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Abstract

The principle clock of mammals, named suprachiasmatic nucleus (SCN), coordinates the
circadian rhythms of behavioral and physiological activity to the external 24 h light-dark
cycle. In the absence of the daily cycle, the SCN acts as an endogenous clock that regu-
lates the ~24h rhythm of activity. Experimental and theoretical studies usually take the light-
dark cycle as a main external influence, and often ignore light pollution as an external influ-
ence. However, in modern society, the light pollution such as induced by electrical lighting
influences the circadian clock. In the present study, we examined the effect of external
noise (light pollution) on the collective behavior of coupled circadian oscillators under con-
stant darkness using a Goodwin model. We found that the external noise plays distinct roles
in the network behavior of neurons for weak or strong coupling between the neurons. In the
case of strong coupling, the noise reduces the synchronization and the period of the SCN
network. Interestingly, in the case of weak coupling, the noise induces a circadian rhythm in
the SCN network which is absent in noise-free condition. In addition, the noise increases
the synchronization and decreases the period of the SCN network. Our findings may shed
new light on the impact of the external noise on the collective behavior of SCN neurons.

Introduction

The primary clock, which is located in the suprachiasmatic nucleus (SCN) in the brain of mam-
mals, regulates the circadian (~24 h) rhythm in physiology and in behavioral activity[1]. The
SCN is composed of about twenty thousand self-oscillating neurons, with intrinsic periods
ranging roughly from 22 h to 28 h[2]. These non-identical neurons are coupled through neuro-
transmitters and neuropeptides (e.g. vasoactive intestinal polypeptide, arginine vasopressin
and y-aminobutric acid) to form an SCN network and exhibit collective behavior[3]. On the
one hand, the SCN synchronizes bodily rhythms to the external 24 h light-dark cycle (daily
cycle); on the other hand, in the absence of the light-dark cycle, the SCN acts as a generator of
circadian rhythms and regulates these rhythms throughout our body with an intrinsic period
(called free running period) close to but not exactly 24 h[4].

In order to understand the collective behavior of the SCN neuronal population, both experi-
mental and theoretical work have confirmed that the coupling between the SCN neurons pays
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a pivotal role[5,6,7,8,9,10,11]. The collective behavior of the SCN neuronal network differs if
the coupling is either weak or strong[7,9,10]. In the case of weak coupling, the amplitude of the
SCN network is damped or reduced and the circadian rhythm of the SCN is lost or weakened.
Due to the increase of the coupling strength, the amplitude of the neuronal oscillators is
restored, the synchronization between neurons is enhanced and the period of the SCN is
increased.

Experimental scientists have found that the collective behavior of the SCN neuronal popula-
tion is also influenced by external noise[12,13,14]. For example, electrical light pollution shows
arole in disrupting the circadian rhythm[13]. Recently, researchers found that external noise
(dim light, < 0.2 lux) at night accelerates adjustment to time zone travel[12], and external
noise (dim illumination, < 0.005 lux) during dark periods increases the entrainment ability in
hamsters[14]. In the absence of an external light-dark cycle, the free running periods of
humans have been reported to vary with noise in the experimental environment[15,16,17].
Under carefully controlled lighting conditions (little noise), the free running period is 24.18 h
in both young and old people[15]. In a noisy environment, the free running period of the
human body temperature rhythm fluctuates, ranging from 24.2 t025.1 hours[15,16].

To the best of our knowledge, no theoretical study has discussed the influence of external
noise on the circadian clock in controlled experimental conditions. In the present study, we use
coupled Goodwin oscillators to model the SCN network under constant darkness accompanied
by external noise. In the Goodwin model, one neuronal oscillator is described by a negative
transcriptional-translational feedback loop[7,18,19,20,21]. The neurons are coupled through
mean field of coupling to form the SCN network. The external noise (multiplicative noise) orig-
inates from variation in external signals to the oscillators, e.g. the fluctuation of the light inten-
sity induced by clouds or light pollution [22,23]. In the rest of this article, we will use the
Goodwin model to examine the effect of the interplay between external noise and the coupling
strength on network behavior of the SCN, i.e. the oscillation, the synchronization and the free
running period of the SCN network.

Methods

In the Goodwin model, the variables X;, Y;, and Z; constitute a negative feedback loop in clock
cell-i, where X represents a certain clock gene mRNA, Y a clock protein, and Z a transcriptional
inhibitor. F acts as a mean field of transmitter V which is produced by X, and g describes the
absorbing ability of the neuron to the mean field Fi.e. coupling strength[7,24]. The description
of the Goodwin model under constant conditions and accompanied by external noise (for
example light pollution) is given below:

dx, K X oF
ﬁ:a‘ky—rz;_a2k2+X,.+ackc+gF+X"C"
ﬁ:kX.—ot Yi
ar T My
%:kY.—az %
dt T Ok 4 Z, (1)
dv. V.
TRy
1 N
F:N;Vj

where N is the total number of neurons and 1 < i < N. In the present study, the transmitter V;
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is taken as a marker of the evolution of oscillator i and the mean field F is a marker of the evolu-
tion of the SCN network. The values of other parameters are set as given in Ref.[24]:

o, = 6.8355nM /h, k, = 2.7266nM, n = 5.6645, o, = 8.4297TnM/h, k, = 0.2910nM
k, = 0.1177/h, «, = 1.0841nM/h, k, = 8.1343nM, k, = 0.3352/h, o, = 4.6645nM /h
ky = 9.9849nM, k, = 0.2282/h, oy = 3.5216nM/h, k, = 7.4519nM

o, = 6.7924nM /h, k = 4.8283nM

Experiments have shown that light triggers the expression of clock genes[25] and thus a
light term was added to the first equation of the Eq 1 in some theoretical studies[7,24]. Accord-
ingly, we added the external light noise term X,(; to the first equation of the Eq 1. We assume
that the noise is multiplicative due to the fluctuation of the external signal[23]. {; is the Gauss-
ian white noise, satisfying ({(t)) = 0, (({(t){;; » «(t)) = 0 and ({(H){(t)) = D*8(t-t'), where (.. .)
represents the average over time and D is the noise intensity. In the present work, we investi-
gated the effect of the external noise on the SCN network rhythmicity which depends on the
synchronization between the neurons. If the SCN neurons are completely out of synchroniza-
tion, the network rhythmicity is absent. While the SCN neurons are completely in synchroniza-
tion, the amplitude of the network rhythm is achieved maximally. Consequently, we took the
synchronization of the neuronal oscillators and the period of the mean field (SCN network)
into account. The period is calculated as in Ref.[26], and the synchronization degree between
oscillators is measured over time as[7]:

BB Var(®)
N ) Mean,(Var,(V,
F3 (v -w) (Vantv)

where (. ..) represents average over time. R is 0 for unsynchronized oscillators and 1 for perfect
synchronization. In the synchronized state, all the oscillatory V; have the same period T which
is equal to the period of the SCN network. As reported in [7,24], the degree R, the period T as
well as the amplitude of the oscillators are governed by the coupling strength g. When the cou-
pling strength g is larger than 0.8, the oscillators maintain robust synchronization and high
amplitude, and when the coupling strength g is not larger than 0.8, the oscillators are damped
and the amplitude decreases to 0 [24]. In the following sections, let the coupling strength of
g > 0.8 be strong coupling and the coupling strength of g < 0.8 be weak coupling. When the
number of neuronal oscillators N is equal to 1, the individual neuron is isolated. In the case of
strong coupling, the isolated individual neuron shows robust circadian rhythm and is consid-
ered to be self-sustaining, and in the case of weak coupling, the isolated neuron is considered to
be damped, ultimately leading to amplitude 0. A schematic diagram of the Goodwin model is
shown in Fig 1.

We also simulated the effects of the multiplicative noise on the collective behaviors of non-

R

identical oscillators (See S1 File in the Supporting Information). In addition, we studied the
influence of the additive (internal) noise on the collective behaviors of neuron oscillators (See
S2 File in the Supporting Information).

Results
The effect of noise in the case of strong coupling

Without losing generality, we select g = 1.0 as an example of strong coupling. An illustrative
example of the effect of noise is shown in Fig 2, when the coupling is strong. In (A), the
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Fig 1. Schematic diagram of the Goodwin model. (A) the number of neuronal oscillators Nis 1, i.e. the
neuronal oscillator is isolated. The clock gene mRNA X, clock protein Y and transcriptional inhibitor Z
constitute a negative feedback loop. The transmitter V is produced by X and then X absorbs the mean field F
which is, in this case, equal to V, with the coupling strength (absorbing ability) g. { stands for the external
noise. (B) the number of neuronal oscillators in a network, where the number N is 2. The mean field F is the
mean value of the transmitter from these two neurons. We used the first-order Milshtein method[27,28] for
numerical simulations of the Goodwin model as presented in Eq 1 with the time increment of 0.001 h. The
equations of the Eq 1 are represented as:

K(t+80) = X0+ o s = o g
+ wm + X,(t)\/ D2 (1) At
T0+ A1) = Y(0) + (X0 ot e
200+ 80) = 2,0)+ (30~ o, 20 @
Vi(t + At) = V(1) + (kX (t) — o ksz"(vt?(t))m
Fe+a0 = -3 100

=

where At is the time increment. The last two terms of the right side of the first equation in Eq 2 represent the
noise terms. The initial 5,000,000 time steps were neglected in order to avoid the influence of transients. The
number of oscillators N was 500. The initial conditions for each variable were selected randomly from a
uniform distribution in the range (0-1) for X, Y, Z, and V in the Goodwin model.

doi:10.1371/journal.pone.0145360.g001

oscillators maintain perfect synchrony in noise-free conditions (D = 0.0). The synchronization
degree R is slightly reduced when noise intensity increases (D = 0.4), and the amplitude of the
individual oscillators fluctuates over time (B). In (C), the SCN network (mean field F) runs
faster in the presence of noise than in the absence of noise. The network amplitude in the pres-
ence of noise is slightly larger than in the absence of noise, but in both cases, the amplitude
does not dampen over time.

Next, the relationships of the parameters synchronization degree R and period T to the
noise intensity D are shown in Fig 3. In (A), the degree R monotonically decreases with the
increase of the noise intensity D. This result confirms the features shown in Fig 1A and 1B. The
oscillators show perfect synchrony (R = 1) without noise (D = 0.0), while the synchrony
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Fig 2. Time series with/without noise in the case of strong coupling. The evolution of four randomly
chosen oscillators without noise D = 0 (A), and with noise D = 0.4 (B). (C) The evolution of the mean field in
the case of D = 0 and D = 0.4 respectively. g represents the coupling strength.

doi:10.1371/journal.pone.0145360.g002

becomes less (R < 1) when the noise increases (D > 0.0). In (B), the free running period T of
the network also monotonically decreases when the noise intensity D increases. Note that, if
the noise intensity D is larger than 1, the variables X, Y, Z, and V'in Eq 2 achieve negative val-
ues. Thus the noise intensity D is chosen from 0 to 1. We also simulated the case of g = 0.90
(See 54 File in the Supporting Information), and found that the relationships of the degree R to
the noise intensity D and the period T to the noise intensity D are similar as shown in Fig 3

g=1.0

A 2B
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- %
x < 2/ -
09 1+ B
e
081~ T T 201~ T T
0.0 05 1.0 0.0 05 1.0
D D

Fig 3. The effect of noise on the collective behavior of the SCN neuronal oscillators in the case of
strong coupling. (A) The relationship between the synchronization degree R and the noise intensity D. (B)
The relationship between the period T of the SCN population and the noise intensity D. g represents the
coupling strength.

doi:10.1371/journal.pone.0145360.g003
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Fig 4. Time series with/without noise in the case of weak coupling. The evolution of four randomly
chosen oscillators without noise D = 0 (A), with weak noise D = 0.2 (B) and with strong noise D = 0.4 (C). (D)
The evolution of the mean field (network) in the case of D=0, D = 0.2 and D = 0.4 respectively. g represents
the coupling strength.

doi:10.1371/journal.pone.0145360.g004

The effect of noise in the case of weak coupling

Without losing generality, we select g = 0.79 as an example of the weak coupling. When the
coupling is weak (g = 0.79), the effect of noise on the SCN oscillators and the SCN network is
examined in Fig 4. In case there is no noise (D = 0.0), the individual neuron shows no oscilla-
tion as the amplitude diminishes to zero (A). When the noise is weak (D = 0.2), the amplitude
of the individual oscillators is recovered, thus the oscillation of the individual neurons shows a
rhythm, but the synchronization between the oscillators is lost (B). The oscillators maintain
robust synchronization, and exhibit remarkable amplitude with strong noise D = 0.4 in (C). In
(D), there is no rhythm of the mean field (network) with D = 0.0 or D = 0.2. If there is no noise,
the amplitude of individual oscillators is 0 which causes the absence of rhythms of the mean
field (network). In case of weak noise (D = 0.2), the individual oscillators are completely out of
synchronization, which leads to an amplitude of 0 for the mean field (network). With strong
noise (D = 0.4), the oscillation of the mean field (network) exhibits a robust circadian rhythm
with a fixed amplitude over time.

The quantitative relationships of the synchronization degree R and the period T to the noise
intensity D are examined respectively in Fig 5A and 5B, for conditions of weak coupling
(g=0.79). The relationship of R to D is not monotonically decreasing, which is different from
the results shown in Fig 3. In (A), there are two visible regions, i.e. the left region where
D < 0.36 corresponds to low synchronization and the right region where D > 0.36 corresponds
to high synchronization. We defined that R > 0.5 represents high synchronization degree and
R < 0.5 represents low synchronization degree. In this case, D,,, = 0.36 is the minimal noise
intensity that reaches high synchrony between the oscillators (R > 0.5). In the region of D <
D,,, when D < 0.30, R is almost 0, which means that there is almost no synchrony between the
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Fig 5. The effect of noise on the collective behavior of the SCN neuronal oscillators in the case of
weak coupling. (A) The effect of noise on the synchronization degree R between the oscillators. (B) The
effect of noise on the period T of the SCN network. The minimal noise intensity D,, is 0.36, at which R reaches
0.5. g represents the coupling strength.

doi:10.1371/journal.pone.0145360.g005

oscillators. When D is slightly larger than 0.30, the synchronization degree R increases
abruptly. In the region of D > D,,, the synchronization degree R is more stable. When D is
small, it is impossible to calculate the period T of the network, because the lack of synchroniza-
tion leads to amplitude 0 of the network. Accordingly, the period T is only calculated for D >
D,,.. Qualitatively similar to the results shown in Fig 3(B), the period T decreases monotonically
with the increase of the noise intensity when D > D,, (Fig 5B). We also simulated the case of
g=0.75 (See S5 File in the Supporting Information), and found that the relationships of the
degree R to the noise intensity D and the period T to the noise intensity D are similar as shown
in Fig 5.

In addition to the coupling strength of g = 0.75, we studied coupling where strength g is
smaller than 0.79. Intuitively, if coupling strength ¢ becomes smaller, the minimal noise inten-
sity D,,, required to maintain high synchrony (R > 0.5) and as such maintain a ~24 h rhythm
of the SCN network is larger. This intuition is confirmed by Fig 6.

Analytical results

In order to analytically examine the results from the previous sections and provide explana-
tions to these results, a stability analysis of the fixed point is applied[29]. To perform the analy-
sis it is necessary to find the fixed points and then calculate the eigenvalues of the Jacobian

0.8 T T T T T

0.6

0.4 \3\( E

0.2

075 076 077 078 079 080

Fig 6. The relationship between the minimal noise intensity D,,, and coupling strength g.

doi:10.1371/journal.pone.0145360.9g006
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matrix of Eq 2. The fixed points of the difference equations are divided into two types, i.e. the
stable one which corresponds to the case where the maximum of the real parts of the eigenval-
ues of the Jacobian matrix is smaller than 1, and the unstable one which is reflected by the max-
imal real parts of the eigenvalues being no smaller than 1. The noise terms of the first equation

in Eq 2 are @ At and X,(t)/D?{,(t)At. Both are determined by the noise intensity D, but
the latter is also dependent on the random number {;(#). First, we only considered the first
noise term (% At), which means that the oscillators are identical. For simplicity, we chose

N =1 and focused on the status of fixed points. Letting X;(t + At) = X;(¥), Yi(t + At) = Yi(1),
Z{(t + At) = Z(t), and Vi(t + At) = V(t), Eq 2 without the latter noise term can be written as:

b KX v DX
STk Zn Pk, + X Tk o4+gv 2
Y
O=kX—o,——
k,+Y
(3)
0=Z+kY —
+ ks %kG-I-Z
|4
0=V+kX—o,——
+ Ky %kg—&-V

Eq 3 is a set of nonlinear equations. We use the numerical method to find the fixed points.
The marker Vis selected to represent the fixed point (X; Yj Zs V)). The relationship between
Vrand the noise intensity D can be derived from Fig 7(A). Vyincreases with the increase of D
(for each value of g). Moreover, Vyincreases if the coupling strength g increases for all values
of D.

The Jacobian matrix is shown in Eq 4. The maximal real parts of eigenvalues of the Jacobian
matrix are exhibited when (X,Y,Z,V) = (X3 Y;Z5 V) in Fig 7(B). The dashed line A, = 1 sepa-
rates the plane into two regions, one region where there is a stable fixed point in which the net-
work population does not show a rhythmic output (A,,x < 1) and the other region where the
network does show rhythmic i.e. limit cycle behavior (A, > 1). In the case of strong coupling
g=1.00r g=0.9, A, > 1 is independent of the noise intensity D. Hence, the fixed points are
unstable and the limit cycles emerge for any value of D. For strong coupling, oscillations in the

1.06 1 . . y
B
1.04
E102-
N W 4 Limit cycle
Stable fixed poin
——D=00
0.98 1 ——D=01
D=0.2
—=—D=03 ——D=03
. . . . 0.96 L ; . ;
07 08 08 1.0 07 08 08 10
9 g

Fig 7. Stability analysis of the fixed points for four noise intensities. (A) The fixed points represented by
the marker V; versus coupling strength g for four different values of noise intensity D. (B) The maximal real
parts Amax Of the eigenvalues of the Jacobian matrix of the Eq 3 versus coupling strength g for four different
values of noise intensity D. The dashed line of Ao« = 1 divides the investigated area into two regions, in one
of which the fixed points are stable due to Ahax < 1, and in the other where the fixed points are unstable due to
Amax > 1 and limit cycles (oscillations) emerge.

doi:10.1371/journal.pone.0145360.g007

PLOS ONE | DOI:10.1371/journal.pone.0145360 December 21,2015 8/13



@' PLOS ‘ ONE

Noise Induces Oscillation and Synchronization

network are independent from noise.
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] _ (k-1 +ya) (4)
otk
0 k. 1— 00 0
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In the case of weak coupling strength, there is a break point where A,,,x = 1. For example,
for g = 0.79 the break point appears for D = 0.12 and for g = 0.75 this breakpoint happens for
D =0.22. When the noise intensity D is lower than the break point value (D < 0.12 for g = 0.79
and D < 0.22 for g=0.75), Amax < 1 and a stable fixed point emerges i.e. there will be no oscilla-
tion in the network as the amplitude is reduced to zero. When the noise intensity D is no
smaller than the break point value (D > 0.12 for g=0.79 and D > 0.22 for g = 0.75), Appax > 1
and limit cycles (oscillations) appear due to the unstable fixed points. Thus, the noise can
induce the oscillation from the fixed points when the coupling strength is weak.

After investigating only the first noise term, we now focus on investigating the synchroniza-
tion degree R between the oscillators. The degree R is affected by both noise terms of the first

equation of Eq 2, which are @ At and X,(t)/D?{,(t)At. Without the latter noise term, the N
oscillators are identical and maintain perfect synchronization. The latter noise term disturbs
the synchronization due to the random number {;(¢). Since the former noise term is propor-
tional to D* and the latter noise term is proportional to D, when D is small (close to 0.0), the
latter is dominant and the synchronization is disturbed, and when D is large (far away from
0.0), the former plays a more important role and synchronization is enhanced. This explains
the sudden increase in synchronization with increasing noise intensity D that was shown in

Fig 5(A), with the transition where the first noise term becomes more prevalent than the sec-
ond noise term being around D,,.

Conclusion and Discussion

In the present article, we examined the effect of external (multiplicative) noise on the collective
behavior of SCN neuronal oscillators under constant darkness based on the Goodwin model.
We observed that noise functions differently for strong coupling and for weak coupling.

A schematic diagram about the effect of external noise is shown in Fig 8. In case of strong
coupling, the individual neurons and the SCN network exhibit a robust circadian rhythm. The
noise disturbs the synchronization between the neurons and reduces the period of the SCN net-
work. In case of weak coupling, the amplitude of the individual oscillators went to 0 (stable
fixed points) and the rhythm of the SCN network is absent when there is no noise. Application
of weak noise (D < D,,) induces a rhythm in the individual oscillators, but there still are no cir-
cadian rhythms at the network level, due to complete desynchronization of the neuronal oscil-
lators. Intriguingly, when strong noise is applied (D > D,,)), a circadian rhythm at the level of
both the individual oscillators and the SCN network is observed, and the synchronization
between the neurons is remarkable. On the other hand, the effect of noise intensity on the
period of the SCN network is similar to the case of strong coupling, i.e. the relationship is
monotonically decreasing when the circadian rhythm of the SCN network exists.

PLOS ONE | DOI:10.1371/journal.pone.0145360 December 21,2015 9/13
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Fig 8. Schematic diagram about the effect of external noise, in the case of strong coupling (A) and in
the case of weak coupling (B). The open circle stands for the neuron and the thickness of link represents
the coupling strength. Note that, when noise is absent, the neuronal oscillators are perfectly synchronized.

doi:10.1371/journal.pone.0145360.g008

In the analytical part, we explained the difference in the noise function between strong cou-
pling and weak coupling. In the case of weak coupling, noise induces oscillations in individual
neurons that do not have oscillations without noise. The stable fixed points are influenced by
the noise and become unstable which results in oscillatory behavior. Moreover, the synchroni-
zation between the neuronal oscillators is determined by the competition between the former
noise term and the latter noise term in Eq 2. As the former noise term becomes more important
when noise intensity increases, the synchronization degree between the oscillators becomes
strong. In the case of strong coupling, the rhythm of the network is the result from the un-sta-
bility of the fixed point and is independent of noise. An alternative explanation for the
improvement of synchronization by noise could be that the mean of noise terms affects the
synchronization[30]. We confirmed this finding (See S5 File in the Supporting Information).

Previous studies have reported that the oscillation of the SCN network is determined by the
interplay of the internal (molecular) noise and coupling[31,32,33]. The molecular noise can
induce the oscillation of the SCN network even when the individual neurons lack an endoge-
nous circadian rhythm[31]. In the present study, we observed that multiplicative noise can
induce the oscillation of the SCN network even when the individual neuronal oscillators are
damped, provided there is weak coupling. However, no previous studies have reported the
improvement of the synchronization between the neurons by noise. Counter intuitively, we
observed that the multiplicative noise not only induces oscillations but also improves the syn-
chronization in case that there is weak coupling.

Whereas the molecular (internal) noise of SCN neurons cannot be easily recorded experi-
mentally as reported in Ref.[31], the external noise is easily determined experimentally. For
example, external noise can be induced from the random light pollution under constant dark-
ness. We propose some suggestions for experiments based on our findings. Firstly, in both
cases of weak coupling and strong coupling, the period of the SCN network decreases with the
increase of the noise intensity. Thus, the environmental noise brought about by the fluctuation
in light pollution may reduce the free running period of the animals under constant darkness.

Secondly, the external noise recovers the amplitude and synchronization when the ampli-
tude of individual neuronal oscillators decreases to 0. In the aging human being, circadian
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rhythms are weakened, as a result from reduced coupling and diminished amplitude of individ-
ual neurons[34]. We suggest that application of external noise, e.g. evening light, to elderly
human beings may strengthen their circadian rhythms.

Finally, in the present study, the effect of external noise on the ability of the SCN to external
zeitgebers (such as the light-dark cycle) is not considered. People usually thought that external
noise disturbs the circadian rhythms. On the contrary, the work in Ref.[12] found that external
noise accelerates the adjustment of the SCN to a new time zone. In future, the role of the exter-
nal noise in entrainment should be examined.
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