth, one of which is

hypoxia116. The published data indicate that BM-MSCs can

be associated with tumor progression by the secretion of

proangiogenic factors107.
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MSCs have also been examined in the tumorigenic

context due to the identification of carcinoma-associated

fibroblast (CAF) cells, tumor-associated fibroblast (TAF)

cells, and other tumor-associated cells, such as endothe-

lial and pericyte-like cells, since MSCs can differentiate

into these cell types under appropriate conditions117. In

vitro and in vivo studies have shown that BM-MSCs cul-

tured together with tumor cells may adopt the CAF-like

phenotype, and the tumor microenvironment predisposes

the transformation of these cells into a-smooth muscle

actin (a-SMA)-expressing myofibroblasts118. Depending

on the research model used, the percentage of MSCs

taking part in this phenomenon varies. In an ovarian can-

cer model, it was found that the percentage of MSC-

derived CAF cells ranged from 60 to 70%, whereas in

the pancreatic cancer model, the percentage was only

approximately 20%.

In studies by Karnoub et al., mice were used to graft non-

metastatic breast cancer cells together with MSCs (BM-

MSCs)108. The results of this study showed that, compared

with mice injected only with cancer cells, the mix of MSCs

and cancer cells increased the metastasis potential. The spe-

cial engraftment properties and specific tropism of injected

GFP þ BM-MSCs into a mouse tumor model were also

shown by Ren et al.119. Interestingly, it has been shown that

the actions of stem cells (including nonhematopoietic and

hematopoietic stem cells) in combination with different

tumor cells can vary in vitro and in vivo. In vitro, MSCs

cells showed antiproliferative activity, stopping in the G1

phase, in contrast to in vivo studies, where MSCs caused

faster tumor growth120.

The Bright Side of Mesenchymal Stem Cell
Biology

MSCs display a dualistic nature in relation to their tumor-

igenicity. Some studies have also shown their anti-

tumorigenic effects. Factors secreted by MSCs may have

antitumor properties. Clarke et al. showed that breast cancer

cells cultured in MSC-conditioned medium exhibit signifi-

cant migratory inhibition compared with cells cultured in a

standard medium. The tumorigenesis effect of MSCs may be

exerted by the secretion of the proteins TIMP-1 and TIMP-2,

which inhibit the activity of the MMPs that are involved in

migration processes121.

The inhibition of tumor cell growth was also shown by

Bruno et al.122. A human hepatocellular carcinoma cell line

(HepG2), a human ovarian cancer cell line (Skov-3), and

Kaposi’s sarcoma cell lines co-cultured in the presence of

BM-MSCs exhibited reduced in vitro growth. In addition,

microvesicles (MVs) isolated from MSCs caused significant

decreases in tumor cell proliferation through inhibiting cell

cycle progression and inducing apoptosis and necrosis of the

tumor cells. These observations were confirmed by in vivo

studies in which tumor growth was slowed down by the

administration of BM-MSC-derived MVs122.

Similar data were obtained with MVs derived from human

WJ-MSCs. Wu et al. observed that WJ-MSC-derived MVs

down-regulated the phosphorylation of Akt protein kinase and

activated p53/p21 in bladder tumor cell lines123. Oxidative

stress, which occurs in damaged tissues, is a natural process

after the occurrence of damage. Therapies that use stem cells

mainly focus on the regeneration of damaged tissues. Thus,

the enhanced apoptotic resistance of MSCs, which is the result

of regulation of the apoptosis process through complex cel-

lular pathways, is highly desirable in the regeneration process

that is the result of MSC therapy102,124.

There is no unambiguous answer regarding the potential of

MSCs in tumorigenesis. In fact, the effect of MSCs depends

not only on the tumor model used but also on the method of

culture, cell heterogeneity, dose, secreted molecules, and

many other factors that have not yet been fully understood.

Other Restrictions Related to the
Application of Mesenchymal Stem Cells

Many studies (both preclinical and clinical trials) show

increasing evidence of the therapeutic effectiveness of

MSCs. However, many studies also provide evidence of low

engraftment of MSCs due to their short-lived viability after

injection125,126. It has also been demonstrated that after

MSCs are transplanted, many of them are trapped in the

lungs, resulting in a reduction in the population of cells that

occupy the target site127. However, portions of MSCs popu-

lations reach damaged tissue, such as infarcted myocardium,

traumatically injured brain, fibrotic liver, and various types

of tumors125. The method by which the cells are adminis-

tered may be an important factor in their reaching their

intended destination. The advantage of the targeted applica-

tion of these cells versus systemic administration is reduc-

tions in cell losses during delivery and cell migration128.

The low immunogenicity of the MSCs makes cell transplan-

tation well tolerated by the recipient organism, reducing the

likelihood of rejection of the transplantation. However, differ-

entiated MSCs may exhibit low or no therapeutic effects. Huang

et al. demonstrated that differentiated MSCs have increased

immunogenicity due to MHC-I and MHC-II expression129.

Most of the studies conducted show that a single trans-

plantation of MSCs is safe and does not induce an immune

response. However, repeated administration of MSCs may

result in the production of allo-antibodies130. Moreover, the

fetal bovine serum (FBS) used in the MSC culture medium

may cause an immune response in patients who have

received such cells. Von Bonin et al. showed that the trans-

plantation of MSCs that had been in contact with FBS

induced the production of antibodies against FBS in the

recipient’s blood131.

Concluding Remarks

Stem cells are undoubtedly a great hope for the treatment of

many diseases. Since they occur in many adult tissues and do
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not raise ethical issues, they have great advantages over

embryonic stem cells. Due to their unique features, such as

their ease of isolation and culture, availability in many tis-

sues, their immunomodulatory properties, and the lack of

ethical problems resulting from their use, we believe that

they can be used in both autologous and allogeneic trans-

plantations. Despite numerous in vitro and in vivo studies,

the mechanisms underlying MSCs transmigration and hom-

ing require further detailed examination. Nevertheless, there

is no doubt that the cells can migrate and home to injured

tissues. More research is emerging regarding the potential

long-term risks associated with MSCs therapy. Long-term

studies and observations will be necessary to investigate the

long-term effects of MSCs therapies, including the negative

effects. Based on our data, allogeneic clinical use of the

MSCs seems to be promising tool in regenerative medicine.
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