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Abstract

Background Muscular weakness and/or muscle wasting is recognized as a key medical problem in critically ill patients on in-
tensive care units (ICUs) worldwide.
Methods and Results Intensive care unit-acquired weakness (ICUAW) results from various diseases leading to critical illness
and is observed in about 40% [1080/2686 patients, 95% confidence interval (CI): 38–42%] of mixed (medical–surgical) ICU pa-
tients. Muscle strength at ICU discharge is directly associated with mortality 5 years after discharge [hazard ratio 0.946, 95% CI:
0.928–0.968 per point increase in Medical Research Council (MRC) scores, P = 0.001]. ICUAW serves as umbrella term for the
subgroups ‘critical illness myopathy’, ‘critical illness polyneuropathy’, and ‘critical illness polyneuromyopathy’, the latter distin-
guished using electrophysiology and/or biopsy studies. Diagnosing, studying, and developing treatments for ICUAW among the
critically ill seems challenging due to the acuity and severity of the underlying heterogeneous diseases. Ventilator-induced di-
aphragmatic dysfunction occurs in up to 80% (n = 32/40) of ICUAW patients after mechanical ventilation and mostly results
from distinct muscular pathologies, disuse, underlying critical illness, and/or effects imposed directly by mechanical ventila-
tion. Swallowing disorders/dysphagia likely represent an additional (local) neuromuscular dysfunction/ICUAW sequelae and
presents in 10.3% (n = 96/933) of mixed medical–surgical ICU survivors, with 60.4% (n = 58/96) of patients remaining dyspha-
gia positive until hospital discharge. Key independent risk factors for dysphagia following mechanical ventilation are baseline
neurological disease [odds ratio (OR) 4.45, 95% CI: 2.74–7.24, P < 0.01], emergency admission (OR 2.04, 95% CI: 1.15–3.59,
P < 0.01), days on mechanical ventilation (OR 1.19, 95% CI: 1.06–1.34, P < 0.01), days on renal replacement therapy (OR
1.1, 95% CI: 1–1.23, P = 0.03), and disease severity (Acute Physiology and Chronic Health Evaluation II score within first
24 h; OR 1.03, 95% CI: 0.99–1.07, P < 0.01). Dysphagia positivity independently predicts 28-day and 90-day mortality (90-day
univariate hazard ratio: 3.74; 95% CI, 2.01–6.95; P < 0.001) and is associated with a 9.2% excess (all-cause) mortality rate.
Conclusions Neuromuscular weakness and muscle wasting is observed in many survivors of critical illness. ICUAW,
ventilator-induced diaphragmatic dysfunction, and dysphagia are associated with complicated and prolonged ICU stay, im-
paired weaning from mechanical ventilation, impeded rehabilitative measures, and a considerable impact on morbidity and
mortality is noted. Future research strategies should further explore underlying pathomechanisms and lead to development
of causal treatment strategies.
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Introduction

Reduced muscular force, as in intensive care unit (ICU)-ac-
quired weakness (ICUAW), is observed in many, if not most,
survivors of critical illness following various critical
diseases.1–5 Clinical consequences of muscular weakness in-
clude, for example, impaired mobilization, prolonged bed
rest, and extended ICU and/or hospital length of stay. This
may induce a ‘vicious cycle’ of (secondary) complications
and necessitates repeated and/or intensified medical ther-
apy, which may again result in increased morbidity and
mortality.2–6 Further, recent data indicate a considerable im-
pact of muscular weakness and muscle wasting on quality of
life in the years following critical illness.7–9 Importantly, it
should be noted that muscular weakness and/or muscle
wasting imposes an important burden not only on affected
individuals, but also on health care systems.1–4,7,10 In an ef-
fort to improve the care for patients with ICUAW, consen-
sus guidelines on the diagnosis11 and research agenda12

were recently published.
Here, we summarize the available data on muscular

weakness and muscle wasting in critically ill patients in
the light of current and future perspectives. Further, we
will provide an outlook on other clinically relevant neuro-
muscular dysfunctions [including ventilator-induced dia-
phragmatic dysfunction (VIDD) and dysphagia] and will
discuss potential overlap.

Clinical presentation and nomenclature
of muscular weakness in the critically ill

Intensive care unit-acquired weakness

A bedside diagnosis of symmetric muscular weakness and de-
creased muscular tone, typically of the lower limbs, in pa-
tients with critical illness should raise the potential
differential diagnosis of ICUAW2–4 and is observed in at least
40% [1080/2686 patients, 95% confidence interval (CI): 38–
42%] of ICU patients.13 Lack of compliance (e.g. caused by im-
paired communication or need for sedation), fluid shifts con-
founding physiologic testing and diagnostic imaging studies,
and rapid onset/progression of the underlying disease often
delay establishing of the diagnosis ICUAW. Neurological ex-
amination may indicate decreased or absent deep tendon re-
flexes, which are not pathognomic.14 Respiratory function
may be impaired and present clinically as failure to wean
from mechanical ventilation and potential overlap to VIDD
should be considered in respective cases.15

A round table conference in 200914 proposed new defini-
tions and ICUAW is now typically understood as the
clinical ‘umbrella term’, which embraces the following
subgroups: critical illness polyneuropathy (CIP), critical illness

myopathy (CIM), and their combination—critical illness
polyneuromyopathy (CIPM). Importantly, for differentiation
between respective subtypes, electrophysiological studies
[e.g. nerve conduction studies, electromyography (EMG)]
and muscle biopsies are required (also refer to Figure 1).

Critical illness polyneuropathy

Critical illness polyneuropathy is an acute and acquired
polyneuropathy characterized by length-dependent axonal
damage.2–4,16 Typically, thick myelinated sensory and motor
fibres are affected, predominantly determining the clinical
phenotype. For a definite diagnosis of CIP, published diag-
nostic criteria demand that patients fulfil the diagnostic
criteria of ICUAW and show (in addition) typical electro-
physiological evidence of an axonal motor and sensory
polyneuropathy in the absence of a neuromuscular trans-
mission deficit.17 If muscle strength assessment is not avail-
able, the diagnosis of probable CIP can be based on
electrophysiological findings only. A nerve biopsy is not
mandatory for the respective diagnosis. Some reports from
investigations of skin biopsies demonstrate that small fibres
(i.e. sympathetic fibres and C-fibres) can also undergo de-
generation in CIP patients18,19 and may explain why pa-
tients with CIP sometimes show typical symptoms of small
fibre neuropathy in the subacute and chronic phase follow-
ing critical illness. Currently, it is unknown whether occur-
rence of CIP and acute small fibre neuropathy is linked
and/or whether these two entities share common patho-
physiological mechanisms.

Critical illness myopathy

Critical illness myopathy is an acute and acquired primary
myopathy.20–24 Definite diagnosis of CIM is based on a mul-
timodal approach.17 Comparable with CIP, the diagnostic
criteria of ICUAW have to be fulfilled. Additionally, electro-
physiological studies consisting of nerve conduction studies
and needle EMG are required. A neuromuscular transmis-
sion deficit needs to be ruled out using repetitive nerve
stimulation. Ultimately, a muscle biopsy showing primary
myopathy with myosin loss (and potential muscle cell ne-
crosis) is needed for definite diagnosis; otherwise, only
‘probable’ CIM can be established. CIM often co-exists with
CIP, and this is referred to as CIPM. Differential diagnosis
can be challenging and may require extensive electrophysi-
ological investigation.

Muscle wasting in critical illness

In 1892, Sir William Osler reported a ‘rapid loss of flesh’ in pa-
tients with severe infections.25 Today, it seems well
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established that muscle wasting constitutes a frequent com-
plication in critical illness10 and may be most prevalent in
chronic critical illness (i.e. patients with prolonged ICU
length of stay). However, it seems important to note that
muscular wasting constitutes a separate disease entity.
Whereas ICUAW is often associated with muscle wasting,

muscle wasting does not per se imply the presence of a
neuromuscular disorder.3 Importantly, resulting muscle
strength depends both on total muscle mass and force--
generating capacity (i.e. force per cross-sectional area), which
is, if reduced, a key feature in ICUAW but not necessarily in
muscle wasting.3,26

Figure 1 Risk factors and molecular mechanisms for muscle atrophy and muscle dysfunction in critically ill patients. Akt, Akt protein kinase B; AMPK,
AMP-activated protein kinase; IGF-1, insulin growth factor-1; IKKβ, inhibitor of nuclear factor kappa-B kinase subunit beta; IRS, insulin receptor sub-
strate; KLF-15, Krüppel-like factor-15; mTor, mammalian target of rapamycin; MuRF1, muscle-specific ring finger 1; NFκB, nuclear factor
kappa-light-chain-enhancer of activated B cells; PI3K, phosphoinositide 3-kinase; TNF-alpha, tumor necrosis factor alpha.
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Additional clinical presentations of
neuromuscular weakness on the
intensive care unit

Ventilator-induced diaphragmatic dysfunction

Ventilator-induced diaphragmatic dysfunction is observed in
up to 80% of ICUAW patients.27 VIDD can be noted in ICU pa-
tients after prolonged controlled mechanical ventilation and
is determined by a rapid loss in force-generating diaphrag-
matic capacity that may also affect additional respiratory
muscles (e.g. the intercostal musculature).15,24 However,
VIDD can be observed as early as after a few hours of me-
chanical ventilation in humans and VIDD intricates with, for
example, self-induced and sepsis-associated diaphragmatic
dysfunction.15 As shown and discussed almost 20 years
ago,28 VIDD may not only be considered part of weaning fail-
ure when all other aetiologies are ruled out, but should also
be considered as a cause of weaning difficulty intricated with
others causes (e.g. fluid overload, atelectasis). Clinically, VIDD
often presents as failure to wean from mechanical ventilation
despite sustained clinical efforts,15 and, in a first step, other
underlying reasons (e.g. electrolyte abnormality or prolonged
neuromuscular blockade) should be excluded. However, dia-
phragmatic activity can often not be assessed easily, which
may hamper an early diagnosis. Clinical assessment of pa-
tients with suspected VIDD typically involves ultrasonic as-
sessment of diaphragmatic motion (diaphragmatic dome
excursion) upon spontaneous breathing trials and/or mea-
surement of the diaphragmatic thickening fraction.15 Further,
diaphragmatic activity can be assessed by measurement of
transdiaphragmatic pressures using an oesophageal probe,
or via (invasive) analysis of diaphragmatic electrical activity15

and phrenic nerve conduction studies.29,30

Dysphagia

The clinical presentation of oropharyngeal dysphagia (OD)
embraces drooling from the mouth, coughing following
drinking/eating (and/or silent aspiration), and clinically obvi-
ous tracheal/pulmonary aspiration.31 The neuromuscular pro-
cess of swallowing is particularly complex, and exact
underlying pathomechanisms leading to dysphagia in critical
illness remain incompletely understood.31,32 Recent data
show that impaired swallowing can often be observed after
mechanical ventilation in general ICU populations with up to
one out of six patients with emergency admission likely
affected.33 At ICU discharge, 10.3% (n = 96/933) of mixed
medical–surgical ICU survivors were reported to have con-
firmed dysphagia and 60.4% (n = 58/96) of affected patients
remained dysphagia positive until hospital discharge.33 Few
studies are available on potential underlying risk factors in

critically ill patients, and data show that risk factors for dys-
phagia and ICUAW may (at least partially) overlap.34 In brief,
proposed key independent risk factors for dysphagia follow-
ing mechanical ventilation are baseline neurological disease
[odds ratio (OR) 4.45, 95% CI: 2.74–7.24, P < 0.01], emer-
gency admission (OR 2.04, 95% CI: 1.15–3.59, P < 0.01), days
on mechanical ventilation (OR 1.19, 95% CI: 1.06–1.34,
P < 0.01), days on renal replacement therapy (OR 1.1, 95%
CI: 1–1.23, P = 0.03), and disease severity (Acute Physiology
and Chronic Health Evaluation II score within first 24 h; OR
1.03, 95% CI: 0.99–1.07, P < 0.01).34

Clinically, OD requires multidisciplinary efforts and should
be systematically screened for in ICU patients at risk.32,35–37

Reports demonstrate that awareness for dysphagia can be
improved.38–40 In patients with undetected OD, apparent or
silent aspiration may prolong ICU/hospital stay, require more
ICU resources (including financial resources), and may in-
crease morbidity and mortality.31,33,35 Further, dysphagia
positivity was shown to independently predict 28-day and
90-day mortality (90-day univariate hazard ratio: 3.74; 95%
CI, 2.01–6.95; P < 0.001) and associated with a 9.2% excess
(all-cause) mortality rate.33

Diagnostic approaches to generalized
muscular weakness on the intensive
care unit

Clinical

Peripheral muscular weakness should be quantified by use of
the Medical Research Council (MRC) sum score (MRC-SS). The
MRC-SS includes manual assessment of three functional mus-
cle groups on both upper extremities (shoulder abduction, el-
bow flexion, and wrist extension) and lower extremities (hip
flexion, knee extension, and ankle dorsiflexion). Muscle
strength is quantified from 0 (no movement observed) to 5
(normal contraction against full resistance). ICUAW is diag-
nosed via an MRC-SS _x0003C; 48, which reflects an average
MRC score of <4 (antigravity strength) and as it is a diagnosis
of exclusion if no other plausible aetiology for the weakness
other than critical illness itself is present.3,11,41,42 Further-
more, dominant-hand dynamometry results of <11 kg force
for men and <7 kg force for women may be used to identify
ICUAW in previously healthy individuals.2–4

From a clinical perspective, a key challenge may be that
the physical examination of critically ill patients on the ICU
is often impeded, for example, by pre-existing neuromuscular
disease, reduced patient cooperativeness, partial sedation,
prolonged neuromuscular blockade (which would typically in-
volve cranial nerve-innervated muscles), and/or presence of
delirium, which may be particularly relevant for sensory test-
ing as well as assessment of the MRC-SS, and was thus shown
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to have a high interobserver variability.43–45 Importantly, in
individuals incapable of voluntary contraction, electrophysio-
logical studies would be required for diagnosis.

However, clinicians have to bear in mind that the diagnos-
tic criteria for ICUAW as well as the clinical findings in CIP and
CIM are not specific. Respective muscular weakness can also
be encountered in other diseases including Guillain–Barré
syndrome, myasthenia gravis, myositis, and others.46

Clinical findings in patients with CIP and CIM typically over-
lap. Deficits due to dysfunction of thick myelinated sensory
nerve fibres can help to differentiate between these two en-
tities and are only found in CIP and CIPM. In addition, one
should bear in mind that deficits associated with small fibre
dysfunction including temperature, pain, and sweat distur-
bance can be observed in CIP and CIPM.18 Motor deficits
are hallmarks of both CIP and CIM. In CIP, flaccid muscle pa-
resis is typically symmetrical, most prominent in distal limb
muscle groups, and affects the lower extremities more. Facial
muscles are spared. Distal deep tendon reflexes are reduced
or abolished. Clinical motor findings in CIM resemble findings
in CIP and are typically symmetrical, flaccid with facial mus-
cles spared. However, in contrast to CIP, proximal muscle
groups are more often affected than distal muscles and deep
tendon reflexes are reduced and only rarely abolished.

Electrophysiological testing

Typical electrophysiological studies in CIP and CIM consist of
motor and sensory nerve conduction studies along with nee-
dle EMG. Repetitive stimulation of a motor nerve at 5 Hz is
required to exclude neuromuscular transmission defects. In
CIP, motor nerve conduction studies reveal reduced ampli-
tudes of compound muscle action potentials (CMAPs) with
normal distal motor latencies and normal nerve conduction
velocities for stimulation of proximal nerve segments. F
waves show normal latencies but are often missing. Sensory
nerve conduction studies show reduced amplitudes of sen-
sory action potentials or absent sensory action potentials.
Sensory nerve conduction velocities are normal. Needle
EMG typically shows signs of denervation with spontaneous
activity and decreased recruitment.

In CIM, evoked CMAPs in motor nerve conduction studies
are of low amplitudes (<80% of lower normal limit) with
maybe increased duration due to a large variability in muscle
fibre conduction velocities. Nerve conduction velocities and
distal motor latencies are normal. Sensory nerve conduction
studies are without pathological findings. Quantitative needle
EMG reveals short duration and low amplitude polyphasic
motor unit potentials with early or normal recruitment. Fibril-
lation potentials and positive sharp waves can be present.
Comparison of CMAPs evoked by direct muscle stimulation
and CMAPs elicited by stimulating the innervating nerve can
help to distinguish between CIP from CIM.47 Two prospective

multicentre studies indicated that a simplified electrophysio-
logical screening limited to a unilateral motor nerve conduc-
tion study of the peroneal nerve has a sensitivity/specificity
of 100% and 85%, respectively, for detection of CIP and/or
CIM.48,49

Recently, in CIM and CIP, more complex electrophysiologi-
cal techniques were applied to detect in vivo changes of mus-
cle and nerve membrane potentials. Muscle membrane
properties can be indirectly assessed by recording multifibre
velocity recovery cycles.50 In patients with probable CIM, it
was inferred that muscle fibres were depolarized and/or that
sodium channel inactivation was increased.51 This is in line
with earlier reports measuring absolute muscle membrane
potential in critically ill patients, which showed prominent de-
polarization of muscle resting membrane potentials.52 By re-
petitively recording muscle velocity recovery cycles in a
porcine model of sepsis, it was shown that muscle membrane
dysfunction can be observed within 6 h of experimental
sepsis.53 Furthermore, using the same model, development
of membrane alterations correlated with applied vasopressor
(norepinephrine) dose, thus likely indicating impaired
microcirculation.54 Nerve excitability testing is a
non-invasive approach to investigate the pathophysiology of
peripheral nerve disorders by determining the electrical prop-
erties of the nerve membrane at the site of stimulation. In pa-
tients with established CIP, motor axons were shown
depolarized.55 Membrane depolarization was associated with
raised extracellular potassium levels in patients with kidney
dysfunction. Furthermore, voltage-gated sodium channel dys-
function was shown as a characteristic feature of CIP.21

Histology

A significant decrease in myocyte cross-sectional area is evi-
dent as early as Day 5 after ICU admission and persists up
to 6 months after ICU discharge.56,57 The extent of muscle at-
rophy correlates with the severity of illness and ICU length of
stay.10 Data show that type II muscle fibres are mostly af-
fected with an average rate of �4% per day during the early
phase of critical illness, while fibre type distribution remains
unaffected.10,57–63 Signs for denervation atrophy (e.g. fibre
type unspecific atrophy, fibre type grouping, target fibres,
and atrophy of central nuclei) can be exclusively observed
in CIP, but not CIM.16,41,59,64,65 Even though muscle necrosis
is described frequently and mostly in conjunction with
macrophagocytosis, it should not be viewed as pathognomic
for CIM/ICUAW.10,60,66,67 Besides type II fibre atrophy, selec-
tive loss of myosin filaments is characteristic for CIM.68,69 Few
reports further indicate an accumulation of both interstitial
tissue and fat.59

Further, severe infections and sepsis are key risk factors for
ICUAW.3 Nonetheless, results regarding inflammatory muscu-
lar infiltrates of respective patients are conflicting.57,67 The
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atrophy characteristics observed during ICUAW may overlap
with histological changes induced by glucocorticoids and/or
neuromuscular blockers; however, they are likely not the
key trigger.70–72 This seems underlined by the fact that corti-
costeroids were also shown to mediate partly protective ef-
fects if blood glucose levels are controlled.73 Additionally,
CIP not only manifests histologically in skeletal muscles, but
also in nerve tissues, and while weakness is usually aggravated
proximally, the histological manifestations can often be ob-
served to a larger extent distally.41,65 Characteristic findings
include axonal degeneration and loss of myelinated fibres in
peripheral motor and sensory nerves.16,64,65 As mentioned,
decreased intraepidermal nerve fibre density can also be ob-
served in some CIP patients.74 Further, central nervous system
involvement (including chromatolysis of the anterior horn
cells and loss of dorsal root ganglion) was reported in CIP.65

Electron microscopy

The preferential loss of myosin filaments can be visualized
through electron microscopy58,59,68,69,75 (Figure 2). During
the early phase of critical illness, a loss of myosin filaments
with preserved ultrastructure of sarcomeres is typically ob-
served, which is lost in later stages.20,56,57,76 For survivors of
critical illness, a regeneration of sarcomeric ultrastructure
can be observed at about 6 months after ICU discharge.56

Pathologic processes during critical illness affect both

contractile filaments and mitochondria. In electron micro-
graphs, swelling of mitochondria was observed early during
critical illness, likely indicating mitochondrial dysfunction.57,66

Moreover, reduced mitochondrial content and density is ob-
served, which typically recovers until about 6 months after
ICU discharge.56

The pathophysiology of muscular
weakness in critical illness

Risk factors for intensive care unit-acquired
weakness

Data show that a high disease severity, number of both
dysfunctional organs and of comorbidities, increases the
risk for ICUAW.23,41,77–83 On top of that, patients with
bacteremia/sepsis seem at a particularly high risk.3,77,79–
81,83,84 Evidence suggests that persistent inflammation in pa-
tients with multiple organ dysfunction after acute
pro-inflammatory-driven critical illness (e.g. sepsis, trauma) is
strongly associated with end-organ muscle inflammation,
acute muscle wasting, and poor long-term functional
outcomes,3,10,85 which may be of particular importance in
chronic critical illness.86

Although glucose levels and insulin therapy were discussed
controversially, it appears that reduced serum glucose levels

Figure 2 ATPase stained histologic sections and representative electron micrographs of critically ill patients with and without intensive care unit ac-
quired weakness. Fiber types are differentiated by color (dark blue = I, intermediate blue = IIb, light blue = IIa). Scale bar indicates 100 μm (ATPase
stained histologic sections) and 2 μm (electron micrographs).
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and higher insulin levels likely have protective effects.23,82,84

Neuromuscular blockers were also proposed as risk factors
for ICUAW. However, a recent meta-analysis on studies with
a low risk of bias identified that they likely do not increase the
risk.87 Corticosteroids were implicated early as a potential
culprit in the development of ICUAW. While an association
was shown by a recent meta-analysis in the general ICU pop-
ulation, the findings did not extend to the subgroup of pa-
tients with sepsis. Some authors thus recommend to limit
the use to low-dose and short-term usage in specific patient
cohorts, but the discussion is overall still controversial88,89

(please also refer to Figure 1).

Decreased protein synthesis

Intensive care unit-acquired weakness-associated muscle at-
rophy results partly from decreased protein synthesis. Frac-
tional protein synthesis rates measured via leucine
incorporation are depressed on the first day after ICU
admission.10 This is underlined by depressed mRNA expres-
sion levels for myosin heavy chains.57,71,81 A major pathway
involved in muscle protein synthesis is the IGF1–PI3K–
Akt/PKB–mTOR pathway.90 During critical illness, compo-
nents of this pathway are considerably down-regulated in pa-
tients with CIM,91 while Akt is up-regulated on both
transcriptional and translational levels and phosphorylated
forms are more abundant in muscle biopsy specimens,91

which indicates that this pathway is only partially intact. Akt
is physiologically able to suppress muscle protein degradation
through phosphorylation of forkhead box protein (Fox)O.92–94

Vice versa, FoxO can suppress muscle protein synthesis
through mammalian target of rapamycin (mTOR) via sestrin
and by upregulation of 4E-BP1.95,96 On a transcriptional level,
we observed increased levels of mTOR and FoxO, but the
mTOR increase changes to a decrease on a translational level,
hinting towards a disrupted pathway at that point.91 Further-
more, during sepsis, the eukaryotic initiation factor 4E (eIF4E)
forms an inactive complex, which induces diminished transla-
tional activity.22 AMPK (a potential factor to hamper protein
synthesis) was not increased and its phosphorylated form
decreased.91 It thus seems that AMPK may therefore not be
a major hindering factor for protein synthesis. Further inves-
tigations to determine exact mechanisms behind decreased
protein syntheses are required.

Increased protein degradation

As outlined above, muscle atrophy is characteristic for ICUAW
with a loss in myocyte cross-sectional area accompanied by
reduced protein content for slow and fast myosin on Days 5
and 15 after ICU admission.57 The preferential myosin loss
observed in histological staining and electron microscopy

can also be observed on a protein level through a decreased
myosin/actin ratio.68,69 In fact, muscle protein degradation
starts early during the course of the disease reflected by a
shift in protein homeostasis towards breakdown on the first
day after ICU admission,10 which is mediated by two key sys-
tems: the ubiquitin–proteasome pathway and autophagy.

Ubiquitine–proteasome system

The ubiquitin–proteasome system plays a central role in
ICUAW-associated muscle atrophy. During early critical ill-
ness, FoxO1 and FoxO3 expression is induced.57,91 While both
factors were shown relevant for development of muscle atro-
phy, FoxO3 also directly induces atrogin-1.92,97 The induction
of both members of the FoxO transcription factor family is
reflected in the up-regulation of muscle ring finger (MuRF)1
protein, atrogin-1 mRNA expression, and respective
proteins.57,61 MuRF1 and atrogin-1 are E3-ligases that are
considered to play key roles during muscle atrophy.57,61,98

Moreover, mRNA expression of proteasome subunits and
ubiquitination of respective proteins is increased20,57,58,61

and increased 20S-proteasome activity can be observed up
to 6 months after ICU discharge.56 MuRF1-mediated muscle
protein degradation was also shown to be activated by NFκB,
which in turn is disinhibited through tumour necrosis factor
(TNF)-alpha via IKKβ.99 Whereas TNF-alpha plasma levels are
typically increased at admission in critically ill patients, its
mRNA expression in muscle biopsy specimens on ICU Days
5 or 15 is not increased.100,101 However, it should be noted
that muscle biopsy specimens only allow to evaluate one
given point in time of critical illness and the expression of re-
spective cytokines may undergo rapid changes over time.
Thus, it cannot be conclusively said whether, for example,
TNF-alpha contributes to development of ICUAW-associated
muscle atrophy.102–104

Glucocorticoids, whose involvement is still discussed con-
troversially, are known to induce muscle atrophy via MuRF1
and atrogin-1, which are again activated via KLF-15 and
FoxO.98,105,106 Myostatin regulates skeletal muscle mass and
its lack leads to muscle hypertrophy and hyperplasia.
Myostatin overexpression promotes loss of muscle mass
and cachexia via the ubiquitine–proteasome pathway along
FoxO1, atrogin-1, and MuRF1.107–109 While induction of
myostatin was suspected to be involved in
ICUAW-associated muscle atrophy, this could not be con-
firmed in critically ill patients.10

Autophagy

Autophagy can be subdivided into three different
mechanisms: (i) chaperon-mediated autophagy, (ii)
microautophagy, and (iii) macroautophagy (which is referred
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to in this passage). Autophagy is crucial for maintenance of
muscle mass and integrity.110 Thus, activation and suppres-
sion of autophagy need to be well balanced as its increased
activity induces muscle atrophy, while its decreased activity
was suspected to play an important role in some
myopathies.111–113

Critical illness can be considered a state of stress with in-
creased damaged proteins and organelles due to, for exam-
ple, oxidative damage. It was thus speculated that increased
autophagy would be required for clearance of damaged
proteins/organelles in an effort to maintain cellular integrity
and function. Recent data show that during critical illness, in-
sufficient activation of autophagy can be observed, which is
reflected in vacuolization of both myofibers and central nu-
clei, as well as accumulation of p62 and ubiquitinated
proteins.114 It was subsequently shown that the extent to
which autophagy could be activated in critically ill patients
(as reflected by the LC3II:LC3I ratio) was protective in regard
to development of muscle weakness.81

Glucose metabolism

Hyperglycemia is common during critical illness and mostly
results from both increased hepatic glucose liberation and re-
duced peripheral muscular glucose uptake due to insulin
resistance.115–117 Such insulin resistance is also reflected by
a reduced insulin sensitivity index and a lack of muscular met-
abolic responses during hyperinsulinemic–euglycemic
clamp.91 Reduction of the insulin sensitivity index was shown
pronounced in CIM patients when compared with non-CIM
patients.91 Diminished metabolic responses to insulin are
paralleled by a decreased relative mRNA expression of
SLC2A4 and impaired translocation of glucose transporter
(GLUT) 4 to the sarcolemmal membrane, both of which are
aggravated in CIM as compared with non-CIM patients.91 In-
terestingly, the insulin receptor pathway involved in GLUT4
translocation appears intact up to the level of Akt
phophorylation because an increase in phosphorylated Akt
can be observed. Other downstream components of the
insulin-dependent GLUT4 translocation pathway (e.g. AS160,
Rab protein) were not implicated in ICUAW so far.118 Future
investigations are necessary to elucidate the
pathomechanisms behind the observed effects of insulin
therapy for ICUAW.

Channelopathy

An early feature of CIM is a non-excitable muscle membrane
determined via a direct muscle stimulation CMAP of
<3 mV.119 Abnormal excitability of muscle membranes might
thus result from decreased voltage-dependent sodium chan-
nel availability due to inactivation,51 which could be due to

circulating factors (e.g. endotoxins).51,120 In agreement, mo-
tor neuron sodium channel inactivation was observed in
CIP.21 Moreover, axonal membrane depolarization is ob-
served during CIP, which is likely caused by increased extra-
cellular potassium levels and/or hypoxia.55

Therapeutic strategies in
neuromuscular weakness of intensive
care unit patients

General strategies: preventive concepts and early
recognition

Evidence-based (causal) therapies for ICUAW, CIP/CIM/CIPM,
VIDD, and/ or swallowing disorders are currently unavailable,
which underlines the importance of preventive strategies
and/or strategies for early recognition of patients at risk. This
may (partly) allow for avoidance of risk factors and may sup-
port the prevention of worsening ICUAW. In this regard, pre-
vention and aggressive treatment of severe infections/sepsis
and associated shock states should be aimed for.1–3 Preven-
tion of risk factors further embraces avoidance of prolonged
bed rest, ‘over’-analogosedation, and/or neuromuscular
blockade whenever possible. In summary, preventive strate-
gies include minimization of risk factors as well as
sedation/neuromuscular blockade. Development of novel
preventive and/or therapeutic strategies in affected patients
may also be challenged by the acuteness and severity of the
underlying (rather heterogeneous) diseases.

Early mobilization

On the ICU, multidisciplinary efforts should aim to reduce the
duration of immobilization by early start of physical therapy
(e.g. with in-bed cycling121). Although direct evidence is
sparse, ICU length of stay, for example, can likely be reduced
by such early mobilization concepts. Further, few data dem-
onstrate that early physical therapy may improve muscular
strength and ICU outcomes.122 Despite obvious clinical bene-
fits of early mobilization, however, in a recent Cochrane
review,123 there was insufficient evidence to prove that
physiotherapeutic measures would shorten the time of reha-
bilitation from critical illness. Despite this, to prevent or treat
VIDD, patients should be weaned from controlled mechanical
ventilation as early as possible and adapted to spontaneous
breathing capacity.15 With regard to electrostimulation of
the diaphragm, or of the swallowing apparatus, no direct ev-
idence is currently available. Large-scale clinical trials (e.g. on
neuromuscular dysphagia) are currently performed.124 In pe-
ripheral muscle groups, neuromuscular electrical stimulation
was shown to preserve muscle mass and prevent muscle
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atrophy in critically ill patients. It was nevertheless not able to
diminish the functional decline observed in ICUAW.125,126

Nutritional interventions

Data indicate that an intensive insulin therapy (that would
target blood glucose levels to 80–110 mg/dL) might reduce
the incidence of ICUAW. Importantly, however, such inten-
sive insulin therapy was shown to increase the number of hy-
poglycemic episodes and may actually worsen clinical
outcomes in general ICU cohorts.127–129 Thus, although
euglycemia (treatment of ICU patients using insulin at blood
glucose levels > 180 mg/dL) should likely be generally aimed
for, an intensive insulin therapy is not advised. Further, a cat-
abolic state is typically observed in (the early phase of) critical
illness and better understanding of metabolic changes could
theoretically provide novel therapeutic avenues for the treat-
ment of ICU patients.130 Previously, early parenteral nutrition
was proposed to counteract critical illness-induced catabo-
lism, but recent data show that the early catabolic phase of
critical illness can likely not be averted by artificial nutrition
and that this may actually lead to adverse clinical outcomes,
including higher ICUAW incidence.10 Thus, although nutri-
tional interventions appear appealing, direct evidence is miss-
ing warranting further research.

Intensive care unit-acquired weakness-associated
complications

Prolonged bed rest in critically ill patients typically increases
the risk for additional comorbidities. This includes venous
thrombosis, pressure ulcers, atelectasis, and mood disorders
including anxiety and depression. Prophylaxis for thrombosis
and pressure ulcers, as well as symptomatic therapy of com-
plications, is advised.

Outcome assessment

Muscle strength: Medical Research Council score

Manual muscle strength testing via the MRC score is the cur-
rent guideline recommendation for diagnosing ICUAW.11

Multiple studies showed a high interrater reliability of the
MRC-SS6,43–45,131,132 with differences between scores of 4
and 5 contributing to most between-rater incongruences.43

Data on the need for periodical rater training are lacking. Fur-
ther, muscle strength at ICU discharge is directly associated
with mortality 5 years after discharge (hazard ratio 0.946,
95% CI: 0.928–0.968 per point increase in the MRC score,
P = 0.001).133

Hand grip strength

In line with data on manual muscle testing, hand grip
strength has an acceptable interrater reliability in
ICUAW.43,132,134 Its sensitivity and specificity for ICUAW are
above 80% for the cutoffs <11 kg (in men) and <7 kg (in
women).6

Muscle function: the 6-min walking distance test

The 6-min walking distance test (6MWD) measures muscle
function and correlates both with physical function and
health-related quality of life.135–137 Besides good convergent
validity, the 6MWD has acceptable discriminant validity as it
does not correlate with mental health-related quality of
life.137 As changes over time may be considered more impor-
tant than absolute values, the 6MWD may especially be use-
ful during (clinical) follow-up.137 Limitations embrace the fact
that repetitive testing and track length impact on the abso-
lute 6MWD135 and that many ICU patients would be unable
to perform the test.

Short form health questionnaire (SF)-36

The SF-36 is commonly used for evaluation of health-related
quality of life after critical illness. It has sufficient reliability
and validity in survivors of critical illness.138 Nevertheless,
data (specifically in ICUAW) are scarce and of low quality.139

Long-term disability

Investigations on long-term outcomes from critical illness dif-
fer largely regarding the assessment tools applied,140

resulting in considerable data heterogeneity. This limits data
comparability and standardized outcome data sets are cur-
rently awaited.141–143 Nevertheless, although physical func-
tion is regarded highly important after critical illness, the
actual physical status and generalized fatigue may be key rea-
sons to prevent follow-up assessment(s) and return to
work.144–146 In summary, available data regarding physical
performance are of poor to fair quality and further research
is warranted.139

Economic burden

Intensive care unit-acquired weakness has a major economic
impact. ICUAW was shown to prolong mechanical ventilation
and ICU and hospital length of stay, and it prevents physical
recovery (i.e. timely rehabilitation).8,9,147 Despite major indi-
vidual limitations, this also has considerable impact on public
health care systems and on society.
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Short-term/initial hospitalization

Health care resources are largely affected by ICUAW. Early
data from 1996 show that patients with neuromuscular
weakness have significantly increased overall treatment
costs.148 Hermans et al. further demonstrate significantly
higher treatment costs on the ICU, whereas post-ICU (ward)
costs were rather comparable with patients without
ICUAW.147 Both investigations matched patients and controls
for ICUAW risk factors.

Post-discharge/long-term

Patients surviving critical illness face serious economic chal-
lenges most likely due to the ‘post-intensive care syndrome’.
Only about two thirds of patients that were working before
critical illness return to work within a 12-month
post-discharge period. Further, the cumulative loss in annual
earnings is about 60% of previous income.149 Five years after
ICU discharge, only about 77% of patients returned to
work.8 Return to work is often hampered by depression,
post-traumatic stress, persisting muscle weakness and fatigue,
and cognitive disability.145 The negative economic impact is
considerable with half of affected families making major life-
style adjustments in order to provide care.150 Further, after
discharge of patients with ICUAW, the economic burden for
society is considerable and patients are readmitted to hospi-
tals more frequently.145,151 However, data on the specific eco-
nomic impact of ICUAW post-discharge are scarce and further
research is required.

Conclusions and future perspectives

In conclusion, loss of muscle mass and/or presence of muscle
weakness represents a key medical challenge that affects a
large number of patients on the ICU. Survivors of (prolonged)
critical illness are often affected by the ‘post-intensive care
syndrome’, which is mainly characterized by long-term phys-
ical and mental disability.

Despite the ‘classic’ presentation of symmetric peripheral
weakness of limb muscles as in ICUAW, diaphragmatic mus-
cular dysfunction and other neuromuscular dysfunctions in-
cluding swallowing disorders were of major importance

regarding morbidity and mortality of affected ICU patients.
Importantly, evidence-based causal therapies for ICUAW,
CIP/CIM/CIPM, VIDD, and dysphagia are currently not avail-
able, which underlines the paramount importance of preven-
tive and early diagnostic measures. Such measures include
systematic screening (and thus identification) of patients at
risk, avoidance of deep sedation/prolonged neuromuscular
blockade, reducing length of mechanical ventilation when-
ever possible, promotion of early mobilization, as well as met-
abolic and nutritional control.

It seems that key to a better understanding of neuromus-
cular dysfunctions in critical illness is that there is consider-
able overlap regarding underlying pathomechanisms, and
this understanding may open new research avenues. In the
future, thorough studies investigating underlying
pathomechanisms and innovative therapeutical approaches
are highly warranted for critically ill patients with muscular
weakness and muscle wasting.
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