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Wheat, one of the major crops in the world, has had a complex history that
includes genomic hybridizations between Triticum and Aegilops species and several
domestication events, which resulted in various wild and domesticated species
(especially Triticum aestivum and Triticum durum), many of them still existing today.
The large body of information available on wheat-microbe interactions, however, was
mostly obtained without considering the importance of wheat evolutionary history and
its consequences for wheat microbial ecology. This review addresses our current
understanding of the microbiome of wheat root and rhizosphere in light of the
information available on pre- and post-domestication wheat history, including differences
between wild and domesticated wheats, ancient and modern types of cultivars as
well as individual cultivars within a given wheat species. This analysis highlighted two
major trends. First, most data deal with the taxonomic diversity rather than the microbial
functioning of root-associated wheat microbiota, with so far a bias toward bacteria and
mycorrhizal fungi that will progressively attenuate thanks to the inclusion of markers
encompassing other micro-eukaryotes and archaea. Second, the comparison of wheat
genotypes has mostly focused on the comparison of T. aestivum cultivars, sometimes
with little consideration for their particular genetic and physiological traits. It is expected
that the development of current sequencing technologies will enable to revisit the
diversity of the wheat microbiome. This will provide a renewed opportunity to better
understand the significance of wheat evolutionary history, and also to obtain the baseline
information needed to develop microbiome-based breeding strategies for sustainable
wheat farming.

Keywords: wheat, domestication, rhizosphere, root microbiome, microbial interactions, symbiosis

Abbreviations: BP, Before Present; DAPG, 2,4-Diacetylphloroglucinol; AM, Arbuscular Mycorrhizal; ISR, Induced Systemic
Resistance; MIR, Mycorrhiza-Induced Resistance; SAR, Systemic Acquired Resistance; QTL, Quantitative Trait Loci; IAA,
Indole-3-Acetic Acid; ACC, 1-Aminocyclopropane-1-Carboxylate; PSB, Phosphate-Solubilizing Bacteria.
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INTRODUCTION

Plants interact with a myriad of microorganisms, and plant-
microbe interactions are now considered a key facet of plant
evolution, adaptation and ecology (Simon et al., 2019), both
for wild and domesticated plants (Hassani et al., 2018). Hence,
the plant needs to be seen as a holobiont (i.e., macro-organism
and its associated microbiota), which requires a more integrated
perspective on the significance of their microbial partners and
the extended plant phenotypes they confer (Haichar et al., 2008;
Vandenkoornhuyse et al., 2015).

The vast majority of plant microorganisms are in interaction
with roots (Moënne-Loccoz et al., 2015). There are three distinct
root-associated compartments for microorganisms, which are
(i) the root endosphere (i.e., root internal tissues), (ii) the
rhizoplane (i.e., the interface between the root surface and soil),
and (iii) the rhizosphere (i.e., soil in the immediate vicinity
of the root) (Figure 1A). Endophytic microorganisms inhabit
the endosphere, where probably they have direct access to
certain plant metabolites (Reinhold-Hurek and Hurek, 2011).
They are often transmitted horizontally (Edwards et al., 2015),
but some of them may be transmitted vertically (Liu et al.,
2012; Hodgson et al., 2014; Truyens et al., 2015). Many of
them if not most are thought to benefit their plant host
(Schulz and Boyle, 2006; Reinhold-Hurek et al., 2015). In the
rhizosphere, where soil is under the direct influence of the
root (Hiltner, 1904), microorganisms from the surrounding
soil are attracted by and benefit from rhizodeposits including
root exudates (Zhalnina et al., 2018), leading to microbial
proliferation and enhanced activity, i.e., the rhizosphere effect
(Buée et al., 2009). Plant genotype influences the rhizosphere
microbiota (Badri and Vivanco, 2009; Berg and Smalla, 2009;
Micallef et al., 2009; Bouffaud et al., 2014), because different
plant genotypes display different root properties and lead to
different rhizosphere conditions for microbial partners. In turn,
rhizosphere microorganisms can be either beneficial, pathogenic
or have no effect on the plant (Vacheron et al., 2013; Nowell
et al., 2016; Parnell et al., 2016). These plant-microbe interactions
are essential for the ecological functioning of soil ecosystems
(Lu et al., 2018).

Wheat, of the Poaceae family, is one of the major crops
in the world with rice and maize. The crop provides 20% of
calories in the human diet (Gill et al., 2004). Durum wheat
is of significance as a food crop to make for example pasta,
couscous, burghul, and bread wheat is used to prepare bread,
pastries, etc. The Food and Agricultural Organization of the
United Nations predicts a production of 776 million tons of
wheat in 2022, an increase of 118 million compared to 2012.
Demand for wheat is increasing with the change of diet in
several large countries, such as China or India (Brisson et al.,
2010). This increase in production needs to be achieved despite
the growing number of challenges facing the crop, including
climatic change, diminishing water resources, restrictions in the
use of fertilizers and pesticides, and the risk caused by new
and more aggressive pests (Tian et al., 2021). Intensive cereal
systems for increasing yields are environmentally deleterious in
the long-term (Lobell et al., 2009), and developing sustainable

crops based on ecological intensification is essential. Exploiting
the potential of wheat interactions with soil microorganisms that
can enhance plant productivity, by contributing to plant nutrition
and health (Bhattacharyya and Jha, 2012; Vacheron et al., 2013) is
a promising strategy to reach this goal. This will require a better,
more comprehensive understanding of the microbial community
associated with wheat, and to identify new avenues to exploit
them for sustainable wheat farming.

Recent methodology improvements, especially in sequencing
technologies, have enabled to revisit our knowledge of the
interactions between wheat and root-associated microbial
community. For instance, the wheat microbiome has been
recently described, with a focus on environmental factors
driving microbiome assembly and identifying beneficial
microorganisms important for sustainable wheat farming
(Kavamura et al., 2021). This review aims at putting into
perspective the growing knowledge on wheat-microbe
interactions, by considering the evolutionary history of
wheats and then its implications for the wheat microbiome. The
particular patterns of microbial selection in the different root
compartments (rhizosphere, rhizoplane, and endosphere) are
described, ranging from bacteria and archaea to fungi and other
microeukaryotes. Finally, we focus on the functional diversity
of the wheat root microbiome and its implication for wheat
growth and health.

WHEAT PARTICULARITIES OF
RELEVANCE FOR PLANT-MICROBE
INTERACTIONS

Hybridization, Polyploidy, and
Domestication History
The Triticum and Aegilops ancestors of bread wheat (Triticum
aestivum) and durum wheat (Triticum durum) underwent
hybridization, as well as polyploidization events (Haberer et al.,
2016) involving genomes A, S, B and D (Figure 2A). The A and
S genomes arose by divergence from a common ancestor circa
7 million years Before Present (BP) (Pont et al., 2019). D genome
might have originated from homoploid hybrid speciation of A
and S genomes, 5–6 million years BP (Glémin et al., 2019).
Two wild diploid wheats (2n = 14), i.e., Triticum urartu (AA
genome) and a close descendant of Aegilops speltoides (BB
genome) (Pont et al., 2019), hybridized about 500,000 years BP
and gave a tetraploid wild wheat (2n = 28) termed Triticum
dicoccoides (wild emmer wheat; AABB genome) (Pont et al.,
2019). A second hybridization took place about 10,000 years
BP, between domesticated emmer and a direct ascendant of the
current diploid species Aegilops tauschii (DD genome), giving
rise to a wild hexaploid wheat (2n = 42; AABBDD genome) at
the origin of domesticated T. aestivum. Hexaploid wheat might
have arisen from more than one crossing event (Dvorak et al.,
1998). In both hybridization events, the seven chromosomes of
each genome (A, B, or D) could not pair for subsequent mitosis,
which resulted in chromosome doubling and thus allopolyploidy
(Glover, 2016). On one hand, hybridization can lead to a loss
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of genetic diversity, since only a limited number of individuals
of each species is involved in the crossing. On the other hand,
polyploidy may lead to particular gene expression patterns, and
probably also to particular properties in terms of root exudation,
root uptake, etc. (Saia et al., 2019; Iannucci et al., 2021), which
can be expected to impact on microorganisms.

Wheat has undergone several domestication events. The wild
einkorn Triticum monococcum subsp. beoticum (genomically
close to T. urartu; Fricano et al., 2014) was domesticated
and gave T. monococcum subsp. monococcum, a crop seldom
cultivated nowadays (Salamini et al., 2002) (and therefore is not
portrayed in Figure 2A). The wild emmer wheat T. dicoccoides
(AABB genome) gave rise to the domesticated emmer wheat
T. dicoccon (perhaps on several independent occasions (Özkan
et al., 2011)), which later evolved into durum wheat T. durum
(Figure 2A). The cross between wild emmer and the ascendant
of A. tauschii (DD genome) either (i) resulted in an unknown
hexaploid wild wheat, from which derived the domesticated
wheat T. aestivum (Salamini et al., 2002), or (ii) was concomitant
with the domestication event itself. Agronomic traits of wheat
changed gradually upon domestication. As for other Poaceae,
domesticated wheat presents bigger grains and higher seed
number per spike (Salamini et al., 2002). Wheat domestication
resulted also in lower root biomass (Waines and Ehdaie, 2007),
with more fine roots and a shallower root system (Roucou
et al., 2018), and with more seminal roots (Golan et al.,
2018), but these traits display heterogeneity at inter and infra-
species levels. Domestication represents a genetic bottleneck,
with an estimated 50–60% reduction of wheat genetic diversity
(Bonnin et al., 2014).

Wheat Geography
Nowadays, wild wheat habitats are still located in the area
that was 10,000 years ago the Fertile Crescent (Supplementary
Figure 1), and where T. urartu, T. beoticum, T. dicoccoides,
A. speltoides, and A. tauschii can be found. Beyond the Fertile
Crescent, wild wheats grow mainly in temperate climates between
latitudes 30◦N and 40◦N, but they may occur also within the
Arctic Circle and to higher elevations near the equator (Haas
et al., 2019). Therefore, wild wheats grow under a wide range
of pedoclimatic conditions, which means they may encounter
different types of soil microbial communities.

Whereas wild wheats are mostly winter type, domesticated
wheat can be either winter or spring type (i.e., does not
need vernalization), which enables to find domesticated wheat
in a larger range of climatic zones (and soil conditions). In
comparison with spring wheat, winter wheat is sown in the
autumn, which means the root system develops and interact with
soil microorganisms over a much longer duration in the year.
Domesticated wheats (both durum and bread wheats) are found
in a broad range of areas and climates, and are present on all
continents (Di Paola et al., 2018; Mideksa et al., 2018; Dong et al.,
2019; Tidiane Sall et al., 2019). They are therefore likely to be
included in a diversity of cropping systems and farming practices
(i.e., regarding tillage, fertilizers, etc.) in contrasted conditions
of soil and climate, which means exposure to very different
types of soil microbial communities (Chaudhary et al., 2017;

Dong et al., 2017; Gajda et al., 2017; Somenahally et al., 2018;
Wang et al., 2018).

Selection and Modern Breeding
Growth of domesticated wheats in diverse environments and
climatic conditions required local adaptations (Dwivedi et al.,
2016). Farmers, through mass selection, led to the creation of
particular, still genetically heterogeneous (Bonjean, 2001) wheat
genotypes (called landraces) well-adapted to local environments
(Kiszonas and Morris, 2018) and to specific stresses (Feldman
and Kislev, 2007). Thus, the growth of landraces results in
stands consisting of mixtures of many different closely related
genotypes. Considering features important for plant-microbe
interactions, this means an expected heterogeneity in terms of
root system traits, plant physiology, rhizodeposition patterns and
rhizosphere chemistry within a given plot.

Modern breeding aimed at higher yield. Genealogical
selection (Gayon and Zallen, 1998) resulted into (i) limited
plant-to-plant genetic heterogeneity within these cultivars, (ii)
preferential allocation of N and C compounds to shoots rather
than roots, probably leading to reduced rhizodeposition for
microorganisms (Lindig-Cisneros et al., 1997), (iii) enhanced
mineral uptake (Zhang et al., 2020; Cantarel et al., 2021), and
(iv) particularities in root functioning and rhizosphere chemistry
(George et al., 2014).

During the Green Revolution (from 1950 to late 1960s),
crosses with semi-dwarf varieties were implemented (Brancourt-
Hulmel et al., 2003). Hybrids were produced (Šramková et al.,
2009). Chromosome engineering methodologies have been
employed to transfer specific disease genes from other members
of the tribe Triticeae into wheat, conferring new immune system
defenses against phytopathogens (Rong et al., 2000; Niu et al.,
2011). More recently, molecular markers and quantitative trait
loci (QTLs) (Peng et al., 2003; Pestsova et al., 2005; Peleg
et al., 2011) have been used successfully to facilitate breeding,
whereas CRISPR-Cas9 (Kiszonas and Morris, 2018) and genome
sequencing (Trebbi et al., 2011; Jia et al., 2013; Ling et al., 2013;
Maccaferri et al., 2014; Soriano et al., 2016; International Wheat
Genome Sequencing Consortium [IWGSC], Appels et al., 2018)
open new perspectives, with potentially an impact on wheat-
microbe interactions.

TAXONOMIC DIVERSITY OF
MICROORGANISMS IN THE
RHIZOSPHERE AND ROOTS OF WHEAT

Importance and Analysis of
Root-Associated Wheat Microbiome
Soil type (Donn et al., 2015; Simonin et al., 2020) as well as
cultivation history (Hilton et al., 2018) and practices (e.g., tillage,
soil amendments) are the main factors shaping wheat root
microbiota (Ahlawat et al., 2018; Kavamura et al., 2018). The
second most important factor is the wheat genotype, both at the
species and intra-species (varieties) levels (Mahoney et al., 2017;
Stromberger et al., 2017; Ellouze et al., 2018; Naz et al., 2018;
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FIGURE 1 | Relationship between wheat roots and soil/microbial components. (A) Structure of the rhizosphere, rhizoplane, and endosphere (not to scale). The
rhizosphere is the soil in the immediate vicinity of the root, where the root has a major direct impact on soil organization and microbial functioning. The rhizoplane is
the interface between the root surface and the soil. The endosphere corresponds to root internal tissues. Adapted from York et al. (2016) and Ding et al. (2019).
(B) Major root-level microbial contributions to biotic interactions and biogeochemical cycles linked to plant growth and health. Root colonization by microorganisms
is mediated by plant signals and exudates, which attract or repel soil microorganisms. Biotic interactions in the rhizosphere include plant-microorganism interactions
and microorganism/microorganism interactions, with beneficial (+), deleterious (-) or neutral effects (=). Major microbial transformations are indicated for C, N, and P
biogeochemical cycles. Metal biotransformations are not reviewed. A particular microbial taxon may be involved in several different biotic interactions (left box) and
biotransformations (right box). ISR, Induced Systemic Resistance; ACC, 1-AminoCyclopropane-1-Carboxylate. Dashed arrows are used for abiotic volatilization
phenomena.
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FIGURE 2 | The origin of durum and bread wheat, and literature comparisons. Wild wheats are represented in purple, while domesticated wheats are in turquoise.
(A) Wild and domesticated species involved in wheat evolution and leading to pasta (T. durum) and bread (T. aestivum) wheats are indicated (adapted from
Mujeeb-Kazi, 2006), as well as examples of key scientific issues investigated with them (shown with small squares with the color code indicated below the panel).
The ancestors of pasta and bread wheats underwent hybridization and polyploidization events involving genomes A, S, B, and D. A simplified version of wheat
evolutionary history is depicted. The A and S genomes arose by divergence from a common ancestor (not shown) circa 7 million years Before Present (BP) (Pont
et al., 2019). The B genome probably descends from the S genome and is therefore a close relative of Aegilops speltoides (SS) (Fricano et al., 2014). A first
hybridization event is speculated to have taken place between A (T. urartu) and S (A. speltoides/A. mutica) genomes, 5–6 million years BP (Glémin et al., 2019),
leading to the D genome upon homoploid hybrid speciation. A second hybridization event took place about 500,000 years BP between this B genome donor

(Continued)
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FIGURE 2 | and T. urartu (A genome), leading to the wild tetraploid T. dicoccoides, and later to the domesticated emmer T. dicoccon. A third hybridization event
(10,000 years BP) involved T. dicoccon and an ascendant of current A. tauschii (D genome), leading to the hexaploid wheat T. aestivum. It is unclear whether the
latter hybridization and domestication events took place at the same time or not, and the wild form of the hexaploid hybrid remains unknown. A fourth cross,
between T. aestivum and T. dicoccon, is probably at the origin of the hexaploid wheat Triticum spelta (Fricano et al., 2014). Wheat genomes are composed of 14
(AA, BB or DD), 28 (AABB), or 42 chromosomes (AABBDD). Dashed arrows are used for uncertain events. In the history of Triticeae, other domestication events also
occurred but without leading to species extensively cultivated nowadays, as for example the wild einkorn Triticum monococcum subsp. beoticum (A genome,
genomically close to but not interfertile with T. urartu; Fricano et al., 2014) was domesticated to become Triticum monococcum subsp. monococcum (not shown).
(B) Key literature comparisons between individual wheat species are indicated using colored lines connecting the corresponding species included; the type of
comparison is shown using letters a-l, and is specified in the legend, along with the corresponding reference(s). The figure points to an unbalance in the
consideration of wheat species, as previous investigation have studied T. durum, T. aestivum, and T. dicoccoides extensively, T. urartu, T. dicoccon, and A. tauschii
to a lesser extent, but the other species have been seldom considered. We identified eight studies comparing wheat genomic and phenotypic properties and seven
others comparing the microbiota associated to different wheat species, which shows that plant properties and microbiota properties are described to the same
extent. Multiple comparisons between T. durum, T. dicoccon, and T. dicoccoides were made (five studies), probably because this represents a good model for
domestication studies, but only one considered the microbiota (h). Only 3 of 15 studies, with a focus on seminal roots (c) or arbuscular mycorrhizal fungi (g), covered
all main events of wheat history.

Kinnunen-Grubb et al., 2020; Iannucci et al., 2021). Growth
stage and plant physiology matter less (Houlden et al., 2008;
Donn et al., 2015), despite significant shifts after tillering (Wang
J. et al., 2016) and when heading starts (Hilton et al., 2018).

In the case of wheats (Triticeae tribe), most work on
rhizosphere and root microbiomes has focused on bread wheat
T. aestivum, whereas durum wheat T. durum has received little
attention (Figure 2B). Therefore, knowledge on other Triticum
species and Aegilops species is very incomplete (Özkurt et al.,
2020; Tkacz et al., 2020).

Other species of the Triticeae tribe have been considered
mostly for comparison with T. aestivum and T. durum,
to decipher the impact of domestication and selection on
the wheat microbiome (Golan et al., 2018; Roucou et al.,
2018; Meziani et al., 2019) (Figure 2B). For instance, the
interactions with Glomeromycota fungi have been compared
between wild (T. urartu, A. speltoides, etc.) and domesticated
wheats (T. aestivum, etc.) (Kapulnik and Kushnir, 1991;
Hetrick et al., 1992).

Microorganisms are subjected to stronger plant selection in
the root endosphere than the rhizosphere (Compant et al.,
2010; Fitzpatrick et al., 2018), including in the case of
wheat. This materializes by greater dominance effects in the
wheat endosphere, i.e., with fewer taxa but in greater relative
abundance, both for bacteria and fungi (Lu et al., 2018; Özkurt
et al., 2020; Tkacz et al., 2020; Prudence et al., 2021). While the
rhizosphere was extensively studied, fewer studies have focused
on the root endosphere of wheats (Germida and Siciliano, 2001;
Bokati et al., 2016; Özkurt et al., 2020; Tkacz et al., 2020). In
addition, the bacterial community has been more investigated
than the archaeal and fungal communities. Information about the
archaeal community of wheat rhizosphere and root endosphere
exists almost only for T. aestivum, and this community has been
documented by culture-independent methods only (Fan et al.,
2018; Szoboszlay et al., 2019; Tkacz et al., 2020; Prudence et al.,
2021), archaea being difficult to isolate with methods routinely
used in rhizosphere ecology. Very few studies have focused on
fungi in the root endosphere, whether with culture-dependent
(Bokati et al., 2016) or culture-independent methods (Bokati
et al., 2016; Ofek-Lalzar et al., 2016; Özkurt et al., 2020). It must
be kept in mind that the various root-associated compartments,
i.e., root endosphere, rhizoplane and rhizosphere, are not

always straightforward to distinguish from one another from
an experimental point of view, which complicates comparisons
between studies.

Rhizosphere, Rhizoplane, and Root
Endosphere Microbiomes of Bread
Wheat
Rhizosphere Microbiome
The rhizosphere bacterial community of T. aestivum is
dominated at almost 40% by Proteobacteria, as indicated by
culture-independent methods (Table 1). The other dominant
phyla (10–15%) are Acidobacteria, Actinobacteria, and
Bacteroidetes, whereas the remaining phyla represent <5%
each (Turner et al., 2013; Donn et al., 2015; Rascovan et al.,
2016; Mahoney et al., 2017; Fan et al., 2018; Tkacz et al., 2020;
Prudence et al., 2021). Culture-dependent methods point to
Proteobacteria and Actinobacteria (each representing about 25%)
and then Firmicutes (10%) as main phyla in the T. aestivum
rhizosphere (Table 2; Juhnke et al., 1987; Sato and Jiang, 1996a,b;
Germida et al., 1998; Germida and Siciliano, 2001). Within
the Proteobacteria, the Gammaproteobacteria are the most
abundant, with especially the families Pseudomonadaceae and
Xanthomonadaceae (Donn et al., 2015).

In the archaea, the Thaumarchaeota represent more than
two thirds of the rhizosphere community of T. aestivum,
the Euryarchaeota <10%, and a range of unidentified phyla
a total of about 20% (Table 1; Fan et al., 2018; Szoboszlay
et al., 2019; Tkacz et al., 2020; Prudence et al., 2021). In the
studies cited in Table 1 and Figure 3B, the Crenarchaeota
were not detected in T. aestivum rhizosphere. One investigation
also considered lower taxonomic levels, showing that the
Nitrosphaeraceae (Thaumarchaeota) was the most abundant
family in the rhizosphere (Prudence et al., 2021).

The rhizosphere fungal community of T. aestivum is
dominated by Ascomycota, which represent 40–50% of the total
community with culture-independent (Table 1; Fan et al., 2018;
Lu et al., 2018; Gqozo et al., 2020; Tkacz et al., 2020) and
culture-dependent methods (Table 3; Smit et al., 1999; Hagn
et al., 2003). The other dominant phyla are Basidiomycota
and Chytridiomycota (5–15% each; Table 1). At genus level,
Mortiella (phylum Mucoromycota), Verticillum (Ascomycota),
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TABLE 1 | Occurrence of phyla in the rhizosphere of T. aestivum, as documented by culture-independent methods.

Phyla Occurrence (%)a Number (and listb) of
T. aestivum genotypes

Number of
countries

References

Min Max Mean

Bacteria

Proteobacteria 16.5 (Bawburgh,
UK; a)

52.0 (Villa
Saboya,
Argentina; l)

38.6 14 (a, b, c, d, e, f, g, h, i,
j, k, l, NS)

5 Turner et al., 2013; Donn et al., 2015; Rascovan et al.,
2016; Mahoney et al., 2017; Fan et al., 2018; Tkacz et al.,
2020; Prudence et al., 2021

Acidobacteria 0.5 (Gundibinyal,
Australia; k)

23.4 (Bawburgh,
UK; a)

11.5 14 (a, b, c, d, e, f, g, h, i,
j, k, l, NS)

5 Turner et al., 2013; Donn et al., 2015; Rascovan et al.,
2016; Mahoney et al., 2017; Fan et al., 2018; Tkacz et al.,
2020; Prudence et al., 2021

Actinobacteria 1.0 (Villa Saboya,
Argentina; l)

26.0
(Gundibinyal,
Australia; k)

12.9 14 (a, b, c, d, e, f, g, h, i,
j, k, l, NS)

5 Turner et al., 2013; Donn et al., 2015; Rascovan et al.,
2016; Mahoney et al., 2017; Fan et al., 2018; Tkacz et al.,
2020; Prudence et al., 2021

Bacteroidetes 0.9 (Villa Saboya,
Argentina; l)

28.0 (Pullman,
WA; g)

14.6 14 (a, b, c, d, e, f, g, h, i,
j, k, l, NS)

5 Turner et al., 2013; Donn et al., 2015; Rascovan et al.,
2016; Mahoney et al., 2017; Fan et al., 2018; Tkacz et al.,
2020; Prudence et al., 2021

Chloroflexi 0.5 (Northern
China; NS)

6.3 (Bawburgh,
UK; a)

0.9 7 (a, k, l, NS) 4 Donn et al., 2015; Fan et al., 2018; Tkacz et al., 2020;
Prudence et al., 2021

Cyanobacteria 0.5 (Norwich,
UK; a)

3.0 (Bawburgh,
UK; a)

0.2 1 (a) 2 Turner et al., 2013; Tkacz et al., 2020

Firmicutes 9.6 (Norwich,
UK; a)

20.9 (Bawburgh,
UK; a)

2.9 2 (a, NS) 3 Turner et al., 2013; Rascovan et al., 2016; Prudence et al.,
2021

Armatimonadetes 1.0 (Pullman,
WA; d)

4.6 (Pullman,
WA; e)

1.2 9 (b, c, d, e, f, g, h, i, j) 1 Mahoney et al., 2017

Planctomycetes 0.2 (Northern
China; NS)

8.9 (Villa Saboya,
Argentina; l)

1.0 4 (a, h, l, NS) 3 Turner et al., 2013; Rascovan et al., 2016; Mahoney et al.,
2017; Fan et al., 2018

Saccharibacteria 2.0 (Pullman,
WA; i)

4.0 (Pullman,
WA; b)

2.0 9 (b, c, d, e, f, g, h, i, j) 1 Mahoney et al., 2017

Gemmatimonadetes 0.5 (Northern
China; NS)

7.0 (Pullman,
WA; b)

2.3 10 (b, c, d, e, f, g, h, i, j,
NS)

2 Fan et al., 2018; Naz et al., 2018

Verrucomicrobia 0.7 (Northern
China; NS)

10.2 (Villa
Saboya,
Argentina; l)

2.7 12 (a, b, c, d, e, f, g, h, i,
j, l, NS)

4 Turner et al., 2013; Rascovan et al., 2016; Mahoney et al.,
2017; Tkacz et al., 2020; Prudence et al., 2021

Other taxa 2.0 (Villa Saboya,
Argentina; l)

23.5 (Bawburgh,
UK; a)

2.2 2 (a, l) 3 Turner et al., 2013; Rascovan et al., 2016; Prudence et al.,
2021

Unidentified taxa 1.0 (Pullman,
WA; e)

71.6 (Northern
China; NS)

7.12 11 (b, c, d, e, f, g, h, i, j,
k)

2 Donn et al., 2015; Mahoney et al., 2017

Archaea

Euryarchaeota 24.5 (Bawburgh,
UK; a)

24.5 (Bawburgh,
UK; a)

6.1 1 (a) 1 Prudence et al., 2021

Thaumarchaeota 22.2 (Northern
China; NS)

100.0
(Bawburgh, UK;
a)

74.3 3 (a, NS) 3 Fan et al., 2018; Szoboszlay et al., 2019; Tkacz et al., 2020;
Prudence et al., 2021

Other taxa 0.2 (Bawburgh,
UK; a)

0.2 (Bawburgh,
UK; a)

0.05 1 (a) 1 Prudence et al., 2021

Unidentified taxa 0.4 (Bawburgh,
UK; a)

77.8 (Northern
China; NS)

19.6 2 (a, NS) 2 Fan et al., 2018; Prudence et al., 2021

Fungi

Zygomycota 16.0 (Bawburgh,
UK; a)

16.0 (Bawburgh,
UK; a)

2.7 1 (a) 1 Tkacz et al., 2020

Glomeromycota 0.5 (Bethlehem,
South Africa; o)

1.5 (Bawburgh,
UK; a)

0.8 4 (a, m, n, o) 2 Gqozo et al., 2020; Tkacz et al., 2020

Chytridiomycota 0.9 (Bawburgh,
UK; a)

22.3 (Pretoria,
South Africa; n)

5.4 4 (m, n, o, p) 2 Gqozo et al., 2020; Tkacz et al., 2020

Basidiomycota 0.5 (Hangzhou,
China; NS)

24.3 (Bethlehem,
South Africa; o)

12.6 5 (a, m, n, o, NS) 3 Smit et al., 1999; Lu et al., 2018; Tkacz et al., 2020

Ascomycota 28.3 (Bawburgh,
UK; a)

60.6 (Napier,
South Africa; m)

45.4 6 (a, m, n, o, NS) 3 Fan et al., 2018; Lu et al., 2018; Gqozo et al., 2020; Tkacz
et al., 2020

Other taxa 12.6 (Bethlehem,
South Africa; o)

39.5 (Bawburgh,
UK; a)

14.2 4 (a, m, n, NS) 2 Gqozo et al., 2020; Tkacz et al., 2020

Unidentified taxa 51.0 (Northern
China; NS)

63.5 (Hangzhou,
China; NS)

19.1 2 (NS) 1 Lu et al., 2018

Min and Max correspond to minimum and maximum occurrences observed for each phylum in the specified references, after combining data from all replicate plants of
one genotype (indicated between parentheses), at one growth stage, for one treatment in one soil of one geographic location (indicated between parentheses). For each
phylum, the mean is calculated from all the values obtained from the different geographic locations and T. aestivum genotypes.
aAbbrevations are used to designate United Kingdom (UK) and Washington State (WA).
bGenotypes were cultivars Paragon (a), Madsen (b), PI561725 (c), Eltan (d), Finch (e), Hill81 (f), Lewjain (g), PI561722 (h), PI561726 (i), PI561725 (j), Janz (k), Cadenza (l),
SST88 (m), Kariega (n), Eland (o) or were not specified (NS).
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TABLE 2 | Occurrence of phyla in the rhizosphere of T. aestivum, as documented by culture-dependent methods.

Phyla Occurrence (%) Number (and lista) of
T. aestivum genotypes

Number of
countries

References

Min Max Mean

Bacteria

Proteobacteria 9.4 (Watrous,
Canada; NS)

77.0 (Kawatabi,
Japan; d)

23.7 6 (a, b, c, d, f, NS) 3 Sato and Jiang, 1996b; Germida et al., 1998;
Germida and Siciliano, 2001; Rascovan et al.,
2016

Actinobacteria 5.0 (Watrous,
Canada; NS)

88.9 (Kawatabi,
Japan; d)

24.0 6 (a, b, c, d, f, NS) 3 Juhnke et al., 1987; Sato and Jiang, 1996a;
Germida et al., 1998; Germida and Siciliano,
2001

Bacteroidetes 1.9 (Watrous,
Canada; NS)

23.0 (Kawatabi,
Japan; d)

5.9 5 (a, b, c, d, NS) 2 Sato and Jiang, 1996b; Germida et al., 1998;
Germida and Siciliano, 2001

Firmicutes 3.4 (Saskatoon,
Canada; b)

28.3 (Watrous,
Canada; NS)

10.0 5 (a, b, c, d, NS) 2 Sato and Jiang, 1996a,b; Germida et al., 1998;
Germida and Siciliano, 2001

Other taxa 55.4 (Watrous,
Canada; NS)

55.4 (Watrous,
Canada; NS)

7.9 1 (NS) 1 Germida et al., 1998

Unidentified taxa 60.6 (Saskatoon,
Canada; a)

70.0 (Saskatoon,
Canada; c)

28.5 3 (a, b, c) 1 Germida and Siciliano, 2001

Fungi

Zygomycota 5.9 (Utrecht, The
Netherlands; NS)

5.9 (Utrecht, The
Netherlands; NS)

5.9 1 (NS) 1 Smit et al., 1999

Chytridiomycota 3.7 (Utrecht, The
Netherlands; NS)

6.7 (Utrecht, The
Netherlands; NS)

3.7 1 (NS) 1 Smit et al., 1999

Basidiomycota 32.8 (Utrecht,
The Netherlands;
NS)

32.8 (Utrecht,
The Netherlands;
NS)

32.8 1 (NS) 1 Smit et al., 1999

Ascomycota 54.6 (Utrecht,
The Netherlands;
NS)

54.6 (Utrecht,
The Netherlands;
NS)

54.6 1 (NS) 1 Smit et al., 1999

Other taxa 3.7 (Utrecht, The
Netherlands; NS)

6.7 (Utrecht, The
Netherlands; NS)

3.7 1 (NS) 1 Smit et al., 1999

Min and Max correspond to minimum and maximum occurrences observed for each phylum in the specified references, after combining data from all replicate plants of
one genotype (indicated between parentheses), at one growth stage, for one treatment in one soil of one geographic location (indicated between parentheses). For each
phylum, the mean is calculated from all the values obtained from the different geographic locations and T. aestivum genotypes.
aGenotypes were cultivars PI167549 (a), Red Fife (b), CDC Teal (c), Aoba (d), GSTR 11562 (e), Pondera (f), or not specified (NS).

and Cryptococcus (Basidiomycota) are enriched in the rhizosphere
(Tkacz et al., 2020).

Rhizoplane Microbiome
The rhizoplane is very poorly documented with sequencing
methods, which is surprising considering the importance of bread
wheat as a crop. This situation probably results from sampling
limitations for the root-sol interface and an increased focus
on the root endosphere in recent years. In comparison with
the rhizosphere, the rhizoplane displays a bacterial community
that changes with wheat growth to a larger extent, with a
decrease in Proteobacteria and an increase in Actinobacteria
between the vegetative and ripening stages, as well as a decrease
in Bacteroidetes associated with senescing roots compared to
ripening stage (Donn et al., 2015). A lower abundance of
Acidobacteria is observed at the rhizoplane in comparison with
the rhizosphere (Donn et al., 2015).

Root Endosphere Microbiome
The bacterial community of the root endosphere of T. aestivum,
in contrast with that of the rhizosphere, is dominated by
Actinobacteria (Tkacz et al., 2020; Prudence et al., 2021).

They represent about 40% of the total community based
on culture-independent methods (Table 3), but <10% with
culture-dependent methods (Germida and Siciliano, 2001;
Bokati et al., 2016). They are followed by Proteobacteria
(about 30%), and then Bacteroidetes, Acidobacteria and
Verrucomicrobia (each at 5–10%). At family level, the
Streptomycetaceae (Actinobacteria) dominates the endophytic
community, followed by Chitinophagaceae (Bacteroidetes) and
Polyangiaceae (Proteobacteria) (Prudence et al., 2021), whereas
at genus level Streptomyces, Microbispora, Micromonospora, and
Nocardioides (all in the Actinobacteria phylum) are prevalent
(Coombs and Franco, 2003).

Root archaeal endophytes consist mainly of Thaumarchaeota
(about 60% of the community) and Euryarchaeota (about 30%)
(Table 3; Tkacz et al., 2020). It is a situation reminiscent
of the one in the rhizosphere, but the abundance of
Thaumarchaeota is lower in the root endosphere compared with
the rhizosphere (Tkacz et al., 2020). The family Nitrosphaeraceae
(Thaumarchaeota) also dominates in the root endosphere
(about 75% of the community; Prudence et al., 2021).
Methanobacteriaceae and Methanocellaceae are also present
(about 10% of the community; Prudence et al., 2021).
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FIGURE 3 | Heatmap of major phyla affiliated with (A) bacteria, (B) archaea, and (C) fungi in rhizosphere soil (RS) and root/endosphere (RE) of wheats and
non-wheat plants based on results from selected studies. Only phyla with relative abundance >0.5% in at least one study are shown. The color intensity in each cell
denotes the transformed relative abundance [log2((100x)+0.02)] of a phylum in each study for each plant type. For details on individual conditions, see
Supplementary Table 1.

For fungi, the predominance of Ascomycota in T. aestivum
root endosphere (about 80%; Table 3) is documented with
culture-independent and culture-dependent methods (Bokati
et al., 2016; Özkurt et al., 2020). Basidiomycota represent <1%
(Özkurt et al., 2020).

Evolutionary History of Wheats and
Microbiome Effects
Hybridization and Domestication
Inter-generic hybridizations and domestication events led to a
range of wheat species with phenotypic differences between one
another and with their wild progenitors (see above section).
Wheat polyploidy is a trait thought to lead to slightly different
bacterial community diversity in root and rhizosphere. Wipf
and Coleman-Derr (2021) documented a higher abundance of
Actinobacteria in roots of tetraploid and hexaploid species and
a higher α-diversity in the rhizosphere, in comparison with
diploids. Several studies investigated the impact of domestication
on the microbial community of rhizosphere and root endosphere
of wheat (Figure 2B; Kapulnik and Kushnir, 1991; Hetrick et al.,
1992; Hassani et al., 2018; Özkurt et al., 2020; Tkacz et al., 2020;

Wipf and Coleman-Derr, 2021). Comparison of T. durum
and T. aestivum with T. dicoccoides and A. tauschii (Tkacz
et al., 2020) evidenced the same bacterial phyla but not
in the same proportions, depending on the wheat species
and root compartment. In the rhizosphere, the abundance of
Verrucomicrobia is lower and the abundance of Actinobacteria
is higher for T. dicoccoides than the other wheats (Figure 3A;
Tkacz et al., 2020). Wild varieties displayed higher bacterial
α-diversity than domesticated ones when comparing diploid
wheats (Wipf and Coleman-Derr, 2021). In the root endosphere,
a higher proportion at the heading/flowering stage is found for
Bacteroidetes in T. dicoccoides, Chloroflexi in A. tauschii and
Cyanobacteria in T. aestivum compared with the other wheat
species (Figure 3A; Tkacz et al., 2020). The root endosphere
of seedlings displays a higher abundance of Proteobacteria and
a lower abundance of Firmicutes for T. dicoccoides than for
T. aestivum (Özkurt et al., 2020). Results with root samples
pointed to higher α-diversity for wild polyploid wheats than
domesticated polyploids, but shifts were of small magnitude
(Wipf and Coleman-Derr, 2021). Higher stochasticity (e.g.,
priority effects) was found in T. aestivum than the wild species
T. dicoccoides (Tkacz et al., 2020).
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TABLE 3 | Occurrence of phyla in the root endosphere of T. aestivum, as documented by culture-independent and culture-dependent methods.

Phyla Occurrence (%)a Number (and listb) of
T. aestivum genotypes

Number of
countries

References

Min Max Mean

Culture-independent methods

Bacteria

Proteobacteria 16.1 (Bawburgh, UK; a) 51.1 (Bawburgh, UK; a) 33.6 1 (a) 1 Tkacz et al., 2020;
Prudence et al., 2021

Acidobacteria 1.2 (Bawburgh, UK; a) 12.4 (Bawburgh, UK; a) 6.8 1 (a) 1 Tkacz et al., 2020;
Prudence et al., 2021

Actinobacteria 14.9 (Bawburgh, UK; a) 60.1 (Bawburgh, UK; a) 37.5 1 (a) 1 Tkacz et al., 2020;
Prudence et al., 2021

Bacteroidetes 5.1 (Bawburgh, UK; a) 11.1 (Bawburgh, UK; a) 8.1 1 (a) 1 Tkacz et al., 2020;
Prudence et al., 2021

Chloroflexi 1.0 (Bawburgh, UK; a) 5.2 (Bawburgh, UK; a) 3.1 1 (a) 1 Tkacz et al., 2020;
Prudence et al., 2021

Cyanobacteria 4.3 (Bawburgh, UK; a) 4.3 (Bawburgh, UK; a) 2.2 1 (a) 1 Tkacz et al., 2020

Firmicutes 3.5 (Bawburgh, UK; a) 3.5 (Bawburgh, UK; a) 1.6 1 (a) 1 Prudence et al., 2021

Verrucomicrobia 7.17 (Bawburgh, UK; a) 7.17 (Bawburgh, UK; a) 3.6 1 (a) 1 Tkacz et al., 2020

Other taxa 7.0 (Bawburgh, UK; a) 7.0 (Bawburgh, UK; a) 3.5 1 (a) 1 Prudence et al., 2021

Archaea

Euryarchaeota 28.0 (Bawburgh, UK; a) 28.0 (Bawburgh, UK; a) 28.0 1 (a) 1 Prudence et al., 2021

Thaumarchaeota 62.0 (Bawburgh, UK; a) 62.0 (Bawburgh, UK; a) 62.0 1 (a) 1 Prudence et al., 2021

Other taxa 7.9 (Bawburgh, UK; a) 7.9 (Bawburgh, UK; a) 7.9 1 (a) 1 Prudence et al., 2021

Unidentified taxa 2.1 (Bawburgh, UK; a) 2.1 (Bawburgh, UK; a) 2.1 1 (a) 1 Prudence et al., 2021

Fungi

Ascomycota 66.0 (Kirksville, MO; b) 99.3 (Northern Germany; NS) 82.7 1 (b, NS) 1 Bokati et al., 2016

Basidiomycota 0.7 (Northern Germany; NS) 0.7 (Northern Germany; NS) 0.7 1 (NS) 1 Özkurt et al., 2020

Other taxa 34.0 (Kirksville, MO; b) 34.0 (Kirksville, MO; b) 17.0 1 (b) 1 Bokati et al., 2016

Culture-dependent methods

Bacteria

Proteobacteria 17.8 (Saskatoon, Canada; c) 24.3 (Saskatoon, Canada; e) 21.0 3 (c, d, e) 1 Germida and Siciliano,
2001

Actinobacteria 4.7 (Saskatoon, Canada; c) 11.8 (Saskatoon, Canada; e) 8.0 3 (c, d, e) 1 Germida and Siciliano,
2001

Bacteroidetes 1.0 (Saskatoon, Canada; d) 4.1 (Saskatoon, Canada; c) 2.5 3 (c, d, e) 1 Germida and Siciliano,
2001

Firmicutes 0.8 (Saskatoon, Canada; e) 1.6 (Saskatoon, Canada; c) 1.1 3 (c, d, e) 1 Germida and Siciliano,
2001

Unidentified taxa 59.0 (Saskatoon, Canada; e) 73.6 (Saskatoon, Canada; c) 67.3 3 (c, d, e) 1 Germida and Siciliano,
2001

Fungi

Ascomycota 75.0 (Kirksville, MO; b) 75.0 (Kirksville, MO; b) 75.0 1 (b) 1 Bokati et al., 2016

Unidentified taxa 15.0 (Kirksville, MO; b) 15.0 (Kirsville, MO; b) 15.0 1 (b) 1 Bokati et al., 2016

Min and Max correspond to minimum and maximum occurrences observed for each phylum in the specified references, after combining data from all replicate plants of
one genotype (indicated between parentheses), at one growth stage, for one treatment in one soil of one geographic location (indicated between parentheses). For each
phylum, the mean is calculated from all the values obtained from the different geographic locations and T. aestivum genotypes.
aAbbrevations are used to designate Missouri (MO) and United Kingdom (UK).
bGenotypes were cultivars Paragon (a), GSTR 11562 (b), PI167549 (c), Red Fife (d), CDC Teal (e) or not specified (NS).

Archaea were studied (Tkacz et al., 2020), but sequencing
targeted bacteria and archaea together, yielding limited numbers
of sequences for archaea (<5%). This approach gave similar levels
of Thaumarcheota, in the rhizosphere and the root endosphere,
for A. tauschii, T. dicoccoides, T. durum, and T. aestivum.

For fungi, A. tauschii presented fewer Zygomycota in its
rhizosphere than the other wheats did (Figure 3C; Tkacz et al.,
2020). At genus level, fewer Mortierella (Mucoromycota) were

found in A. tauschii and more Verticillum (Ascomycota) in
A. tauschii and T. dicoccoides in comparison with T. aestivum
(Tkacz et al., 2020). The less abundant fungal phylum in
T. aestivum rhizosphere corresponded to the Glomeromycota
(about 1%, Table 1), which were more abundant in the
rhizosphere of A. tauschii (Tkacz et al., 2020). The selection
of Glomeromycota and the plant response to these fungi are
controlled by the D genome of A. tauschii, in comparison
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TABLE 4 | Literature comparisons of root-associated microbial functional groups considering (i) wheat of different species, wild or domesticated, (ii) landraces, ancient,
or modern varieties within wheat species, and (iii) different modern cultivars within wheat species.

Microbial
function

Analysis of individual microorganisms Analysis of functional groups

Microorganism
studied

(i) Wheat
evolution/
domestication

(ii) Genotype
categories
within wheat
species

(iii) Wheat
cultivars

Methodology
used

(i) Wheat
evolution/
domestication

(ii) Genotype
categories
within wheat
species

(iii) Wheat
cultivars

Biotic interactions

DAPG
synthesis

Pseudomonas
brassicacearum
Q8r1-96

Okubara and
Bonsall, 2008;
Yang et al.,
2018

Pseudomonas
fluorescens Q2-87

Pseudomonas
ogarae F113

Valente et al.,
2020

Valente et al.,
2020

PCR-RFLP and
sequence
analysis of
Pseudomonas
isolates

Mazzola
et al., 2004

Phenazine
synthesis

Pseudomonas
chlororaphis

Mahmoudi
et al., 2019

Synthesis of
antimicrobial
compound(s)

in silico prediction
from rrs
metabarcodes

Mahoney
et al., 2017

Fungal
inhibition

PCR-RFLP of
Pseudomonas
isolates

Gu and
Mazzola,
2003

Rhizoctonia
inhibition

Agar plate assays
of Pseudomonas
isolates

Mazzola and
Gu, 2002

Induction of
root defense

Pseudomonas
brassicacearum
Q8r1-96

Maketon et al.,
2012

Pseudomonas
putida

Pérez-de-
Luque et al.,
2017

Rhizophagus
irregularis

Pseudomonas
brassicacearum
Q8r1-96

Okubara et al.,
2010

IAA synthesis Azotobacter
chroococcum

Narula et al.,
2000

Salkowski
method and
sequence
analysis

Venieraki
et al., 2011

ACC
deaminase
activity

Absorbance
quantification of
α-ketobutyrate
product

Stromberger
et al., 2017

Yield promotion Azospirillum
brasilense Cd

Pagnani et al.,
2020

Gluconacetobacter
diazotrophicus Pal5

Herbaspirillum
seropedicae Z67

(Continued)
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TABLE 4 | (Continued)

Microbial
function

Analysis of individual microorganisms Analysis of functional groups

Microorganism
studied

(i) Wheat
evolution/
domestication

(ii) Genotype
categories
within wheat
species

(iii) Wheat
cultivars

Methodology
used

(i) Wheat
evolution/
domestication

(ii) Genotype
categories
within wheat
species

(iii) Wheat
cultivars

Biogeochemical cycles

Malate
production

in silico prediction
from rrs
metabarcodes

Mahoney
et al., 2017

Degradation of
organic
compound

BiologTM plate
assays

Siciliano et al.,
1998

Cellulose
decomposition

Counts on
cellulose Congo
Red medium

Zuo et al.,
2014

Urease,
catalase,
sucrose, and
dehydrogenase
synthesis

Colorimetric
assays of
potential
enzymatic
activities

Zuo et al.,
2014

Nitrogen
metabolism

Metabarcoding
(rrs) predicted
gene functioning

Mahoney
et al., 2017

N2 fixation Counts on N-free
Ashby’s medium

Zuo et al., 2014

Acetylene
reduction assays
and nifH
sequence
analysis

Venieraki
et al., 2011

qPCR (nifH) Spor et al.,
2020

Rilling et al.,
2018

Nitrification Counts on
improved
Stephenson’s
medium

Zuo et al.,
2014

qPCR (amoA) Spor et al.,
2020

Denitrification Measurement of
nitrate reductase
potential activity

Gill et al.,
2006

qPCR (nirK/nirS,
nosZI/nosZII)

Spor et al.,
2020

Sulfur
metabolism

in silico prediction
from rrs
metabarcodes

Mahoney
et al., 2017

Phosphorus
metabolism

in silico prediction
from rrs
metabarcodes

Mahoney
et al., 2017

Phosphate
solubilization

Azotobacter
chroococcum

Narula et al.,
2000

These comparisons were carried out at the level of individual microorganisms (whereby one or several microorganisms was/were inoculated on wheat) or entire functional
groups (i.e., taking into account most or all microorganisms potentially contributing to a given microbial function). RFLP, Restriction Fragment Length Polymorphism. List
of references is available in Supplementary Material 1.

with genomes A (T. urartu) and B (A. speltoides) (Kapulnik
and Kushnir, 1991; Hetrick et al., 1992; Zhu et al., 2001). The
analysis of 32 T. durum genotypes indicated that Glomeromycota
composition depended on plant genotype, and that certain

T. durum genotypes associated strongly with Paraglomus and
Dominikia, which were undetected in other genotypes (Ellouze
et al., 2018). In the root endosphere, differences between
T. aestivum and T. dicoccoides seedlings were evidenced, with a
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higher abundance (73 vs. 47%) of Pleosporales (Ascomycota) in
T. aestivum than T. dicoccoides roots (Özkurt et al., 2020).

Post-domestication Selection
The analysis of bacterial rhizosphere isolates showed a higher
diversity with a landrace compared with two cultivars of
T. aestivum, with the genera Aureobacter and Salmonella found
only in the landrace (Germida and Siciliano, 2001). With culture-
independent methods, landraces presented in the rhizosphere
a higher abundance of Bacteroidetes and a lower abundance
of Actinobacteria in comparison with modern T. aestivum
cultivars (Rossmann et al., 2020). Landraces also displayed a
core microbiome with more bacterial genera that were specific,
i.e., found only with landraces. In the rhizosphere, the fungal
genus Dominikia (Glomeromycota) was detected with 80% of
T. durum landraces but only 60% of modern genotypes (Ellouze
et al., 2018). The endophytic fungal community of T. durum
landrace Perciasacchi (winter type) is dominated by Ascomycota
(with Alternaria and Gibberella) and that of T. durum landrace
Tumminia (spring type) by Basidiomycota (and particularly
Sporobolomyces and Puccinia) (Casini et al., 2019), but these
landraces were not compared with durum wheat cultivars. When
comparing root and rhizosphere microorganisms associated with
landraces and modern cultivars of T. aestivum, old accessions
were enriched in Acidobacteria and Actinobacteria, and modern
cultivars in Verrumicrobia and Firmicutes (Kinnunen-Grubb
et al., 2020). Landraces are genetically more heterogeneous than
cultivars, including for traits that influence root-microorganism
interactions, e.g., root system size and root exudation (Waines
and Ehdaie, 2007; Haichar et al., 2008; Matthews et al., 2019;
Iannucci et al., 2021), and thus at the scale of a field they are
likely to select a wider range of soil microorganisms overall. At
the scale of individual plants, however, the microbiota of both
old and ancient bread wheats followed a neutral assembly model,
and the root microbiome displayed higher stochasticity (i.e., less
deterministic selection) with modern T. aestivum cultivars than
with landraces (Kinnunen-Grubb et al., 2020).

The Green Revolution resulted in the selection of semi-
dwarf cultivars. In comparison with older, tall cultivars, the
rhizosphere bacterial community of semi-dwarf bread wheat
cultivars displays lower levels of Actinobacteria (1.4 vs. 13%),
Bacteroidetes (5.0 vs. 16%) and Proteobacteria (8.6 vs. 29%) and
higher levels of Verrucomicrobia (7.9 vs. 2.9%), Planctomycetes
(2.1 vs. 0.7%) and Acidobacteria (2.9 vs. 1.4%) (Kavamura et al.,
2020). The latter phyla are typically well present in bulk soil,
which suggests a lower selection intensity by semi-dwarf than tall
cultivars (Kavamura et al., 2020). When considering rhizosphere
selection of individual strains, the comparison of 192 T. aestivum
varieties evidenced that old varieties had a higher ability than
modern cultivars to recruit the bacterium Pseudomonas ogarae
(ex-fluorescens ex-kilonensis) F113 (Valente et al., 2020). Root
systems of mid and later-generation semi-dwarf wheats are
smaller than those of early Green-Revolution wheats (Waines and
Ehdaie, 2007), whereas the amount of simple sugars released by
roots of modern wheats is higher (Shaposhnikov et al., 2016),
probably due to less stringent control of sugar exudation (Pérez-
Jaramillo et al., 2018). Much remains to be done to understand

differences in microbial community between old and modern
cultivars, notably for archaea and fungi (not considered so far).

Among modern bread wheat cultivars, differences in bacterial
selection can be significant, for certain phyla (Figure 3A;
Mahoney et al., 2017). The abundance of Actinobacteria,
Firmicutes and Cyanobacteria in the rhizosphere of cultivar
Madsen is lower than for cultivar Paragon (8 vs. 19%, 0.2
vs. 20%, and 0.5 vs. 2.8%, respectively; Figure 3A). Such
differences can also be evidenced at lower taxonomic levels,
and root colonization levels by P. ogarae F113 varied between
modern T. aestivum cultivars (Valente et al., 2020). Different
T. aestivum cultivars can present dissimilar abundance levels
of Thaumarchaeota and Euryarchaeota (Figure 3B), but data
scarcity does not enable to conclude on archaeal ecology (Fan
et al., 2018; Tkacz et al., 2020; Prudence et al., 2021). With
fungi, higher rhizosphere levels were found for Basidiomycota
(>15% vs. <10%) in cultivars Paragon, SST88 and Eland
(Gqozo et al., 2020; Tkacz et al., 2020) and for Chytridiomycota
(about 20% vs. <10%) in cultivar Kariega (Gqozo et al., 2020;
Figure 3C). Among 94 T. aestivum genotypes, variations in
mycorrhizal colonization were observed following inoculation
with Rhizophagus and Claroideoglomus species, which could vary
depending on old vs. recent cultivars (Lehnert et al., 2017).
The abundance of Paraglomus (Glomeromycota) depends on the
modern T. durum cultivar in the rhizosphere but not in the root
endosphere (Ellouze et al., 2018).

Microbiome of Wheats vs. Other
Poaceae and Non-Poaceae
Wheats vs. Other Poaceae
Compared with other Poaceae, Triticea members show some
specificity in the level of certain phyla in the rhizosphere or
root endosphere. Using selected publications (Supplementary
Table 1), we found trends for (i) a higher abundance of
Cyanobacteria and Glomeromycota and a lower abundance of
Firmicutes in the rhizosphere, and (ii) a higher abundance
of Chloroflexi in the root endosphere (Figures 3A,C).
Differences between rhizobacterial communities increase
with the phylogenetic distance between Poaceae (Bouffaud
et al., 2016), but this is not apparent when considering phyla
abundance. For example, Verrucomicrobia are found at the
same level of magnitude in the rhizospheres of millet, rice
and wheat (Figure 3A; Shi et al., 2019), even though the
former two are distant from the Triticeae tribe. Moreover,
rice (the closest to wheats in Figure 3C) displays a higher
abundance of Chytridiomycota in the rhizosphere than Triticeae,
whereas maize (although more distant) exhibits rhizosphere
levels of Chytridiomycota closer to those of the Triticeae. This
is also the case for the root endosphere, as the abundance
of Acidobacteria in Triticeae is higher than in barley and
oat but similar to levels in rice, sorghum and maize, which
are comparatively more distant from wheats (Figure 3A).
Nevertheless, such a variability between wheats and Poaceae
needs to be considered in light of the high variability that
exists between the different Triticeae species, and even between
different T. aestivum cultivars.
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Wheats vs. Non-Poaceae
Differences in bacterial community composition at phylum
level can be found between Triticeae and non-Poaceae. This
includes a lower abundance in rhizosphere and root endosphere
of Bacteroidetes (for poplar) and Chloroflexi (for poplar and
arabidopsis) compared with the Triticeae. A higher abundance
of Thaumarchaeota (in rhizosphere and root endosphere)
and Nitrospirae (in rhizosphere) is observed for tomato
compared with T. aestivum (Figure 3B). In the rhizosphere,
Glomeromycota are more abundant with Triticeae members
than with tomato, bean, soybean and poplar (Figure 3C).
However, significant microbiota similarities may also be observed
when considering Triticeae and non-Poaceae plants mentioned
in Figure 3. For instance, Proteobacteria and Ascomycota
dominate the rhizobacterial community of both wheats and
dicotyledons except for two varieties of Arabidopsis thaliana
(Bulgarelli et al., 2012).

The comparison between Triticeae and non-Poaceae also
reveals unexpected features, as certain differences do not coincide
with the divide between these two groups. Barley (the closest to
wheat in Figure 3A), displays surprisingly a low abundance of
Acidobacteria in comparison with the Triticeae, the other Poaceae
and also the non-Poaceae. The Thaumarchaeota dominate the
rhizospheres of wheat and tomato, but not maize (Figure 3B).
The rhizosphere and root endosphere of dicotyledons and
certain T. aestivum are poorly colonized by Zygomycota, unlike
for rice, other Triticum species and A. tauschii. In fact,
extensive variability exists within the Triticeae, including between
T. aestivum cultivars, and it is not necessarily lower than
the variability between Triticeae and non-Poaceae observed
in Figure 3.

FUNCTIONAL DIVERSITY OF THE
WHEAT MICROBIOME

Functional Network of the Wheat Root
Microbiome
Microorganisms play key roles in the biogeochemical cycles of
carbon, nitrogen, sulfur, etc. (Philippot et al., 2013; Louca et al.,
2016; Figure 1B). In root environments, the plant is the major
provider of organic C and stimulate microorganisms, leading to
the synthesis of various microbial metabolites, many of them
with feed-back effects on the plant (Raaijmakers et al., 2009;
Compant et al., 2010; Vacheron et al., 2013). The range of
possible interactions between microorganisms and plant host is
very broad (Figure 1B), from parasitism and competition to
commensalism and mutualism (Lambers et al., 2009; Newton
et al., 2010). Root-associated microorganisms also interact with
one another, which modulates their own interactions with the
plant (Raaijmakers et al., 2009; Huang et al., 2012). Due to
the importance of root metabolism and rhizodeposition, it can
be expected that exudate differences between wheat genotypes
have the potential to materialize in significant differences in the
implementation of biogeochemical cycles and biotic interactions
in the root zone, but this possibility remains poorly documented.

Microbial functioning involves a complex network of
elementary transformations (e.g., the conversion of N2 into
NH3) or interactions (e.g., the inhibition mediated by a given
antibiotic), each corresponding to a particular function. Each
individual microorganism is endowed with many of these
functions, and typically each function is common to different
strains and species, leading to functional redundancy in the
microbial community (Louca et al., 2016). All microorganisms
participating to the same function form a functional group, and
therefore each organism is likely to belong to several functional
groups (Louca et al., 2016). For root-associated microorganisms,
the context of the holobiont adds a supplementary dimension
when considering microbial functioning (Vandenkoornhuyse
et al., 2015; Lemanceau et al., 2017; Hassani et al., 2020). Whereas
taxonomic variation within individual functional groups does not
seem to fluctuate extensively with soil and other environmental
conditions, the functional potential of the microbiota is thought
to be strongly linked to environmental conditions (soil physico-
chemistry, plant genotype, and growth stage) (Louca et al., 2016;
Lemanceau et al., 2017; Guo et al., 2018). Accordingly, similar
environments should promote similar microbial functional
communities, while allowing for taxonomic variation inside an
individual functional group.

Global Functioning of the Wheat
Microbiota
The emergence of metagenomics has made it possible to glimpse
the global functional and metabolic capacities of a microbiota.
The assessment of the rhizosphere metagenome of T. durum
showed an overrepresentation of two categories of microbial
functions (Ofek-Lalzar et al., 2016; Ofaim et al., 2017). A first
category corresponded to basic metabolism, important for
root colonization (Santi et al., 2013; Vacheron et al., 2013),
such as chemotaxis, lipopolysaccharide metabolism, nitrogen
metabolism, pentose and glucoronate interconversions, starch,
and sucrose metabolism. The second category was related
to secondary metabolism, e.g., anthocyanin production or
xenobiotic metabolism (Ofaim et al., 2017; Lu et al., 2018).
Whether metagenome differences occur between wheat species
or lines of individual wheat species remains to be determined.
Despite methodological limitations, functional metagenome
predictions from metabarcoding-based OTU datasets did
suggest microbial differences between wheat lines (Mahoney
et al., 2017). These predictions differed also according to
T. aestivum growth stage (Kavamura et al., 2018). Energy
metabolism dominates in the rhizosphere microbiota during
early wheat development, vs. degradation of complex organic
compounds with older, photosynthetically active plants. A similar
rhizosphere acclimatization was found with oat (Nuccio et al.,
2020). Metatranscriptomic analysis of the rhizosphere of
one T. aestivum genotype revealed metabolic capabilities for
rhizosphere colonization, including cellulose degradation and
methylotrophy (Turner et al., 2013).

Metagenomic or metatranscriptomic studies have been useful
to describe global metabolic activity in root environments, but
they have not been implemented yet to compare different wheat
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species or lines. Therefore, it remains difficult to assess the impact
of intra-species variation, domestication and hybridization of
wheats on global microbial functioning in the root zone, and this
is a topic in strong need of research attention.

Microbial Interactions in the Wheat Root
and Rhizosphere
Rhizosphere microorganisms develop deleterious, beneficial or
neutral interactions with one another (Figure 1B). The extent
of these interactions, and the density and complexity of the
resulting interaction network depend on taxa richness, microbial
abundance and activity levels (Finlay et al., 1997; Torsvik and
Øvreås, 2002; Fuhrman, 2009). Wheat root system architecture
and rhizodeposition traits determine the root surface that can
be colonized and the amount of root exudates. Since these
characteristics were affected by domestication and subsequent
crop selection (Waines and Ehdaie, 2007; Shaposhnikov et al.,
2016; Iannucci et al., 2021), wild wheats, landraces and
modern cultivars probably display different patterns of microbial
colonization and of microbial interactions in their roots and
rhizosphere. Microbial interactions and competition can also
be modulated by predators (nematodes and protozoa), which
thrive to different extents in the rhizospheres of oat, pea and
wheat (Turner et al., 2013), and perhaps also in the rhizosphere
of different wheat genotypes. Microbiota network analysis of
T. aestivum rhizosphere revealed the co-occurrences of cercozoa
(protozoa), bacterial and fungal taxa, reminiscent of a predator-
prey system (Rossmann et al., 2020). Co-occurrence levels were
higher and trophic networks more entangled with landraces than
modern cultivars, which suggests a higher level of microbial
interactions in the rhizosphere of landraces.

Pathogens infecting wheat roots cause significant damage,
including the take-all fungus Gaeumannomyces graminis var.
tritici (Wilkinson et al., 1985), Rhizoctonia spp. causing root rot
or damping-off (Ingram and Cook, 1990), and Pythium species
leading to root rot (Wiese, 1987; Ingram and Cook, 1990).
Differences in sensitivity to root pathogens exist according to
wheat genotype. A. speltoides and T. durum are more sensitive
than T. monococcum to G. graminis var. tritici (McMillan et al.,
2014), whereas inter-cultivar variability of resistance to this
pathogen is high within T. aestivum (Golizadeh et al., 2017).
Susceptibility to Rhizoctonia was similar for T. monococcum
and T. durum, as well as certain T. aestivum cultivars, whereas
other cultivars of T. aestivum were more sensitive (Oros et al.,
2013). Differences in tolerance to G. graminis (Golizadeh et al.,
2017), root-infecting Fusarium graminearum (Wang et al.,
2018), foot, crown and root rot-causing Fusarium culmorum
(Erginbaş Orakcı et al., 2018) and Pythium (Higginbotham
et al., 2004) occurred among T. aestivum cultivars. Wheat
is also affected by parasitic nematodes, with cultivar-level
differences in susceptibility of T. aestivum to cereal cyst
nematodes Heterodera spp. (Cui et al., 2016) and root-lesion
nematode Pratylenchus curvicauda (Begum et al., 2020). Apart
from differences in disease sensitivity, modern T. aestivum
cultivars tend to be more colonized by Fusarium, Neoascochyta
and Microdochium root pathogens compared with landraces
(Kinnunen-Grubb et al., 2020).

Wheat cultivars might rely on specific microbial populations
for phytoprotection, which may entail pathogen inhibition (via
competition or antagonism) or systemic induction of plant
defense pathways. Fluorescent Pseudomonas inhibit Pythium,
Rhizoctonia and G. graminis (Weller and Cook, 1986; Mavrodi
et al., 2013), using 2,4-diacetylphloroglucinol (DAPG), hydrogen
cyanide (HCN), or phenazines (Keel et al., 1992; Kwak and
Weller, 2013; Mavrodi et al., 2013; Imperiali et al., 2017). The
diversity of bacterial populations producing these compounds
and rhizosphere expression of the corresponding genes depend
on plant host genotype (Latz et al., 2015). DAPG and HCN-
producing microorganisms can be studied via the marker
genes phlD and hcnABC, respectively (Supplementary Table 2),
and DAPG-producing microorganisms associated with different
wheat genotypes have been well-studied in comparison with
the case of other antagonistic compounds (Table 4). Modern
cultivars of T. aestivum differentially select for and benefit
from DAPG-producing Pseudomonas species in resident soil
populations (Berg et al., 2002; Mazzola et al., 2004; Meyer et al.,
2010). Cultivar differences were evidenced in the interaction
with DAPG-producing P. brassicacearum in soil suppressive
to take-all (Yang et al., 2018). Suppression of Rhizoctonia
root rot and take-all is cultivar-dependent, through enhanced
recruitment of specific Pseudomonas populations by cultivars
less affected by disease (Mazzola et al., 2004; Yang et al., 2018).
Phytopathogens may also be inhibited by other saprophytic
microorganisms, including bacteria and fungi (Barnett et al.,
2017), and for the latter the ability to colonize wheat roots
can depend on the cultivar (Osborne et al., 2018). In addition,
Arbuscular Mycorrhizal (AM) fungi (division Glomeromycota)
also inhibit wheat pathogens via competition (Ganugi et al.,
2019) or production of cellulases and chitinases, which may
affect pathogen cell wall and provide wheat protection (Pérez-
de-Luque et al., 2017), but the significance of wheat genotypes
is not documented. Induced resistance is poorly documented
in monocots, including wheat (Balmer et al., 2013). Induced
Systemic Resistance (ISR), which involves jasmonate and
ethylene signaling, is triggered in wheat by certain Pseudomonas
strains (Balmer et al., 2013). Similarly, saprophytic fungi from
Aspergillus, Penicillium and Trichoderma genera and protecting
against Rhizoctonia wilt trigger ISR in wheat (El-Maraghy et al.,
2020). Mycorrhizae also induce systemic plant resistance, termed
Mycorrhiza-Induced Resistance (MIR) (Mustafa et al., 2016),
which is reminiscent of ISR (Balmer et al., 2013) but displays
also features of Systemic Acquired Resistance (SAR), especially
the priming of salicylic acid-dependent genes (Pérez-de-Luque
et al., 2017). Thus, MIR by the AM fungus Funneliformis mosseae
upregulated several defense genes in wheat, and protected wheat
from the powdery mildew pathogen Blumeria graminis f. sp.
tritici (Mustafa et al., 2016). In addition, Bacillus velezensis CC09
stimulated SAR pathways, inducing PR1 genes and enhancing
lignin accumulation, and protected wheat from take-all (Kang
et al., 2018). Little has been done to compare induced resistance in
different wheat genotypes (Table 4). The two cultivars studied in
Pérez-de-Luque et al. (2017) displayed different levels of systemic
priming for chitosan-induced callose after co-inoculation with
Pseudomonas putida and Rhizophagus irregularis. One of the
two cultivars showed higher level of callose deposition after
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co-inoculation than inoculation of P. putida or R. irregularis
alone, suggesting additive or synergistic effects in some but not all
genotypes, probably linked to cultivar differences in the signaling
pathway leading to systemic immune priming (Haichar et al.,
2016). Root expression of defense gene homologs induced by
P. brassicacearum Q8r1-96 differed between the three wheat
cultivars analyzed (Okubara et al., 2010). Since wheat species
and varieties differ in their abilities to recruit microbial taxa
containing strains with induced resistance potential, especially
AM fungi (Figure 2A), it raises the possibility that some varieties
are more prone to be protected by ISR. If so, this might
explain some of the differences in sensitivity to diseases observed
among cultivars.

Apart from plant protection, several microbial functional
groups present in the rhizosphere are beneficial, by ensuring
better plant growth (Vacheron et al., 2013; Lemanceau et al.,
2017). However, information about their abundance and activity
according to wheat genotype is scarce, even for the best described
functional groups. Mineral nutrition of wheat can be promoted
by different functional groups directly affecting nutrient
bioavailability or stimulating plant development through
microbial modulation of its hormonal balance (Finkel et al.,
2017). Wheat growth can be promoted by microorganisms that
produce phytohormones, such as Indole-3-Acetic Acid (IAA)
(Spaepen et al., 2007), cytokinins and gibberellin, or secondary
metabolites interfering with auxin, such as DAPG (Landa et al.,
2003) and nitric oxide (NO) (Molina-Favero et al., 2008).
Inoculation with different P-solubilizing, IAA-producing strains
of Azotobacter chroococcum carried out on three cultivars of
T. aestivum showing contrasted P responses resulted in enhanced
N, P, K uptakes, probably as a consequence of phytohormone
effects, but without difference between wheat genotypes (Narula
et al., 2000). In contrast, cultivar differences were found following
Azospirillum inoculation, when considering phenotypic traits
such as root system architecture or plant height, especially
during early growth phases, but without an effect on grain
yield (Kazi et al., 2016). Using the Opata × synthetic mapping
population, one QTL region on chromosome 1A was identified
for Azospirillum adhesion to wheat roots (Díaz De León et al.,
2015). DAPG, at low concentration, induces the plant’s auxinic
pathways, which stimulates root exudation and branching
(Brazelton et al., 2008; Combes-Meynet et al., 2010). Application
of wheat root exudates to a soil modified the composition of
the DAPG-producing community in a cultivar-specific manner
(Gu and Mazzola, 2003). The activity of DAPG-producing
Pseudomonas in the rhizosphere and DAPG accumulation
on the rhizoplane of T. aestivum is influenced by specific
cultivar-bacterial strain associations (Bergsma-Vlami et al., 2005;
Okubara et al., 2010). Variability is also observed between old
and modern cultivars, as colonization by P. ogarae F113 and
expression of phl genes (coding for DAPG production) are
higher for ancient genotypes of T. aestivum (Valente et al., 2020).
Not much data is available on the effect of wheat genotype on
the abundance or activity of other phytohormone-producing
microorganisms (Table 4). 1-aminocyclopropane-1-carboxylate
(ACC) is the precursor of ethylene in plants and more ACC
is produced in case of stress, which may have deleterious

effects on plant growth (Glick, 2014). ACC deaminase activity,
which catalyzes the cleavage of ACC into ammonium and
alpha-ketobutyrate (Glick, 2005, 2014), is found in many
microorganisms living in the rhizosphere (Bouffaud et al., 2018).
This activity can improve the growth and yield of T. aestivum
under salt stress and drought conditions, acting as an ACC
sink that lowers ethylene level without stopping stress-induced
reactions (Zahir et al., 2009; Shakir et al., 2012; Hassan et al.,
2014). The abundance of microorganisms with ACC deaminase
activity in the rhizosphere varies with plant genotype (Bouffaud
et al., 2018), and the abundance, composition and activity of the
corresponding functional group depends also on T. aestivum
cultivar (Stromberger et al., 2017). Under drought or well-
watered conditions, the response of T. aestivum to inoculation
with ACC deaminase-producing bacteria is genotype dependent,
as some cultivars showed higher root length while others had
increased above-ground biomass (Salem et al., 2018). The ability
of these bacteria to promote drought resistance may depend on
wheat genotype (Stromberger et al., 2017). The significance of
ACC deaminase activity has not been studied for wheat species
other than T. aestivum (Figure 2A). Pseudomonas producing
phenazine (usually studied for its antimicrobial properties) are
thought to be involved in drought resistance as well. Indeed,
when inoculated, their presence on roots (at population levels
that are wheat cultivar dependent; Mahmoudi et al., 2019) leads
to added protection of seedlings against drought in cultivars
that are genetically drought resistant (Mahmoudi et al., 2019).
Moreover, Pseudomonas producing phenazine were shown to
be abundant in non-irrigated soil (Mavrodi et al., 2012, 2013).
Furthermore, resistance to drought (along with other abiotic
stress like salinity or metals; Seguel et al., 2016; Aguilera et al.,
2018; Ganugi et al., 2019) may be conferred by AM fungi
following the induction of particular metabolomic responses in
wheat roots (Bernardo et al., 2019). This protection varies with
T. aestivum cultivars and QTLs have been identified, especially
on chromosomes 3D and 7D (Lehnert et al., 2017). More
generally, genome-wide association studies for the establishment
of AM symbiosis have highlighted QTL regions on chromosomes
3A, 4A, and 7A in T. aestivum inoculated with Rhizophagus
intraradices, Claroideoglomus claroideum and Claroideoglomus
etunicatum (Lehnert et al., 2017) and on chromosomes 1A, 2B,
5A, 6A, 7A, and 7B for T. durum when inoculated individually
with Funneliformis mosseae or Rhizoglomus irregulare (De
Vita et al., 2018). Depending on the species (T. aestivum or
T. durum), changes in rhizosphere microbiota traits due to
drought will differ, suggesting that different wheat genotypes
recruit their own specific microbiota to help alleviate abiotic
stresses (Azarbad et al., 2018, 2020).

Biogeochemical Cycles in the Wheat
Root and Rhizosphere
The rhizosphere is characterized by the release of organic
exudates and other rhizodeposits, and the uptake of mineral
nutrients by roots (Figure 1B). The biogeochemical cycles
of carbon, nitrogen and phosphorus are well-understood,
and several primers are available to target microbial markers
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associated with these cycles (Supplementary Table 2). However,
microbial activities involved in other important cycles such as
those of potassium, sulfur or iron are less described in the wheat
root and rhizosphere (Narula et al., 2000; Sheng and He, 2011;
Jacoby et al., 2017; Kumar et al., 2018).

Carbon
Carbon efflux from the root is important (Kuzyakov and
Cheng, 2001) and wheat root-derived CO2 represents between
25 and 50% of the total CO2 efflux from soil (Kuzyakov and
Cheng, 2001). Most microbial functions related to carbon in
the rhizosphere are linked to degradation of organic exudates
(Derrien et al., 2004; Haichar et al., 2016). The rhizosphere
priming effect (i.e., the increase of microbial activity following
exudation) intensifies decomposition and mineralization (Cheng
et al., 2003), and is an important cause of carbon loss from
the rhizosphere.

Bacteria and fungi are primary decomposers, releasing
extracellular hydrolytic enzymes to catalyze decomposition of
organic matter (Berg and McClaugherty, 2008). Actinobacteria,
found in the rhizosphere of T. aestivum (Table 1) include
different species involved in decomposition and humus
formation (Wang C. et al., 2016; Bao et al., 2021). In the
rhizosphere, the potential activity of microbial enzymes (mostly
cellulases) associated with carbohydrate degradation differed
according to T. aestivum cultivar (Table 4; Zuo et al., 2014).
Moreover, endophytic microorganisms isolated from roots of
ancient T. durum cultivars differed in their ability to degrade
organic compounds compared with those from more recent
cultivars (Siciliano et al., 1998). Indeed, microorganisms isolated
from recent cultivar CDC Teal degraded carboxylic acids at a
higher rate, whereas polymers and amino acids were degraded at
a higher rate by microorganisms isolated from ancient cultivars
Red Fife and PI 167549.

Nitrogen
Diazotrophs are well-represented in the plant rhizosphere, where
they find sufficient energy resources for the costly functioning of
the dinitrogenase that fixes N2 into assimilable NH3 (Herridge
et al., 2008). N2 fixation is the best studied activity when
comparing different wheat genotypes (Table 4). The ability of
N2-fixing Azospirillum to colonize roots depends on T. aestivum
cultivar, as the bacteria were detected either in the root tissues
and intercellular spaces or only at the root surface (Schloter
and Hartmann, 1998). Cyanobacteria of the genera Nostoc
(Gantar et al., 1993) and Azospirillum brasilense FP2 fix N2
when colonizing T. aestivum roots (Van Dommelen et al.,
2009; Camilios-Neto et al., 2014). Free-living nitrogen-fixing
prokaryotes contribute to nitrogen requirement of wheat (Dellagi
et al., 2020), up to 76 and 32% for shoots and roots, respectively
(Majeed et al., 2015). In addition, higher yields were observed
for T. aestivum inoculated with engineered strains able to
fix nitrogen constitutively (Fox et al., 2016). The diazotroph
community varies in size and activity with plant species (Perin
et al., 2006; Mao et al., 2013; Bouffaud et al., 2016) and
cultivars of T. aestivum, with a higher number of rhizosphere
diazotrophs for Xiaoyan than for other T. aestivum cultivars
(Mahoney et al., 2017).

Even though N is often limiting for plant growth, wheat
roots may release nitrogen in the form of NH3/NH4

+ in the
rhizosphere (26 mg for the entire growing season, 18% of the
total N yield of the plant; Janzen, 1990). Within the wheat
rhizosphere, NH3 is oxidized into NO2

− and NO3
− by aerobic

nitrifiers. Ammonium oxidizers include ammonium-oxidizing
bacteria (AOB) and ammonium-oxidizing archaea (AOA; Chen
et al., 2011). Wheat domestication and selection had an effect
on the interaction with nitrifiers, as they are less abundant in
the rhizosphere of modern T. durum cultivars compared with
T. dicoccoides and T. dicoccon (Spor et al., 2020). Differences in
abundance of nitrifying bacteria also exist between T. aestivum
cultivars, with higher rhizosphere numbers for cultivar Xiaoyan
than the others (Mahoney et al., 2017). In addition, some
T. aestivum landraces can inhibit nitrification in their rhizosphere
(O’Sullivan et al., 2016).

Denitrifying bacteria harboring NO2
− reductase genes

nirK/nirS (Chen et al., 2011) reduce NO2
− into NO. In the

T. aestivum rhizosphere, denitrification is stimulated by root
exudates (as denitrifiers are heterotrophs) (Wollersheim et al.,
1987) and soil waterlogging (as it results in anoxia) (Hamonts
et al., 2013). Thus, T. aestivum modulates denitrification activity
and influences the composition of the denitrifying community
(Achouak et al., 2019). Among modern T. aestivum cultivars,
differences in rhizosphere denitrification activity and N2O
emissions are significant (Hayashi et al., 2015), including
for cultivars that can even inhibit nitrate reductase activity
(Gill et al., 2006).

Phosphorus
Phosphorus is mostly present as insoluble phosphate or organic
forms in the soils. Microorganisms can degrade P-containing
organic matter via phosphatases, thereby mineralizing
phosphorus and making it potentially available for plants.
Some bacteria also act as Phosphate-Solubilizing Bacteria
(PSB), thanks to the production of organic acids, protons, IAA
(Gyaneshwar et al., 2002). PSB have been isolated from the
rhizosphere of T. aestivum, e.g., Streptomyces spp. (Jog et al.,
2014), Pseudomonas sp. BR2 (Babana et al., 2013) and Bacillus sp.
(Majeed et al., 2015), and the rhizosphere of T. durum (Cherchali
et al., 2019; Di Benedetto et al., 2019). The number of culturable
PSB varies with plant species (Kundu et al., 2009). Since PSB are
heterotrophic, their abundance in the rhizosphere of T. aestivum
is influenced by organic matter content (Abderrazak et al., 2017),
and differences between wheat cultivars might be expected
since each may exude differently (Waines and Ehdaie, 2007;
Iannucci et al., 2021). Wheat cultivars differed in the abundance
of microbiota sequences linked to phosphate metabolism
(Mahoney et al., 2017). Inoculation with a PSB from Azotobacter
chroococcum in the rhizosphere of three cultivars of T. aestivum
increased the number of grains per spike, straw yield, and root
biomass, but without significant difference between cultivars
(Narula et al., 2000). This is the only study dealing with P
solubilization activity in different wheat cultivars (Table 4).

In addition to bacteria, AM fungi associated to wheat can
mineralize organic phosphorus. The symbiotic network formed
by mycorrhizal fungi with plant roots increases the volume of
soil exploited for nutrients, providing the plant with P sources
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while the fungus acquires organic carbon from the plant (Hamel
et al., 2004; Li et al., 2006; Pellegrino et al., 2015). The importance
of AM fungi in wheat phosphorus feeding depends on the
combination of plant and fungal genotypes (Hamel et al., 2004;
Pérez-de-Luque et al., 2017). Indeed, the abundance of AM fungi
differs between T. durum varieties, with a higher abundance
associated with landraces than with modern cultivars (Ellouze
et al., 2018). Similarly, wild wheats of genome A (T. urartu)
and B (A. speltoides) showed more mycorrhizal dependence
(i.e., the degree of plant growth and nutrition obtained with
the help of AM fungi) than wild wheat of the D genome
(A. tauschii) (Hetrick et al., 1992). Thus, the response to AM
fungi in hexaploid wheat is probably controlled by the D genome
(Kapulnik and Kushnir, 1991; Hetrick et al., 1992). Mycorrhizal
dependence was lower in modern cultivars in comparison to
old cultivars of T. aestivum (Zhu et al., 2001). Modern wheat
crops seem to select their partner less (Hetrick et al., 1992; Zhu
et al., 2001) and mycorrhizal dependence has been reported
to decrease with wheat domestication (domesticated T. durum
vs. wild T. dicoccoides; Martín-Robles et al., 2018). Indeed, in
agroecosystems where different fertilization regimes are applied,
modern cultivars probably rely less on microorganisms for
their nutrition since they are well-provided with fertilizers
(Duhamel and Vandenkoornhuyse, 2013).

CONCLUSION

Wheat, one of the three most important crops in the world,
has undergone a particularly complex evolutionary history
involving several inter-genus crosses, genomic hybridizations
and domestication events, which resulted in the formation of
several wheat species able to grow in contrasted climates and
cultivated (mostly T. aestivum and T. durum) for various feed
and food purposes. The implications of this very particular
evolutionary history on the recruitment and functioning of root
and rhizosphere microbiomes are poorly understood.

Most studies have focused on the taxonomic features of
these microbiomes, describing the abundance and diversity
of microorganisms associated with wheat species. The most
dominant bacterial phylum corresponds to Proteobacteria in
the rhizosphere (as for other plant taxa) and Actinobacteria
in the root endosphere (but Proteobacteria for other Poaceae
and for non-Poaceae taxa). In both compartments, the archaeal
and fungal communities are dominated by, respectively,
Thaumarchaeota (as for other plant taxa) and Ascomycota
(as for the other plant taxa investigated except poplar, where
Basidiomycota dominate).

Domestication, selection and modern breeding created
wheats selecting different root and rhizosphere communities in
comparison with those of their wild or ancient relatives. Evidence
for the importance of genomic hybridizations relates especially
to the case of Glomeromycota, whose mycorrhizal association is
controlled by D genome factors. Otherwise, the main differences
in root and rhizosphere microorganisms seem to stem from
post-domestication selection, based on the information available
so far. Indeed, landraces are associated with a larger microbial

diversity, which probably results from their higher plant-to-plant
genetic heterogeneity, and their core microbiome presents certain
bacterial families not found in modern cultivars. However, at the
level of individual plants, strong microbial selection takes place
in the rhizosphere of landraces, with higher taxa co-occurrence
levels. This is attributed to a stronger selective pressure in the
rhizosphere of pre-Green Revolution wheat compared to semi-
dwarf varieties and modern cultivars of T. aestivum. Overall,
the vast majority of analyses considering wheat genetic diversity
have been restricted to the comparison of different cultivars of
T. aestivum, showing microbial variability between them, to an
extent not necessarily lower than that found between Triticeae
and other Poaceae or non-Poaceae.

At the functional level, much less is documented on root-
associated microorganisms in comparison with taxonomic
data. Information is scarce on their functional traits, both
for metagenomic and metatranscriptomic investigations
targeting the entire microbial community and studies dealing
with particular microbial functional groups. Differences in
recruitment of disease-suppressive microorganisms are seen
between cultivars of T. aestivum, contributing to differences in
wheat health. The best-documented impact of domestication
and post-domestication selection concerns the ability to
interact and benefit from AM fungi, which decreases along the
domestication/selection gradient.

Overall, it appears that wheat evolution has resulted into crop
varieties with particular microbiome profiles, which probably rely
less on their underground microbial partners for provision of
growth resources and protection against diseases, and thus they
are more dependent on human management. The development
of omics tools targeting microbial functions in the rhizosphere is
expected to provide new insights into the significance of wheat
domestication and diversification for wheat-microorganisms
interactions. It should also facilitate the design of novel breeding
strategies integrating the contribution of root symbiotic partners
for sustainable wheat farming.
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