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High-fat consumption promotes the development of obesity,
which is associated with various chronic illnesses. Mitochondria
are the energy factories of eukaryotic cells, maintaining self-
stability through a fine-tuned quality-control network. In the
present study, we evaluated high-fat diet (HFD)-induced changes
in mitochondrial ultrastructure and dynamics protein expression
in multiple organs. C57BL/6J male mice were fed HFD or normal
diet (ND) for 24 weeks. Compared with ND-fed mice, HFD-fed
mice exhibited increased body weight, cardiomyocyte enlarge‐
ment, pulmonary fibrosis, hepatic steatosis, renal and splenic
structural abnormalities. The cellular apoptosis of the heart, liver,
and kidney increased. Cellular lipid droplet deposition and
mitochondrial deformations were observed. The proteins related
to mitochondrial biogenesis (TFAM), fission (DRP1), autophagy
(LC3 and LC3-II: LC3-I ratio), and mitophagy (PINK1) presented
different changes in different organs. The mitochondrial fusion
regulators mitofusin-2 (MFN2) and optic atrophy-1 (OPA1) were
consistently downregulated in multiple organs, even the spleen.
TOMM20 and ATP5A protein were enhanced in the heart, skeletal
muscle, and spleen, and attenuated in the kidney. These results
indicated that high-fat feeding caused pathological changes in
multiple organs, accompanied by mitochondrial ultrastructural
damage, and MFN2 and OPA1 downregulation. The mitochondrial
fusion proteins may become promising targets and/or markers for
treating metabolic disease.
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E pidemiological studies have shown a significant positive
relationship between the average amount of fat in the diet

and the incidence of obesity.(1) Obesity is closely correlated with
various diseases and conditions, particularly cardiovascular
disease, type 2 diabetes, non-alcoholic hepatic steatosis, renal
disease, mental health problems, and certain malignancies.(2) Its
prevalence exhibits a continuous increase and has doubled world‐
wide during the past thirty-five years.(3) Mitochondria are the
energy factories of eukaryotic cells, provide ATP through oxida‐
tive phosphorylation (OXPHOS), and participate in regulating
crucial cellular physiological processes.(4) Mitochondria maintain
their dynamics homeostasis through mitophagy, biogenesis,
fission, and fusion processes that are involved in various delicate
proteins.(5) Mitochondrial dynamics is essential for regulating cell
number, morphology, function, and subcellular distribution.(6)

Defective mitochondria are involved in the pathophysiological
progression of various diseases.(7) The effects of a high-fat diet
(HFD) on mitochondria are complex. HFD can be both beneficial

and detrimental to the mitochondrion.(8) HFD has been shown to
improve mitochondrial function and/or density, reduce the mito‐
chondrial bioenergetics in skeletal muscle and liver,(9,10) and
enhance the mitochondrial fatty acid oxidation rate in the
heart.(11) The duration of treatment may determine the observed
effects of HFD. However, the effects of chronic high-fat
consumption on mitochondrial dynamics aren’t fully clarified.
We presumed that the impairments of mitochondrial structure

and dynamics homeostasis are shared alterations accounting for
multiple organ complications caused by HFD feeding, when
pathological tissue changes in multiple organs. In the present
study, we systemically evaluated the pathological changes, mito‐
chondrial ultrastructural damage, and mitochondrial dynamics
protein expression of multiple organs in C57BL/6J male mice fed
HFD for 24 weeks.

Materials and Methods

Animals. C57BL/6J male mice (four-week-old, average body
weight: 15 g) were obtained from the Animal Core Facility of
Nanjing Medical University. Only male mice were used in this
study to avoid the impact of sex hormones on the experimental
outcomes. All mice were housed in a 20–26°C environment with
a 12/12 h light/dark photoperiod and were given free access to
food and water. After one week of environmental adaptation, the
mice were randomly divided into two groups to be fed a normal
diet (ND, 12 kcal% fat, 23 kcal% protein, and 65 kcal% carbo‐
hydrate; KeAo XieLi, Beijing, China, n = 5) or a HFD (D12492,
60 kcal% fat, 20 kcal% protein, and 20 kcal% carbohydrate;
Research Diets, Inc., New Brunswick, NJ, n = 9) for 24 weeks.
This study was approved and supervised by the Institutional
Animal Care and Use Committee of Nanjing Medical University
(IACUC1708009). All methods were performed in accordance
with the relevant guidelines and regulations. All methods are
reported in accordance with the ARRIVE guidelines.

Biochemistry assay and organ collection. Mice were
fasted for 12 h before their body weights were measured. The
blood was collected through retro-orbital bleeding after the mice
were anesthetized with isoflurane inhalation. The serum total
cholesterol (TC), triglyceride (TG), high- or low-density lipo‐
protein cholesterol (HDL-C or LDL-C), glucose, alanine amino‐
transferase (ALT), and aspartate aminotransferase (AST)
levels were determined by an automatic biochemistry analyzer
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(Beckman Coulte, Brea, CA).
The heart, lung, thoracic aorta, liver, kidney, spleen, and

skeletal muscle (quadriceps femoris) of mice were instantly
dissected at sacrifice and rinsed with a pre-cooled phosphate
buffered solution (PBS, pH 7.40). The heart, liver, right kidney,
and spleen were weighted, respectively. The body weight gain
was defined as the difference between the final and initial body
weights. The ratio of internal organ weight to body weight was
calculated. The tissue was either quickly frozen in liquid nitrogen
for the subsequent immunoblotting or fixed and embedded for
histochemistry or transmission electron microscopy analysis.

Histochemistry. Fresh tissue was fixed with 4% parafor‐
maldehyde overnight, dehydrated with gradient ethanol,
embedded in paraffin, and sectioned for hematoxylin and eosin
(HE), Masson’s trichrome, and periodic acid-schiff (PAS)
staining. The cardiomyocyte size was obtained by averaging the
data of 30 to 45 cardiomyocytes from three different regions of
the left ventricle per section from no less than three mice in each
group using ImageJ software. The kidney injury score was calcu‐
lated according to the previous study.(12) The semi-quantitative
scale was classified from 0 to 4 (0, normal kidney; 1, 0–5%,
minimal injury; 2, 5–25%, mild injury; 3, 25–75%, moderate
injury; 4, 75–100%, severe injury). The sliders were photo‐
graphed using an Aperio CS2 image capture device (Leica,
Hamburg, Germany), and 4 to 6 high-resolution fields per section
from no less than three mice in each group were randomly
selected to perform semi-quantitative analysis by Image-Pro Plus
software 6.0 (IPP 6.0). The collagen and glycogen content of
multiple tissues in the HFD group were normalized by those in
the ND group.

Transmission electron microscopy. Fresh heart, skeletal
muscle, liver, and kidney tissues were cut into 1 mm3 and fixed
with 5% glutaraldehyde overnight. Secondary fixation was
subsequently executed with 1% osmium tetroxide. After being
dehydrated by an ethanol series and acetone at 4°C, the fixed
tissues were embedded in epoxy resin. Eventually, the ultrathin
continuous sections (60 nm) from the embedded tissues were
stained by lead citrate and uranyl acetate and observed under
transmission electron microscopy (TEM) at an acceleration of
80 kV (TEM, TecnaiTM G2 Spirit BioTWIN; FEI, Hillsboro, OR).

Cellular apoptosis assay. Cellular apoptosis was deter‐
mined by terminal deoxynucleotidyl transferase (TdT) dUTP
nick end labeling (TUNEL) staining with paraffin-embedded
tissues according to the manufacturer’s instructions (MK1015;
Boster Biological Technology, Wuhan, China). The images were
photographed, and positive cells in five high-resolution fields per
section from no less than three mice per group were calculated by
IPP 6.0 software program.

Immunohistochemistry. The paraffin-embedded sections
(4 μm) were deparaffinized by xylene and rehydrated by
gradient ethanol. Hydrogen peroxide (0.3%) and bovine
serum albumin (5%) were used to block the endogenous enzymes
and non-specific antigen, respectively. The sections were incu‐
bated with the primary antibodies at 4°C overnight and then
with the secondary antibodies (KIT5001 or KIT5005; MXB
Biotechnologies Company, Fuzhou, China) at room temperature
for 30 min. The sections were photographed, and 4 to 6 high-
resolution fields per section from no less than three mice per
group were randomly selected to perform semi-quantitative anal‐
ysis by IPP 6.0 software. The primary antibodies against the α-
smooth muscle actin (α-SMA, #19245, 1:500; Cell Signaling
Technology, Beverly, MA) which typically expressed in the
vascular smooth muscle, a mitochondrial fission regulator
dynamin-related protein 1 (DRP1, ab184247, 1:500 in kidney
tissue or 1:1,600 in muscle tissue; Abcam, Cambridge, UK), a
key protein for mitochondrial fusion mitofusin-2 (MFN2,
ab56889 used for kidney tissue, 1:200; Abcam; 12186-1-AP
used for heart and skeletal muscle tissue, 1:400; Proteintech,

Rosemont, IL), a key autophagy regulator microtubule-associated
protein 1A/1B-light chain 3 (LC3, 14600-1-AP, 1:400; Protein‐
tech), a core mitochondrial transcription factor A (TFAM,
18836-1-AP, 1:100; Proteintech), were used in this study.

Immunoblotting. Total protein was extracted using RIPA
buffer (Beyotime, China), separated by 10% SDS-PAGE, and
transferred to PVDF membranes (Millipore, Billerica, MA).
Then, the blots were incubated with the primary antibodies
against DRP1 (1:1,000, ab184247; Abcam), LC3 (1:1,000,
ab48394; Abcam), mitofusin-1 (MFN1, 1:800, 13798-1-AP;
Proteintech), MFN2 (1:2,000, 12186-1-AP; Proteintech), optic
atrophy-1 (OPA1, 1:1,000, DF8575; Affinity, Cincinnati, OH),
TFAM (1:1,000, AF0531; Affinity), PTEN induced kinase 1
(PINK1, 1:1,000, DF7742; Affinity), mitochondrial import
receptor subunit TOM20 homolog (TOMM20, 1:5,000, 11802-1-
AP; Proteintech), ATP synthase subunit α (ATP5A, 1:2,000,
14676-1-AP; Proteintech), GAPDH (1:7,500, #21612; Signalway
Antibody LCC, Greenbelt, MD), and tubulin (1:2,500, AF7011;
Affinity) at 4°C overnight and horseradish peroxidase (HRP)-
conjugated secondary antibody (ab6721, 1:15,000; Abcam).
Signals were detected by ECL and quantified by a Multi Tanon
5200 imaging system. The tubulin or GAPDH was used as
internal control. Protein levels were expressed as relative to
Tubulin or GAPDH. The LC3-II:LC3-I ratio was calculated
based on densitometry analysis of both bands.

Statistical analysis. Data are presented as mean ± SD.
Unpaired t test was used to detect statistical differences between
both groups with GraphPad 7.0. P<0.05 represented a significant
difference.

Results

High-fat feeding induced obesity and hyperlipidemia in
mice. The studies from humans and animals reveal that obesity
is positively associated with fat dietary intake, and diets
containing more than 30% of total energy from fat may easily
develop obesity.(1) We first verified that the increased body
weight responded to high-fat consumption. In the initial 12
weeks of feeding, the body weights of mice in both ND-fed and
HFD-fed groups increased gradually, and there was no significant
difference between the two groups (Fig. 1A). A significant differ‐
ence in body weight between HFD-fed and ND-fed mice was
observed at 16–24 weeks (48.08 ± 3.88 g vs 31.88 ± 1.45 g at the
end of the 24th feeding, p<0.01; Fig. 1A). High-fat feeding
resulted in greater body weight gain (31.98 ± 4.61 g vs 16.62 ±
1.78 g, p<0.01). It suggested that during the initial feeding, body
weight gain in mice was largely related to maturation. Since 12-
week-old age, the body weight of ND-fed mice remained basi‐
cally stable, and high-fat consumption became a major contrib‐
utor to body weight gain and eventually induced dietary obesity.
The four internal organs were weighted at the end of the experi‐
ment. We found that the weights of the heart, liver, and spleen in
HFD-fed mice were higher than in ND-fed mice, and only the
changes in spleen weight presented a statistical difference
(p<0.01) (Fig. 1B–E). There was no difference in kidney weight
between HFD- and ND-fed mice (p>0.05, Fig. 1D). The incre‐
ments of heart, liver, and spleen weight contributed to 0.038%,
2.427%, and 0.136% of the total body weight increment, respec‐
tively. Considering fat accumulation in the abdomen and around
internal organs in mice, we extrapolated that the body weight
increase was largely related to a fat content increase. In addition,
serum TC, LDL-C, HDL-C, and glucose levels had a marked
elevation after high-fat feeding (p<0.01, Fig. 1F–J). Serum ALT
and AST levels in HFD-fed mice showed increasing trends than
those in ND-fed mice (ALT, 147.40 ± 47.61 U/L vs 43.17 ± 2.67
U/L, p = 0.32; AST, 374.80 ± 101.80 U/L vs 189.90 ± 15.16 U/L,
p = 0.41). Taken together, male C57BL/6J mice fed HFD for
24 weeks developed obesity and hyperlipidemia.
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High-fat feeding resulted in pathological tissue changes
in multiple organs of mice. In the present study, compared
with ND-fed mice, the hearts of HFD-fed mice presented
increased cardiomyocyte size (p<0.01), disorganized myofiber,
aggravated interstitial fibrosis (Masson’s staining, p<0.01), and
reduced vessel density (α-SMA, p<0.01) (Fig. 2A–E). Contrary
to cardiac muscle, the histology and collagen content of the
skeletal muscle didn’t change obviously after high-fat consump‐
tion (Fig. 2F and H). HFD feeding resulted in higher arterial wall
thickness and intimal-medial thickness in the thoracic aorta of
mice (p<0.05, Fig. 2G, J, and K). The elastin within the wall of
the thoracic aorta of HFD-fed mice was disorganized in most
regions (Fig. 2G). Moreover, HFD-fed mice showed widened
alveolar septum, infiltrated inflammatory cells, and increased
collagen accumulation in the alveolar septum (p<0.01) and peri-
bronchial regions (p<0.01) of the lung (Fig. 3A and B). High-fat
feeding resulted in hepatic steatosis, characterized by swollen
hepatocytes and narrowed space between liver plates (Fig. 3C
and D). The structural changes occurred in the kidneys of HFD-
fed mice, including tubular dilatation and swelling, local tubular
cell vacuolization, inflammatory cell infiltration, capsular space
expansion, and glomerular retraction (Fig. 3E). The kidney injury
score of HFD-fed mice was higher than that in ND-fed mice
(p<0.05, Fig. 3F). Furthermore, high-fat consumption resulted in
significant splenomegaly, an expansive red pulp area, a decreased
white pulp region, increased splenic macrophages adjacent to the
sinusoids (p<0.05), and lipid deposition in the spleen of mice
(Fig. 3G and H).

Glycogen content was increased in the liver and skeletal
muscle of HFD-fed mice. In adult cardiomyocytes, the
glycogen content occupies about 2% of the cell volume.(13) High-
fat consumption did not affect the glycogen contents (PAS
staining) in the hearts (p = 0.29, Fig. 2A and D), kidneys (p =
0.82, Fig. 3E and F), or spleens (p = 0.0508, Fig. 3G and H).
Normally, glycogen is stored in the skeletal muscles as an energy
reserve to supply glucose to the muscle cells during contraction.
The liver is another glycogen-storage tissue.(14) Significant eleva‐
tions of glycogen in the skeletal muscles (p<0.05, Fig. 2F and I)
and liver (p<0.0001, Fig. 3C and D) of HFD-fed mice, accompa‐
nied by increased blood glucose levels, were observed in this
study.

HFD feeding resulted in mitochondrial ultrastructural
impairments in multiple organs. The abundant and orderly
organized mitochondria with few heteromorphic changes were
found in the hearts of ND-fed mice, while the most mitochondria
in the hearts of HFD-fed mice showed heteromorphic changes
with disorganization, swollen, vacuolization, and decreased elec‐
tron dense structures (Fig. 4A). High-fat feeding increased the
number of mitochondria in the skeletal muscles of mice in this
study, which is consistent with the previous reports.(15,16) A part of
the mitochondria in the skeletal muscles of HFD-fed mice
showed irregular shape, swelling, and local vacuolization (Fig.
4B). The proportions of defective mitochondria in the hearts and
skeletal muscles of HFD-fed mice were significantly higher than
those of ND-fed mice (Fig. 4C). Additionally, the number of lipid
droplets (LDs; red arrow, Fig. 4A and B) in the hearts and
skeletal muscles of HFD-fed mice was increased, and some of
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Fig. 2. Histopathological changes of the heart, skeletal muscle, and thoracic aorta of HFD-fed mice. (A) Representative images of HE, Masson’s,
PAS staining, and α-SMA immunochemistry of the heart. Disorganized myocardium (black arrow). (B–E) (Semi-) Quantitative analysis of cardiomy‐
ocyte size, cardiac collagen area, glycogen content, and α-SMA expression (n = 3). (F) Representative images of HE, Masson’s, and PAS staining of
skeletal muscle. Vessels (red arrow), fat deposition (black arrow). (G) Representative images of HE staining of the thoracic aorta. (H, I) (Semi-)
Quantitative analysis of skeletal collagen area and glycogen content (n = 3). (J, K) Quantitative analysis of arterial wall thickness and intimal-
medial thickness of the thoracic aorta (n = 3). Data are presented as mean ± SD. Normal diet (ND) or high-fat diet (HFD). The cardiomyocyte size
was obtained by averaging the data of 30 to 45 cardiomyocytes from three different regions of the left ventricle per section from 3 per group
using ImageJ software. Four to six high-resolution fields per section from 3 in each group were randomly selected to perform (semi-) quantitative
analysis by IPP 6.0. *p<0.05 or **p<0.01 vs ND group. See color figure in the on-line version.
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LDs were inserted into the mitochondria (Fig. 4A–C).
In this study, the basal compartment of proximal tubular

epithelial cells (PTECs) in ND-fed mice was rich in parallelly
distributed mitochondria, which enabled active transport
processes with Na+-K+-ATPase. On the contrary, small and a few
mitochondria were disarrayed in the same position as in HFD-fed
mice (Fig. 5A). A part of the mitochondria in the PTECs of
HFD-fed mice exhibited shorter and rounder shapes and hetero‐
morphic changes, characterized by swollen, vacuolization, and
decreased electron dense structures. The proportion of defective
mitochondria and the number of LDs in the PTECs of HFD-fed
mice were significantly higher than those of ND-fed mice (Fig.

5A and C). Additionally, podocytes and glomerular basement
membrane presented intoxicated appearances, including foot
process fusion or effacement, slit diaphragm narrowing, and local
glomerular basement membrane thickening in the kidneys of
HFD-fed mice (Fig. 5A).

In the livers of HFD-fed mice, mitochondria were obscured
with local swelling, and the endoplasmic reticulum (ER) was
destructed, accompanied by ribosomal degranulation (double red
arrow, Fig. 5B). Furthermore, the proportions of defective mito‐
chondria in the livers of HFD-fed mice were significantly higher
than those of ND-fed mice. The number of autophagosomes or
autophagy lysosomes (labeled by green arrow, Fig. 5B) in the
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livers of HFD-fed mice was less than that of ND-fed mice,
suggesting that autophagy may be inhibited in the livers by high-
fat feeding. Additionally, in the hepatocytes of HFD-fed mice,
the nucleus size was decreased, accompanied by a reduced
number and an enlarged size of LDs compared to ND-fed mice
(Fig. 5B and C).

HFD feeding led to elevated cellular apoptosis levels in
heart, liver, and kidney. Given that mitochondrial dysfunction
participates in the intrinsic cellular apoptosis pathway, and
increased apoptosis reflects the disruption of organismal home‐
ostasis maintenance,(15) we next examined the apoptosis levels in

multiple organs by TUNEL analysis. High-fat consumption
resulted in elevated apoptosis in the hearts (p<0.05), livers
(p<0.01), and kidneys (p<0.05) (Fig. 6A and B), but not in the
skeletal muscles (p>0.05).

HFD feeding led to imbalanced expression of proteins
related to mitochondrial dynamics in multiple organs.
Given the important roles of mitochondrial fusion/fission and
biogenesis/degradation in regulating the mitochondrial form,
size, and function, we examined the mitochondrial dynamics
protein expression in multiple organs. As shown in Fig. 7A–D,
high-fat consumption decreased TFAM (biogenesis) expression,
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increased LC3 (autophagy) expression, and simultaneously
downregulated PINK1 (mitophagy), DRP1 (fission), MFN2
(fusion), and OPA1 (fusion) expression in the hearts of mice
(p<0.05). Cytosolic LC3-I is conjugated to phosphatidyl‐
ethanolamine to become LC3-II, which is reliably associated
with the formation of autophagosomes.(16) Therefore, we calcu‐
lated the ratio of LC3-II to LC3-I to detect LC3 conversion. The
LC3-II: LC3-I ratio and the MFN1 (fusion) expression were not
changed in the myocardium by high-fat feeding. The changes in
mitochondrial dynamics proteins in the skeletal muscles of HFD-
fed mice were different from those in the hearts (Fig. 8). The
TFAM expression was enhanced (p<0.05), while the expression
of LC3 and PINK1 and the ratio of LC3-II to LC3-I were not
changed in the skeletal muscles of HFD-fed mice. The enhanced
mitochondrial biogenesis (TFAM) was consistent with the mito‐
chondrial content increment in the skeletal muscles of HFD-fed
mice. DRP1 expression was increased, while MFN2 and OPA1
expression were decreased in the skeletal muscles of HFD-fed
mice (Fig. 8).
High-fat feeding resulted in the upregulated expression of

DRP1 and the downregulated expression of MFN2, OPA1, and
TFAM in the kidneys (p<0.05, Fig. 9C and D). It was noted that
the expression alterations in DRP1 and MFN2 mainly occurred in
the tubular epithelial cells of HFD-fed mice (Fig. 9A and B).
DRP1, MFN2, and OPA1 expression were significantly down‐

regulated (p<0.05), while LC3 and TFAM expression were
upregulated in the livers of HFD-fed mice (Fig. 9E and F). LC3
expression was significantly upregulated (p<0.05), while the ratio
of LC3-II to LC3-I and the expression of TFAM, MFN2, and
OPA1 were downregulated in the spleens of HFD-fed mice
(Fig. 10).
Taken together, the expression of TFAM was increased in the

skeletal muscles and livers, decreased in the hearts, kidneys, and
spleens of HFD-fed mice. The expression of LC3 was increased
in the hearts, livers, and spleens of HFD-fed mice, and
unchanged in the skeletal muscles and kidneys of HFD-fed mice.
However, the ratio of LC3-II to LC3-I was decreased only in the
spleens of HFD-fed mice and unchanged in other tissues of HFD-
fed mice. The expression of PINK1 was only altered in the hearts
of HFD-fed mice. The expression of DRP1 was increased in the
skeletal muscles and kidneys, decreased in the hearts and livers,
and unchanged in the spleens of HFD-fed mice. The significantly
downregulated MFN2 and OPA1 proteins were the shared alter‐
ations in the hearts, kidneys, livers, spleens, and skeletal muscles
of HFD-fed mice. The expression of MFN1 in these organs was
unchanged.

HFD feeding led to alteration of OXPHOS and mito‐
chondrial outer membrane protein expression in multiple
organs. Furthermore, we examined the expression of mito‐
chondrial outer membrane and OXPHOS protein (TOMM20 and
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ATP5A) in multiple organs (Fig. 11). ATP5A is a catalytic
subunit of the mitochondrial ATP synthase (complex V) respon‐
sible for the synthesis/hydrolysis of ATP.(17) TOMM20 is the
receptor subunit of the mitochondrial membrane import pore,
which allows the import of nuclear encoded OXPHOS subunits
and induces OXPHOS.(18) TOMM20 and ATP5A are located at
the outer and inner mitochondrial membrane and have been used
as markers of mitochondrial mass and metabolic activity. In this
study, TOMM20 protein was significantly increased in the hearts,
skeletal muscles, and spleens (p<0.05), decreased in the kidneys
(p<0.05), and unchanged in the livers of HFD-fed mice. The
ATP5A protein was increased in the hearts and skeletal muscles
(p<0.05), and unchanged in the kidneys, livers, and spleens of
HFD-fed mice.

Discussion

In this study, we systemically evaluated the pathological tissue
changes, mitochondrial structure, and mitochondrial dynamics
protein expression in multiple organs of HFD-fed mice. The
association between high-fat consumption and systemic chronic
illness is raising concerns in the clinic. Obesity and hyperlipi‐
demia, which are positively associated with dietary fat intake, are
considered as risk factors for many chronic diseases.(19–22) In the
present study, we confirmed the existence of multiple organs
remodeling after high-fat consumption, including the heart, aorta,
kidney, lung, and liver. The overall impact of high-fat consump‐
tion on organ remodeling is multifactorial and still needs to be
investigated. HFD-induced chronic systemic low-grade inflam‐
mation and oxidative stress are reported to be the underlying
mechanisms.(23–25)

Mitochondria play a central role in the biology of most
eukaryotic cells, because mitochondria are involved in catabolic
and anabolic metabolism, regulation of intracellular calcium
homeostasis, initiation of inflammatory reactions, and control of

multiple pathways determined cell death. The mitochondrial
impairment has been demonstrated to be tightly linked to
progressive organ remodeling or organ failure.(4,7,26,27) In this
study, we confirmed that the mitochondrial change is a shared
phenomenon for various organ remodeling in HFD-fed mice,
especially the tissues or cells with high energy demands from
mitochondrial OXPHOS, such as cardiomyocytes and PTECs.
Mitochondria occupy approximately 35–40% cytoplasmic
volume in cardiomyocytes and provide 90% ATP energy during
OXPHOS to match high energy demands of heart.(28) In kidney,
proximal tubular reabsorption allows for 65–75% of all tubular
reabsorption to water and sodium, and 90% to proteins and
glucose. Hence, PTECs are highly energy-demanding and rich in
mitochondria. PTECs injury leads to renal reabsorption dysfunc‐
tion.(29) Therefore, cardiomyocytes and PTECs are more sensitive
to lipid toxicity, and lipid-attributed mitochondrial damage is
particularly catastrophic for cardiomyocytes and PTECs.(29)

Healthy mitochondria maintain their stability through
balancing two opposed processes: mitochondrial fission/fusion
and mitochondrial biogenesis/degradation (including mitophagy).
LC3 (LC3-II:LC3-I ratio) and PINK1 are the markers of
autophagy and mitophagy, respectively. TFAM is required in
mitochondrial biogenesis. DRP1 is the cytosol-located GTPase
that mediated the mitochondrial fission process. MFN1/2 and
OPA1 are mitochondrial membrane-located GTPases which
control the mitochondrial outer and inner mitochondrial
membrane fusion, respectively.(30,31) MFN1 and MFN2 belong to
the family of ubiquitous transmembrane GTPases, which share
approximately 80% similarity and the same relevant structural
motifs.(32) MFN1 has higher GTPase activity than MFN2. MFN2,
but not MFN1, possesses a proline-rich region, which is involved
in protein-protein interactions.(32) In this study, we proved that the
impact of HFD on mitochondrial biogenesis (TFAM), autophagy
or mitophagy (LC3 or PINK1), and fission (DRP1) appeared to
be tissue-specific. On the contrary, the impact of HFD on mito‐
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chondrial fusion (MFN2 and OPA1) was consistent in different
tissues. The significantly downregulated expressions of MFN2
and OPA1, but not MFN1, were the shared alterations in the
heart, kidney, liver, spleen, and skeletal muscle of HFD-fed mice.
The results are consistent with most previous studies on mito‐

chondrial fusion protein changes in the obesity or metabolic
disease, which proved that MFN2 and/or OPA1 were signifi‐
cantly reduced in the tissue or cell of skeletal muscle,(33–39)

fat,(40,41) hypothalamus,(42) kidney,(43) heart,(44–47) liver,(48) etc. On
the contrary, a few studies reported that MFN2 was increased in
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the heart and liver,(49,50) unchanged in the fat,(50) skeletal muscle or
cell of metabolic disease.(51,52) In addition, some studies proved
the reduction of MFN1 in the heart and liver of animal with
metabolic disease.(44,53,54) In this study, we confirmed that the
high-fat consuming caused the decreasing of mitochondrial
fusion proteins MFN2 and OPA1 in the heart, skeletal muscle,
kidney, and liver, which are high-energy-demanding or
metabolic-related organs. Meanwhile, the spleen, the organ of the
lymphatic system, also presented mitochondrial fusion proteins
MFN2 and OPA1 downregulation after HFD feeding. This is
reported for the first time. The mitochondrial change in the
spleen of metabolic disease is not as well-known as other
organs.(55) The mitochondrial quality control in the spleen of
metabolic disease needs to be further investigated.
The balance between nutrient demand and supply is associated

with mitochondrial fission and fusion balance. Previous
researches prove that metabolic oversupply is followed by frag‐
mentation of mitochondria (enhanced fission), which leads to a
decrease in mitochondrial bioenergetic efficiency that, in associa‐
tion with an increase in nutrient storage, will avoid energy
waste. Whereas, metabolic undersupply results in elongated
mitochondria (enhanced fusion) to increase mitochondrial bioen‐
ergetic efficiency and sustain the energy need.(32) HFD provides a
rich nutrient environment. Our research and the previous studies
confirmed that the downregulation of MFN2 and OPA1 in
multiple organs led to a weakening of the fusion process. The
disruption of the balance between mitochondrial fission and
fusion resulted in enhanced fission with fragmentation of mito‐
chondria. The repression of MFN2 is not just limited to the
dysregulation of mitochondrial shape. The mitochondrial
dysfunctions, such as glucose oxidation reduction, mitochondrial
membrane potential depolarization, and mitochondrial proton
leak are also caused by MFN2 repression.(38,56) MFN2 deficiency
in the skeletal muscle induced by obesity was associated with a
decrease in the subunits of complexes I, II, III, and V.(57) MFN2
activates mitochondrial energization, partly by regulating
OXPHOS expression through the role independent of mitochon‐
drial fusion protein.(57) Moreover, the MFN2 protein has extra-
mitochondrial roles. For example, MFN2 forms an endoplasmic
reticulum (ER)-mitochondria contact site, which is important for
cell proliferation, autophagy, calcium signaling, inflammation,
and so on.(30) The OPA1 protein is necessary for mitochondrial
inner membrane fusion.(58) Moreover, OPA1 contributes to mito‐
chondrial cristae morphology, maintains mtDNA integrity and
copy number, regulates apoptotic cristae remodeling, and stabi‐
lizes respiratory chain.(58,59) OPA1 facilitates cell-autonomous
adipocyte browning and involves in lipogenesis and triglyceride

synthesis pathways.(41,60) The treatments for metabolic disease,
such as exercise, could reverse the down-expression of MFN2
and OPA1.(61,62) On the other hand, the MFN2 overexpression
could recover impaired insulin sensitivity induced by HFD
feeding.(63) The mitochondrial fusion proteins may become
promising therapeutic targets and/or markers for metabolic
disease.(30,64) In this study, the reduction of mitochondrial fusion
did not cause the synchronous change of mitochondrial
OXPHOS function, indicating its strong compensatory effect.
This study includes several limitations. The key regulators of

MFN2 and OPA1, such as transcription factor estrogen-related
receptor-alpha, peroxisome proliferator-activated receptor gamma
coactivator (PGC)-1α and PGC-1β,(65) and the mitochondrial
proteases (such as OMA1, which mediates proteolysis of OPA1)
were not detected.(66) In addition, we can’t obtain clear TEM
image of cristae morphology due to some technical problems.
Therefore, whether the cristae morphology disruption correlated
with OPA1 downregulation will be proved in future study.

Conclusion

The results of our study indicated that high-fat feeding led to
pathological tissue changes in multiple organs, accompanied by
mitochondrial ultrastructural damage, MFN2 and OPA1 down‐
regulation. Developing the agents targeting mitochondrial protec‐
tion for clinical therapy of obesity-attributed complications might
be a potential strategy in the future.
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