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Background: Gastric cancer (GC) is a leading cause of cancer-related mortality worldwide, posing 
a significant clinical challenge due to its complex tumor microenvironment (TME) and metabolic 
heterogeneity. Despite continuous improvements in treatment strategies including surgery, chemotherapy, 
and targeted therapies, the metabolic reprogramming in GC continues to impede treatment efficacy, 
highlighting an urgent need for the development of novel therapeutic strategies. This persistent issue 
underscores the urgent need for novel therapeutic approaches that can effectively address the diverse and 
dynamic characteristics of GC. Cimifugin, a traditional Chinese medicine (TCM), has garnered attention 
for its potential role in alleviating inflammation, neurological disorders, pain, and metabolic disorders. Its 
multi-targeting properties and minimal side effects suggest a broad potential for cancer management, which 
is currently being explored. This study aims to delineate the molecular mechanisms that cimifugin may 
impact within the TME and metabolic pathways of GC, with the expectation of contributing to a deeper 
understanding of GC and the development of innovative treatment strategies.
Methods: We identified the GC-related TME cell types and metabolic profiles and pathways by using 
relevant data from the single-cell RNA sequencing (scRNA-seq) database GSE134520 and the stomach 
adenocarcinoma (STAD) data set from The Cancer Genome Atlas (TCGA). We also assessed the effects 
of cimifugin on MKN28 cell proliferation, invasion, and migration. By using six public platforms, 
we comprehensively predicted the potential biological targets of cimifugin. Clinical prognosis and 
immunohistochemistry (IHC), molecular docking, and dynamics simulations were used to confirm the 
clinical relevance and stability of the aforementioned targets.
Results: Cimifugin inhibited MKN28 cell proliferation, migration, and invasion. Cimifugin may 
potentially act on various metabolic pathways in GC, including folate biosynthesis, xenobiotic metabolism 
via cytochrome P450 (CYP), glutathione metabolism, steroid hormone biosynthesis, and tryptophan 
metabolism. Cimifugin was noted to stably bind to three significant core targets associated with metabolic 
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Introduction

Gastric cancer (GC), a common cancer of the digestive 
system, is the fifth most prevalent and fourth most fatal type 
of cancer worldwide (1). Currently, several GC treatment 
strategies focus on chemotherapy, targeted therapy, 
immunotherapy, and surgery (2). Considering that risk 
factors vary among GC cases, this observation is connected 

to the metabolic competition and reprogramming in the 
tumor microenvironment (TME), influencing treatment 
and clinical outcomes in patients with cancer. However, 
GC susceptibility demonstrates considerable heterogeneity 
across patients—a phenomenon closely related to cellular 
metabolic reprogramming in the TME—and has important 
implications for cancer treatment and clinical prognosis (3).

Traditional Chinese medicine (TCM), which has been 
used in China for centuries, has been associated with 
considerable cancer prevention and treatment effects. TCM 
remains an imperative choice in modern cancer adjuvant 
therapy because of its high efficacy, few toxic side effects, 
wide availability, and affordable price. Many natural herbal 
components, which possess antitumor activity, are often 
used as adjuvants to chemotherapeutic agents for enhancing 
patient sensitivity to treatment and mitigating side 
effects. Cimifugin, a crucial phytochemical constituent of 
Saposhnikovia divaricata and Cimicifuga racemosa coumarins, 
has gained attention in recent years for its potential role 
in alleviating inflammation, neurological disorders, pain, 
cancer (4), and metabolic disorders (5). Dongyuan Li, the 
founder of the Tonifying Spleen School and one of the four 
famous physicians of the Jin-Yuan Dynasty, contributed 
significantly to the development of Chinese medicine (6); 
he favored the addition of Cimicifuga for treating not only 
spleen and stomach disorders but also stomach cancer. Fever 
and low-grade fever are common symptoms in patients 
with advanced GC—which TCM practitioners attribute 
to the inhibition of yang qi of the spleen and stomach by 
the disease. Shengyang Sanhuo Decoction (SSD), which 
contains both Saposhnikovia and Cimicifuga, is a commonly 
used, classic formula derived from Dongyuan Li’s Lan-Shi-
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Mi-Cang (written in 1276 CE); it is also widely used today 
to treat throat cancer. Various Cimicifuga compounds, such 
as actein, cimiside E, and cimisterol A, may be valuable 
in GC treatment (7,8). However, the potential anti-GC 
activity of cimifugin and the underlying mechanisms remain 
underexplored; this issue is assessed in the current study.

Conventional bulk RNA sequencing (RNA-seq) provides 
information on average gene expression in tissues; however, 
it is associated with limitations when used for assessing 
intercellular functional differences in the TME. Single-
cell RNA-seq (scRNA-seq), an emerging technology, can 
be a powerful approach for analyzing key biological issues 
such as cellular functional and metabolic heterogeneity of 
the GC TME (9). In recent years, network pharmacology 
has been widely used for identifying the active components 
of Chinese herbal medications and elucidating their 
pharmacological mechanisms (10). This approach may 
provide aid in understanding the pharmacological 
mechanisms underlying cimifugin activity.

In  th i s  s tudy,  we  per formed a  comprehens ive 
bioinformatics analysis, leveraging scRNA-seq data of 
early GC (EGC) and nonatrophic gastritis (NAG) cases 
from the Gene Expression Omnibus (GEO) database and 
combined them with bulk RNA-seq data from The Cancer 
Genome Atlas (TCGA) database. Moreover, the potential 
pharmacological mechanisms underlying the effects of 
cimifugin on GC were elucidated through the integration 
of network pharmacology and cell molecular biology 
experiments. Figure 1 depicts the current study’s workflow. 
We present this article in accordance with the MDAR 
reporting checklist (available at https://jgo.amegroups.com/
article/view/10.21037/jgo-24-413/rc).

Methods

Cell culture and treatment

Human GC cells MKN28 (BNCC360329) were procured 
from BeNa Culture Collection (https://www.bncc.com/) 
and maintained in a complete Roswell Park Memorial 
Institute (RPMI)-1640 medium (KGM31800S; KeyGEN 
Bio, Nanjing, China) at 37 ℃ under 5% CO2. Cells were 
randomly assigned to treatment groups and control groups 
using a computer-generated randomization sequence. The 
sample size, calculated to provide power of 0.8 to detect a 
20% effect in cell proliferation at a significance level of 0.05, 
necessitated three biological replicates per group. After 

treatment with cimifugin (B21156; Yuanye Bio, Shanghai, 
China) at 0, 40, 80, 160, 320, 640, or 1,280 μM for 24 and 
72 hours, the cells’ functional responses were assessed. 
Biological replicates were conducted three times. Only cells 
at passages between 3 to 10 were used to ensure genetic 
stability and avoid potential senescence effects.

Cell counting kit-8 (CCK-8) assay and 5-ethynyl-2'-
deoxyuridine (EdU) flow cytometry assay

Cimifugin-treated cells were added to a 96-well plate, and 
the medium was replaced with fresh culture medium at  
100 μL per well. Next, 10 μL of CCK-8 reagent was added 
to each well, followed by incubation at 37 ℃ for 2 hours (11). 
Each well’s absorbance at 450 nm was detected under an 
enzyme-labeling instrument.

Next, cimifugin-treated cells were incubated with a 
prepared EdU working solution (C0071S; Beyotime Bio, 
Shanghai, China) and washed with a washing solution at 
the end of the incubation period (12). The cells were then 
suspended in 500 μL of phosphate-buffered saline (PBS) 
and assayed on a flow cytometer (NovoCyte 2060R; ACEA 
Biosciences, Hangzhou, China).

Cell migration and invasion ability assay

Cells to be assessed were cultured in a 24-well plate, with 
adhesive chambers for invasion assay and without adhesive 
chambers for migration assay. In the upper chamber, the 
volume and cell number of cell suspension were 6×104 
and 300 µL, respectively (13). Next, 500 µL of complete 
medium was added to the lower chamber, and the cells 
were fixed using 160 µM cimifugin for 72 hours (based 
on the preliminary proliferation results). The cells were 
stained using 0.1% crystal violet (G1061; Solarbio, Beijing, 
China). Excess stain was wiped off from the chamber by 
using a cotton swab, and the cells were observed under 
a microscope. After images were obtained, the staining 
solution was removed, and 33% acetic acid was added. Each 
well’s absorbance at 562 nm was measured with an enzyme 
labeler (WD-2012B; Liuyi Bio, Beijing, China).

Data download and processing

scRNA-seq data collection
We sourced scRNA-seq data of three NAG cases and one 
EGC case from the GEO (GSE134520) database (https://

https://jgo.amegroups.com/article/view/10.21037/jgo-24-413/rc
https://jgo.amegroups.com/article/view/10.21037/jgo-24-413/rc
https://www.ncbi.nlm.nih.gov/geo/
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Figure 1 Workflow of the current network pharmacological investigation strategy of cimifugin potential in metabolism in GC. Sample 
data were obtained from the GEO and TGCA databases, and drug targets were obtained from six target prediction platforms. scRNA-seq, 
single-cell RNA sequencing; PPI, protein-protein interaction; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; 
TCGA, The Cancer Genome Atlas; DEGs, differentially expressed genes; GSEA, gene set enrichment analysis; GC, gastric cancer; GEO, 
Gene Expression Omnibus; DTGCMs, drug targets related to GC metabolic DEGs.

www.ncbi.nlm.nih.gov/geo/). 

Bulk RNA-seq data collection
From the Xena platform (https://xenabrowser.net/
datapages/) (14) and the stomach adenocarcinoma 

(STAD) dataset of TCGA, we obtained expression data of  
407 samples, comprising 375 STAD and 32 noncancerous 
control samples. Since the study used publicly available 
data, no additional ethical approval was required. The 
study was conducted in accordance with the Declaration of 

https://www.ncbi.nlm.nih.gov/geo/
https://xenabrowser.net/datapages/
https://xenabrowser.net/datapages/
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Helsinki (as revised in 2013).

Single-cell data analysis

To delineate robust cell subpopulations, we preprocessed 
data by using the R (version 4.3.0) package Seurat (15). 
We set the following threshold for gene expression: gene 
expression in ≥3 cells and cells expressing ≥200 genes. 
Mitochondrial and ribosomal RNA percentages were 
calculated, ensuring mitochondrial content of <25% and 
number of unique molecular identifiers per cell of ≥100. 
Normalization of the Seurat objects for expression matrixes 
within groups was achieved using the SplitObject and 
SCTransform functions. Integration of normalized Seurat 
objects was facilitated using the FindIntegrationAnchors 
and IntegrateData functions. FindNeighbors (with k.param 
set to 20) and FindClusters functions (with Resolution set 
to 0.25) were used to identify cell subpopulations. Cell 
subpopulations were visualized with t-distributed stochastic 
neighbor embedding (tSNE).

Cell type identification
We used SingleR (version 2.2.0) (16) and the CellMarker 
database (17) to detect CellMarker genes and identify the cell 
types. Fisher’s test was used to compare NAG and EGC cells 
with a fold change (FC) value of >4 or <0.25 and P value of 
<0.05. The feature plot and dot plot functions were used to 
analyze feature gene expression across both cell types.

Cell-cell communication and cell metabolic activity 
analysis
We used CellChat (version 1.6.1) (18) to elucidate the 
intricate intercellular communication and the mechanisms 
of signaling molecules at the single-cell level across various 
cell types. We also used the R package scMetabolism 
(version 0.2.1) (19) to quantify metabolic activity with 
precision at the single-cell resolution.

Cimifugin structure profiling and target prediction

The detailed chemical structure of cimifugin was retrieved 
from the PubChem database (20). The MOL2 format 
of the compound was also downloaded for subsequent 
analysis. The potential biological targets of cimifugin 
were comprehensively predicted using 6 reputable public 
webtools and webservers: SwissTargetPrediction (21), SEA 

Search Server (22), Super-PRED (23), ChemMapper (24), 
GalaxyWEB (25), and PharmMapper (26). The gene symbol 
names corresponding to these targets were standardized 
using data from the UniProt database (27). The union of all 
targets identified using these databases was compiled, and a 
Venn diagram was generated using the BioLadder platform 
(https://www.bioladder.cn/) to visualize the intersection of 
these targets. Deep-PK database (28) was utilized to predict 
the toxicity and pharmacological properties of cimifugin. 
Additionally, based on PiscesCSM database (https://biosig.
lab.uq.edu.au/piscescsm/), the drug’s potential effects in 
combination with various anticancer drugs was forecasted 
across a range of cancers.

Bulk RNA-seq differentially expressed genes (DEGs) 
analysis

DESeq2 (version 1.40.1) (29) was used to identify DEGs 
between STAD and normal samples in TCGA data, filtering 
with P<0.05 and |log2FC| >1.5.

Identification of drug targets related to GC metabolic 
DEGs (DTGCMs) and core targets of clinical significance

We used a meticulous screening process to identify 
DTGCMs in three subsets: drug targets, TCGA DEGs, 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
metabolic genes. The core targets were further refined 
using four subsets: cell markers, TCGA DEGs, KEGG 
metabolic genes, and drug targets. The KEGG metabolic 
genes were sourced from scMetabolism. A Venn diagram 
was constructed using BioLadder to illustrate the overlap 
between these subsets. To elucidate the connections 
between cimifugin’s drug targets, cell types, and KEGG 
metabolic pathways, we created a Sankey plot by using 
Origin Pro (2021 v. 9.8).

Protein-protein interaction (PPI) network construction

To construct a PPI network, the identified targets of 
cimifugin and DTGCMs were integrated into the Search 
Tool for the Retrieval of Interacting Genes/Proteins 
(STRING) database (30) separately, with a confidence score 
threshold set to 0.4 and species specificity limited to Homo 
sapiens. Cytoscape (version 3.10.0) (31) was utilized for the 
topological analysis of the target network.

https://biosig.lab.uq.edu.au/piscescsm/
https://biosig.lab.uq.edu.au/piscescsm/
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Functional enrichment and gene set enrichment analyses 
(GSEAs)

Gene Ontology (GO) and KEGG pathways (32) were 
analyzed using clusterProfiler (version 4.8.1) (33), with 
a focus on the metabolic pathway differences across 
various cell types in scRNA-seq and bulk RNA-seq data. 
KEGG metabolic pathway datasets were used for further 
enrichment analysis, with significance determined at 
Benjamini-Hochberg-adjusted P<0.05 and gene count ≥3. 
GSEA was used to characterize the biologically relevant 
DEGs within KEGG metabolic pathways in the TCGA 
STAD data.

Assessment of core targets expression and prognostic 
significance

To preliminarily validate the clinical relevance of the 
core targets identified from the STAD data, we examined 
the available data from public databases. The Human 
Protein Atlas (HPA) database (34) was queried to obtain 
representative immunohistochemical (IHC) images of the 
core target proteins in normal and STAD tissues, facilitating 
the evaluation of protein expression level differences. We 
used the Gene Expression Profiling Interactive Analysis 2 
(GEPIA2) database (35) to assess the transcriptome-level 
expression differences of core targets between the STAD 
and normal cohorts. Overall survival (OS) was defined as the 
period from surgical resection to death. To investigate the 
impact of proteins on the prognosis of patients with STAD, 
the association between core targets expression and OS was 
analyzed by categorizing high and low expression levels 
into two groups (with the median as the cutoff) using the 
STAD and normal cohorts. Kaplan-Meier survival curves 
were derived from the GEPIA2 database. Significant core 
targets were identified by their P values for OS and log2-
transcript per million (TPM). The cBioPortal database (36)  
was utilized to illustrate the mutational landscape of 
significant core targets through oncoprint visualizations.

Molecular docking and molecular dynamics (MD) 
simulation

The molecular structures of the significant core targets were 
retrieved from the RCSB Protein Data Bank (PDB) (37)  
and saved in the PDB format for subsequent use in 
AutoDock Vina (version 1.1.2) (38). Cimifugin structure was 
obtained from the PubChem database and imported into 
AutoDock Vina in the MOL2 format. To analyze protein-

ligand interactions, we used the Protein-Ligand Interaction 
Profiler (PLIP) (39). PyMOL Molecular Graphics System 
(version 2.5; Schrödinger) (40) was utilized to modify the 
proteins—including original ligand and water molecule 
removal—and correct protein structures.

MD simulations were performed using Gromacs (41) 
with the Amber14SB force field and TIP3P water model. 
Electrostatics were managed using Particle mesh Ewald. 
Simulations were conducted in canonical (NVT) and 
isothermal and isobaric system (NPT) ensembles for 100 ns;  
then, MD simulation results were calculated and stored 
every 10 ps. Root mean square deviation (RMSD), radius of 
gyration (Rg), root mean square fluctuation (RMSF), and 
solvent accessible surface area (SASA) were monitored, and 
binding free energy was calculated with gmx MMPBSA.

Statistical analysis

GraphPad Prism (version 9.0.0; GraphPad Software, San 
Diego, CA, USA) was used for statistical analysis and 
graphical representation. All experiments were repeated 
three times. Our quantitative results, expressed as mean ± 
standard deviation, were compared between multiple groups 
by using one-way analysis of variance (ANOVA) with a 
test level of α=0.05. A P value of <0.05 was considered to 
indicate significant differences.

Results

Construction of cell clusters and communication in EGC 
and NAG using scRNA-seq data

Single-cell analysis and cell clustering
First, after filtering ineligible cells, we used the remaining 
13,490 cells for subsequent analysis. Single-cell filtration 
analysis yielded 3,010 and 6,283 cells in the EGC and NAG 
groups, respectively. The expression threshold of nFeature 
RNA, nCount RNA, percent.mt, percent.rb for scRNA-
seq data were shown (Figure S1A,S1B). Our ANOVA for 
gene expression in the core cells revealed 3,000 highly 
variable genes (Figure S1C). Principal component analysis 
(PCA), uniform manifold approximation and projection 
(UMAP), and tSNE were then applied to different cell 
phases and groups (Figure S1D). Consequently, the cells 
were subsequently classified into 11 independent clusters, 
distributed between two groups using the tSNE algorithm 
(Figure 2A). The “FindAllMarkers” function was employed 
to identify marker genes in each of the 11 cell clusters. 
These clusters were annotated by identifying marker genes 

https://cdn.amegroups.cn/static/public/JGO-24-413-Supplementary.pdf
https://cdn.amegroups.cn/static/public/JGO-24-413-Supplementary.pdf
https://cdn.amegroups.cn/static/public/JGO-24-413-Supplementary.pdf
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by using the singleR package and the CellMarker database. 
Consequently, we identified cell types such as B cells, basal 
cells, chief cells, common myeloid progenitors (CMPs), 
endocrine cells, isthmus cells, macrophages, neck cells, 
natural killer (NK) cells, pit mucous cells (PMCs), and T 
cells. The expression of key marker genes in each cell type 
was visualized using heatmaps and dot plots (Figure 2B,2C). 
Cell type distribution across different samples and groups 
was also analyzed (Figure 2D).

Cell-cell communication analysis results
We used  Ce l lCha t  to  ana lyze  the  in te rce l lu l a r 
communication networks within the EGC cells derived from 
scRNA-seq data (Figure 2E). Consequently, we identified 
numerous significant ligand-receptor interactions across all 
11 cell types. Notably, in the EGC group, the weight and 
strength of the interactions of macrophages with PMCs, 
basal cells, and isthmus cells were significantly enhanced. 
Stromal endocrine cells exhibited a communication pattern 
relatively uniform with other cell types. The crosstalk of 
macrophages with NK and T cells was found to facilitate 
the M1/M2 polarization.

Cell metabolism analysis

Next, we assessed the metabolic characteristics of 11 cells in 
human EGC. Gluconeogenesis, oxidative phosphorylation 
(OXPHOS), the tricarboxylic acid (TCA) cycle, amino 
sugar and nucleotide sugar metabolism, butanoate 
metabolism, and lipid metabolism demonstrated higher 
levels in epithelial cells than in other cell types. Fatty acid 
elongation, degradation, and biosynthesis were highly 
expressed in macrophages, similar to the biological function 
of tumor-associated macrophages (TAMs), suggesting their 
association with M2 activation in TAMs (Figure 3A). To 
explore the distribution of high-score metabolic pathways in 
all 11 cell types, we visualized the landscape of eight high-
score pathways in the EGC group by using tSNE dimplots. 
OXPHOS and gluconeogenesis expression was noted to be 
higher in neck cells, PMCs, basal cells, and isthmus cells, 
whereas butanoate metabolism expression was higher in 
PMCs, basal cells, and T cells (Figure 3B).

Data and GSEA of KEGG metabolic pathways

We obtained STAD tumor and normal sample data from the 
TCGA database and performed differential analysis by using 
DESeq2. In total, 2,596 genes were identified as DEGs, 

including 1,207 upregulated and 1,389 downregulated 
genes (Figure 4A); these DEGs are listed in table available 
at https://cdn.amegroups.cn/static/public/jgo-24-413-1.xlsx. 
These 2,596 DEGs were subjected to metabolism-related 
GSEA based on the KEGG metabolism pathway dataset in 
the scMetabolism package. The results demonstrated the 
presence of increased suppression of xenobiotic and drug 
metabolism pathway expression during tumorigenesis, along 
with inhibition of glycolysis, gluconeogenesis, pentose-
glucuronate interconversion, and glutathione metabolism. 
In other words, during the progression of tumorigenesis, 
cells undergo metabolic reprogramming and xenobiotic and 
drug metabolism become suppressed (Figure 4B).

Effects of cimifugin on MKN28 cell proliferation, invasion, 
and migration

Our CCK-8 assay results indicated that cimifugin inhibits 
the GC cell line MKN28. In particular, compared with 
no treatment (control), treatment with 320 μM cimifugin 
significantly reduced MKN28 cell viability after 24 hours. 
Moreover, MKN28 cells treated with 40, 80, 160, 320, and 
640 μM cimifugin for 72 hours demonstrated significant 
inhibition (Figure 5A).

Our EdU flow cytometry assay results indicated that 
cimifugin also inhibited MKN28 cell proliferation. In 
particular, compared with control cells, MKN28 cells 
treated with 1,600 μM cimifugin for 72 hours demonstrated 
a significant decrease in proliferation (Figure 5B).

Cimifugin also inhibited MKN28 cell migration and 
invasion in the transwell assay. In particular, compared 
with control cells, MKN28 cells treated with 1,600 μM 
cimifugin for 72 hours demonstrated a significant reduction 
in migration and invasion (Figure 5C,5D).

Predictions of cimifugin’s drug targets, biological functions, 
safety, and efficacy

We downloaded the three-dimensional (3D) chemical 
structure of cimifugin from PubChem (Figure 6A). We 
also predicted cimifugin’s targets using six web resources: 
SwissTargetPrediction, SEA Search Server, Super-PRED, 
ChemMapper, GalaxyWEB, and PharmMapper. We 
collated the 6 sets of target results (Figure 6B), predicting 
691 targets in total. After the exclusion of duplicate targets, 
569 unique drug targets were included in the subsequent 
analyses. For instance, these 569 targets were entered into 
the STRING database for PPI analysis and to draw the PPI 

https://cdn.amegroups.cn/static/public/jgo-24-413-1.xlsx
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network diagram by using Cytoscape (Figure 6C).
T h e s e  5 6 9  t a r g e t s  w e r e  a l s o  a n a l y z e d  u s i n g 

clusterProfiler for GO enrichment and KEGG pathway 
analysis. In the biological process GO enrichment analysis, 
cimifugin’s targets were enriched in metabolic and 
biosystemic processes, such as ribose phosphate metabolic 
process, carboxylic acid biosystemic process, steroid 
metabolic process, hormone metabolic process, and process 
of response to oxygen levels. In other words, in the human 
body, cimifugin targets various cellular metabolic processes, 
including nucleotide metabolism, fat metabolism, sugar 
and acid metabolism, oxidation reaction, and oxidative 
stress processes. In cell component analysis, most of the 

cimifugin targets were enriched in the vesicle lumen, cell 
membrane, synaptic membrane, and other cell structures, 
indicating that when in large quantities, the compound acts 
on the surface structure of cells. In the molecular function 
analysis of cimifugin, nuclear receptor activity, carboxylic 
acid binding, and oxidoreductase activity were found to be 
highly enriched; therefore, the compound demonstrates 
some regulatory effect on cell energy metabolism, carbon 
cycle, and nuclear receptor activity. Taken together, these 
results indicated that some of the cimifugin targets are 
present in the TCA cycle, which was the core pathway for 
the metabolism of not only various nutrients but also the 
carbon chain degradation products of sugars, fats, proteins, 
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and nucleic acids (Figure 6D, table available at https://cdn.
amegroups.cn/static/public/jgo-24-413-2.xlsx).

Our KEGG enrichment analysis  demonstrated 
that cimifugin targets were enriched in some chemical 
carcinogenesis pathways (including central carbon metabolic 
pathways underlying cancer, lipid, and atherosclerosis 
development) and the HIF-1 signaling pathway. Therefore, 
cimifugin may be involved in oxidative stress development, 
chemical factor production, and various energy metabolic 
pathways during tumor growth. Cimifugin targets were 
also highly enriched in programmed cell death ligand 1 
(PD-L1) expression and programmed cell death protein 
1 (PD-1) checkpoint pathways in cancer and the T-cell 
receiver pathway. Therefore, cimifugin may also regulate 
cancer immunity (Figure 6E, table available at https://cdn.
amegroups.cn/static/public/jgo-24-413-3.xlsx).

We simultaneously calculated the pharmacokinetic 
and toxicity properties of cimifugin based on deep 
learning to assess the safety. The drug exhibited a logPaap 
value of −4.85 through the Caco-2 cell line in humans, 
demonstrating good absorption capacity, and its predicted 
oral bioavailability confidence was as high as 0.988, classified 
as “bioavailable”. This indicated that its absorption and 
distribution within the gastrointestinal tract were safe and 
effective, with most components being effectively utilized 
by the human body. Although it might potentially have 
caused respiratory diseases and underlying cardiac toxicity 
in some cases, the risk of hepatotoxicity and skin irritation 
was low, providing positive information on the utilization of 
cimifugin in the human body (Table S1).

Cimifugin has been predicted to interact with six 
chemotherapy drugs: capecitabine, cisplatin, 5-fluorouracil 
(5-FU), irinotecan, oxaliplatin, and paclitaxel. Cimifugin 
showed complex effects in interactions with a variety 
of chemotherapeutic agents. Overall, it was usually 
antagonistic in melanoma and ovarian cancer, but more 
synergistic in lung, breast, colon, and prostate cancers. 
Although we did not have direct data to evaluate the 
performance of cimifugin in GC, based on its performance 
in other cancer types, we speculated that it may also exhibit 
a similar interaction pattern in GC (Table S2).

Screening and biofunctional analysis of DTGCMs and 
cimifugin core targets

The intersections of 2,596 DEGs from TCGA, 569 
cimifugin targets from GO, 1,667 KEGG metabolic genes, 

and 1,409 marker genes in the 11 cell types were visualized, 
as shown in Figure 7A. Next, we analyzed the eight core 
target intersection genes in the intersections of all four 
subsets, as well as 36 DTGCMs in the intersections of 
drug targets, TCGA DEGs, and KEGG metabolic genes. 
Based on the 36 DTGCMs, we performed PPI (Figure 7B)  
analyses. The results illustrated DTGCMs exhibited 
interactions among aldo-keto reductase (AKR) family 
proteins, monoamine oxidase (MAO) family proteins and 
cytochrome P450 (CYP) family proteins. KEGG pathway 
enrichment analysis was performed on 36 DTGCMs 
associated with gastric tumorigenesis and 26 pathways 
were obtained (P<0.05); only the first 15 pathways are 
listed in Figure 7C. Of them, steroid hormone biosynthesis, 
folate biosynthesis, chemical carcinogenesis pathways 
demonstrated higher enrichment scores. Expression of eight 
core targets in the 11 cell types was illustrated in Figure 7D; 
these targets demonstrated more significant expression in 
PMCs, neck cells, T cells, and basal cells. A Sankey plot 
was drawn to describe the relationship among cimifugin, 
eight core targets (AKR1B10, AKR1C2, AKR1C3, CA2, 
CBR1, GSTA1, MAOB, PDE2A), cell types, and metabolic 
pathways involved in GC treatment (Figure 7E, Table S3).

Clinical significance of core targets

To assess the therapeutic and prognostic significance of 
the core targets in STAD, we examined the expression 
data and OS of patients using data from the HPA and 
GEPIA2 databases. Our analysis showed three targets 
AKR1C2, MAOB, PDE2A significant impact on both 
OS and expression in GC. The expressions of AKR1C2, 
MAOB proteins and genes were considerably lower in 
STAD tissues than in normal tissues (Figure 8A,8B).  
However, no significant expression differences were 
observed across the four clinical stages of STAD (Figure 8C).  
Notably,  although AKR1C2 ,  MAOB ,  PDE2A  were 
downregulated in cancer tissues, survival analysis indicated 
that patients with lower expression levels of these targets 
demonstrated longer OS (Figure 8D). The oncoprint plot 
revealed genetic alterations in the AKR1C2, MAOB, and 
PDE2A genes in GC and STAD, with 2.1%, 9%, and 6% 
of the samples exhibiting genetic changes, respectively, 
including deep deletions and amplifications (Figure 8E). 
This discrepancy may be attributable to the alterations in 
the expression of these targets during the initial stages of 
cancer development; therefore, these genes may not act 

https://cdn.amegroups.cn/static/public/jgo-24-413-2.xlsx
https://cdn.amegroups.cn/static/public/jgo-24-413-2.xlsx
https://cdn.amegroups.cn/static/public/jgo-24-413-3.xlsx
https://cdn.amegroups.cn/static/public/jgo-24-413-3.xlsx
https://cdn.amegroups.cn/static/public/JGO-24-413-Supplementary.pdf
https://cdn.amegroups.cn/static/public/JGO-24-413-Supplementary.pdf
https://cdn.amegroups.cn/static/public/JGO-24-413-Supplementary.pdf
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independently, and they are potentially passively regulated 
by other factors within the TME.

Expression of significant core targets in EGC and NAG

We analyzed AKR1C2, MAOB, and PDE2A expression 
in different cells and groups based on scRNA-seq data  
(Figure 9A,9B). The results indicated that the overall 
expression of AKR1C2, MAOB, and PDE2A was lower 
in the EGC group than in the NAG group (Figure 9B); 
these results are consistent with those based on bulk RNA-
seq data. However, the expression distribution of these 
significant core targets in the cells was uneven. According 
to our results, AKR1C2 was upregulated in isthmus cell and 
PMC, MAOB was upregulated in EGC endocrine cells, and 
PDE2A was significantly upregulated in EGC endocrine 
cells, NK cells, and macrophages (Figure 9A).

Molecular docking and MD simulation of significant core 
targets

We molecularly docked three significant core targets 
proteins with cimifugin and selected the best binding sites  
(Figure 10A-10C, Table 1). The highest binding energy 
calculated using AutoDock Vina was −7.7 kcal·mol−1, which 
was noted for PDE2A (3ITU), AKR1C2 (4JQA), and MAOB 
(6RKP) were noted to have the second and third highest 
binding energy, respectively.

The stability of AKR1C2, MAOB, and PDE2A systems 
was assessed using RMSD, Rg, RMSF, and SASA metrics. 
The MAOB system reached stability after 18 ns with a low 
RMSD, whereas AKR1C2 maintained stability throughout 
the 100 ns simulation (Figure 10D). The Rg of results for 
the AKR1C2, MAOB, and PDE2A systems are presented in 
Figure 10E. The Rg of the PDE2A system decreased most 
significantly, indicating that PDE2A has the most compact 
structure among the three proteins. The RMSF results 
are presented in Figure 10F. PDE2A showed significant 
fluctuations in RMSF, suggesting conformational changes, 
which were confirmed by gmx MMPBSA analysis. SASA 
analysis revealed increasing surface area for all systems, 
with PDE2A having the largest, potentially affecting system 

stability (Figure 10G).

Discussion

Metabolic characteristics of EGC TME

In scRNA-seq analysis, we identified 11 cell types in the 
EGC TME, including B cells, basal cells, chief cells, CMPs, 
endocrine cells, isthmus cells, macrophages, neck cells, NK 
cells, PMCs, and T cells.

Glycolysis and gluconeogenesis were highly active in 
epithelial cells, influencing immune cell function through 
metabolites such as lactate and pyruvate. Glyoxylate and 
dicarboxylate metabolism, linked to p53 (42) and epithelial-
mesenchymal transition (EMT) (43), was prominent in 
epithelial and endothelial cells. In NK cells, an increase 
in starch and sucrose metabolism, pyruvate metabolism, 
and inositol phosphate metabolism expression results from 
NK cell activation (44) and downstream recruitment (45). 
Pyruvate metabolism was noted to be enriched in epithelial 
and immune cells. Moreover, pentose and glucuronate 
interconversions are downregulated, and tumor and 
immune cells tend to convert pyruvate to lactate via lactic 
acid fermentation (i.e., glycolysis) to maintain adenosine 
triphosphate (ATP) production as a part of the Warburg 
effect (3). The OXPHOS pathway is enriched in EGC 
epithelial cells, with tumor cells potentially adapting 
through mitochondrial changes to meet metabolic needs, 
supporting cell proliferation and survival (46). Fatty acid 
biosynthesis was noted to be strongly expressed in TAMs 
with PMCs, basal cells, and T cells, suggesting that the 
presence of metabolic crosstalk and an increase in fatty acid 
contents can promote immune escape and metastasis of GC 
and affect TAMs’ M1/M2 polarization properties (47).

Potential value of cimifugin in GC metabolic 
reprogramming

We verified the proliferation inhibitory effects of cimifugin 
on GC cells and time-dependent cytotoxicity differences 
at 24 and 72 hours. Although a significant concentration 
dependence was not noted for MKN28 cells, cimifugin 

ENSG00000186642-PDE2A/pathology/stomach+cancer#img). (C) Significant core target expression levels across different STAD stages. (D) 
Relationship between significant core target expression levels and STAD prognosis. (E) The oncoprint plot of three significant core targets. 
*, P<0.05. TPM, transcript per million; STAD, stomach adenocarcinoma; T, STAD tumor sample; N, normal sample; HR, hazard ratio; 
TCGA, The Cancer Genome Atlas; IHC, immunohistochemistry.

https://www.proteinatlas.org/ENSG00000186642-PDE2A/pathology/stomach+cancer#img
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demonstrated an inhibitory effect on proliferation 
migration; however, further verification experiments are 
required. A literature review revealed that cimifugin has 
demonstrated anticancer effects in many cancer cell lines (4). 
A study revealed that cimifugin dose-dependently inhibited 
respiratory syncytial virus-induced in Hep-2 and A549 cells 
(P<0.0001); the antiviral activity of cimifugin was time-
dependent (P<0.0001) (48). Cimifugin has also been noted 
to inhibit cell proliferation and induce apoptosis in human 
pharyngeal carcinoma cells (49).

Our enrichment analysis results revealed that cimifugin 
is involved in several metabolic pathways and targets 
are enriched in amino acids, lipids, glycerol, and sterols 
metabolism. A previous study found that cimifugin reduces 
intracellular lipid accumulation of 3T3-L1 adipocytes, 
ameliorates the effects of tumor necrosis factor α-induced 
insulin resistance and inflammation, and reduces P65 
expression and MAPK pathway activation (5). The 
intersection of cimifugin-targeted metabolic pathways 
in EGC were shown to be related to folate biosynthesis, 
phenylalanine, histidine, galactose, glutathione, steroid 
hormone, and glycerolipid metabolism. Low folate levels 
correlate with GC severity (50), and altered cholesterol 
metabolism is a feature of transformed cells (51). Its 
association with these pathways suggested the potential of 
cimifugin to limit GC development.

Potential therapeutic targets of cimifugin in GC TME

Notably, three significant core targets underlying EGC 
regulation demonstrate clinical features in endocrine cells, 
CMPs, and PMCs; these targets may be potentially valuable 
for the prevention of EGC TME metabolic regulation in 
EMT progression.

AKR1C2, a member of the aldehyde/keto reductase 
superfamily, is involved in pathways including bile acid and 

bile salt syntheses, oxidoreductase activity, and carboxylic 
acid binding. We found that STAD tumor groups 
demonstrated a significant decrease in AKR1C2 expression. 
A recent study has reported that AKR1C2 silencing results 
in the downregulation of luminal androgen receptor (LAR) 
classification genes in triple-negative breast cancer cell 
lines (52). Although studies on the involvement of AKR1C2 
in GC are limited, a recent study suggests that AKR1C2 
downregulation in GC development and pathogenesis 
may be related to iron death regulation and immune  
responses (53). However, additional research is required to 
clarify the mechanisms underlying this association.

MAOA and MAOB are considered therapeutic targets 
for neurological disorders (54) because of their ability to 
inactivate a wide range of catecholamines (e.g., dopamine, 
epinephrine, and serotonin). The biological function of 
MAOB is closely related to the metabolism of glycine, 
serine, and threonine, and also to the metabolism of 
histidine, phenylalanine, and tyrosine (Table S3). MAOB 
demonstrates heterogeneous expression in many cancers, 
as a chemotherapeutic target, MAOs have value in 
immunological and anticancer therapies (55). Therefore, 
MAOB may hold informative significance in the pathogenesis 
and prognosis of GC (Figure 8). The analysis of scRNA-seq 
data demonstrated that MAOB expression is increased in 
EGC endothelial cells. Moreover, the gastrointestinal tract 
contains many neurotransmitters, and MAOB is a major 
metabolizing enzyme of these neurotransmitters and a great 
immunotherapy target (56). Some TCM drugs can also be 
used for cancer treatment targeting MAOB; for instance, 
danshensu can reduce MAOB activity and attenuate  
NF-κB signaling significantly, thus causing radiosensitization 
in non-small cell lung cancer (57).

PDE2A  demonstrates low expression in various  
cancers (58). In the current study, PDE2A gene expression was 
significantly lower in the STAD tumor samples than in the 

Table 1 Docking score and interaction of cimifugin with three significant core targets

Protein PDB ID
AutoDock 
Vina score

Hydrophobic interactions Hydrogen bonds π-stacking

AKR1C2 4JQA −6.75 TYR24A, HIS222A, GLU224A, TRP227A, 
LEU268A, LEU306A

TRY55A, SER217A, ALA218A, LEU219A, 
HIS222A

–

MAOB 6RKP −6.01 TYR97A, PRO105A, VAL106A, ASN108A, 
THR111A

HIS90A, TRP107A, ASN108A TYR97A

PDE2A 3ITU −7.7 PRO653A, THR703A, GLN833A, LEU836A ASP652A, TYP680D, ARG701A, TYR788D –

PDB, protein data bank.

https://cdn.amegroups.cn/static/public/JGO-24-413-Supplementary.pdf
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normal samples (Figure 8A), was implicated in the metabolic 
pathways of glycine, serine, and threonine (Table S3).  
Its role in cancer progression may depend on its dual 
specificity for cAMP and cGMP, which regulate cell 
differentiation and DNA replication (59). In our findings, 
PDE2A was strongly expressed in endothelial cells; this 

result may be related to EMT progression in EGC (60). In 
addition, during T-cell activation, PDE2A activation may 
act as a feed-forward mechanism to the feedback NP/cGMP 
signaling, thereby reducing cAMP levels and maintaining 
T-cell activation, proliferation, and chemotactic effects (61).

Although AKR1C2, MAOB, and PDE2A exhibit mutation 

https://cdn.amegroups.cn/static/public/JGO-24-413-Supplementary.pdf
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rates of 2.1%, 9%, and 6% in GC, respectively, these 
were comparatively lower than those of TP53 and Ras. 
Nonetheless, the differential expression of these genes in 
GC, as well as their association with OS, holed significant 
implications for the prediction and progression of GC.

Our research identified cimifugin as exhibiting moderate 
binding affinities (62) to three significant core targets—
AKR1C2, MAOB, and PDE2A—with binding energies that 
ranged from −6.01 to −7.7 kcal·mol−1. Comparable binding 
energies were reported in similar studies, such as MAOB-
crinamine at −8.20 kcal·mol−1, MAOB-haemanthidine 
at −7.7 kcal ·mol−1,  and MAOB-haemanthamine at  
−6.9 kcal·mol−1 (63). In the past, certain compounds 
associated with GC inflammation and carcinogenesis 
were demonstrated to have targeted and high-affinity 
binding. For instance, ellagic acid (EA) was known to 
target molecules such as TP53, JUN, and CASP3 in GC. 
MD simulations indicated that EA could effectively bind 
to key targets, inhibiting cancer promotion (64). Other 
compounds, such as quercetin, matrine, and ursolic acid, 
which targeted AKT1, TP53, epidermal growth factor, and 
CASP3 in GC, had shown promising binding and apoptosis-
inducing capabilities as revealed by Autodock Vina and MD 
simulations (65). These studies demonstrate the binding 
profiles of various compounds with important molecules and 
three significant core targets in GC, providing a reference 
for the results of cimifugin and laying the groundwork for 
further validation. Our study revealed the metabolic profile 
of the EGC TME and identified key cimifugin pathways 
and targets influencing epithelial, immune, and stromal 
cell functions related to EGC cell growth and movement. 
We also confirmed cimifugin’s anti-cancer effects in GC 
cells and predicted its metabolic reprogramming role using 
network pharmacology, with plans for future studies to 
experimentally validate these targets.

Conclusions

Our results indicated that cimifugin inhibits GC cell 
proliferation, invasion, and migration. It may also regulate 
glutathione, histidine, phenylalanine, steroid hormone, 
and glycerolipid metabolism, folate biosynthesis, and 15 
other EGC-related metabolic reprogramming processes. 
Target-regulated AKR1C2, MAOB, and PDE2A are 
strongly expressed in endocrine cells, CMPs, and PMCs, 
respectively; they might have potential diagnostic and 
prognostic clinical significance and provide insight into the 
pharmacological and clinical use of cimifugin. This study 

provides a novel basis for the development of metabolic 
reprogramming targets in EGC in TME. However, the 
current results warrant further validation.
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aspects of the work in ensuring that questions related 
to the accuracy or integrity of any part of the work are 
appropriately investigated and resolved. The study was 
conducted in accordance with the Declaration of Helsinki 
(as revised in 2013).

Open Access Statement: This is an Open Access article 
distributed in accordance with the Creative Commons 
Attribution-NonCommercial-NoDerivs 4.0 International 
License (CC BY-NC-ND 4.0), which permits the non-
commercial replication and distribution of the article with 
the strict proviso that no changes or edits are made and the 
original work is properly cited (including links to both the 
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