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INTRODUCTION

Inflammation plays a pivotal role during the biological response 
to defend and support the body following noxious stimuli and 
conditions such as injury, trauma, and infection [1]. It removes 
invading pathogens and induces angiogenesis and wound heal-
ing [2] through phagocytosis and the activation of inflamma-
somes, which induce programmed cell death [3] to ultimately fa-
cilitate tissue regeneration [4]. However, even though inflamma-

tion is beneficial and protective, excessive inflammation can in-
duce tissue damage and lead to the development of pathological 
diseases [4]. In the brain, the inflammatory response may be 
beneficial and vital in some circumstances, but can also be harm-
ful by causing acute and chronic brain disorders [1]. Therefore, 
knowing when inflammation is protective or detrimental could 
be paramount in understanding brain-related diseases.
  Neuroinflammation is an immune reaction that occurs in re-
sponse to various signals, such as infection, traumatic brain in-
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Neuroinflammation is a central pathological feature of several acute and chronic brain diseases, including Alzheimer disease 
(AD), Parkinson disease (PD), amyotrophic lateral sclerosis (ALS), and multiple sclerosis (MS). It induces microglia activa-
tion, mitochondrial dysfunction, the production of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), 
pro-inflammatory cytokines, and reactive oxygen species. Exercise, which plays an important role in maintaining and improv-
ing brain health, might be a highly effective intervention for preventing neuroinflammation-related diseases. Thus, since exer-
cise can improve the neuroimmune response, we hypothesized that exercise would attenuate neuroinflammation-related dis-
eases. In this review, we will highlight (1) the biological mechanisms that underlie AD, PD, ALS, and MS, including the neuro-
inflammation pathways associated with microglia activation, NF-κB, pro-inflammatory cytokines, mitochondrial dysfunction, 
and reactive oxygen species, and (2) the role of exercise in neuroinflammation-related neurodegenerative diseases.
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• HIGHLIGHTS
- �Neuroinflammation is a central pathological feature of brain disease.
- �Neuroinflammation induces microglia activation, mitochondrial dysfunction, the production of NF-κB, pro-inflammatory cytokines, and reac-

tive oxygen species.
- Exercise plays an important role in preventing neuroinflammation.
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jury [5], autoimmunity, or toxic metabolites [6] within the cen-
tral nervous system (CNS), which is composed of macroglia, 
microglia, neurons, and astrocytes. Neuroinflammation is con-
sidered to be a pathological mediator in a variety of neurode-
generative diseases [7]. The blood-brain barrier (BBB), a highly 
specialized structure made of endothelium and astrocytes, was 
previously considered to separate the CNS from the peripheral 
immune cells [4,8]. However, after injury and the prolonged re-
lease of inflammatory factors such as chemokines, the BBB is 
not only permeable to peripheral inflammation-induced pro-
inflammatory mediators, but also allows leukocytes to migrate 
into the brain, which can induce pathogenesis in the CNS [9,10]. 
Dysfunction of the BBB facilitates neuroinflammation, giving 
rise to synaptic disruption, neuronal death, and aggravation of 
various brain-related diseases [2,11,12], which in turn aggra-
vates chronic degenerative diseases including Alzheimer disease 
(AD), Parkinson disease (PD), amyotrophic lateral sclerosis 
(ALS), and multiple sclerosis (MS) [13-16]. In addition, these 
neurodegenerative diseases can also occur as a result of the acti-
vation of microglia [17] and pathways involving nuclear factor 
kappa-light-chain-enhancer of activated B cells (NF-κB) [18], 
pro-inflammatory cytokines such as tumor necrosis factor-alpha 
(TNF-α) and interleukin 1 beta (IL-1β) [4], mitochondrial dys-
function, and reactive oxygen species (ROS) [1,19].
  Exercise has a beneficial impact on the whole body. It can 
improve cognitive function and brain health [20-23]. In re-
sponse to exercise-related stimuli and mild injuries, the body 
activates the endogenous protective and recovery systems by al-
tering gene expression and producing numerous factors in-
volved in trophic effects, energy metabolism, antioxidation, and 
particularly, anti-inflammation [24-26]. These factors improve 
brain function and mitigate brain disorders by activating neu-
roplasticity, enhancing metabolic efficiency, and boosting anti-
oxidative capacity [27,28]. Additionally, exercise maintains ho-
meostasis of the brain and prevents brain pathology by modu-
lating the activation of glia, pro-inflammatory cytokines, and 
neuroinflammation, thereby preventing neurodegenerative dis-
eases such as AD, PD, ALS, and MS [24,29-31]. To determine 
the effects of exercise on neurodegenerative diseases, the type, 
intensity, frequency, and duration of exercise should be consid-
ered. Nonetheless, it is clear that exercise plays a protective role 
in neurodegenerative diseases by increasing levels of anti-in-
flammatory molecules and reducing those of pro-inflammatory 
molecules.
  With this background, this review highlights the causes and 

consequences of neuroinflammation by focusing on (1) biologi-
cal mechanisms that involve microglia, NF-κB, pro-inflamma-
tory cytokines, and mitochondrial dysfunction in neurodegen-
erative diseases and (2) the effects of physical exercise on in-
flammation-related neurodegenerative diseases.

NEUROINFLAMMATION

Neuroinflammation Pathways
Microglia
Physiologically, microglia, which are the resident macrophages 
in the CNS, play a vital role in organism protection and tissue 
repair in the CNS [32]. Microglia scavenge plaques, unneces-
sary or disrupted synapses and neurons, and infectious agents 
in the CNS [33]. However, microglia that are activated by 
pathogens, abnormal stimulation, tissue damage, neurotoxins, 
injury, or infection are pivotal mediators in neuroinflammatory 
responses and neurodegenerative diseases [17]. More specifi-
cally, following the activation of microglia, they cause neuronal 
disruption and cell death by releasing proteins such as inducible 
nitric oxide synthase (iNOS), pro-inflammatory cytokines, in-
cluding IL-1β, TNF-α, and cyclooxygenase-1 and 2 (COX-1, 
COX-2), ROS, and potential neurotoxic compounds, all of 
which induce neuroinflammation [34]. These proteins may at-
tack healthy neurons, either by releasing pro-apoptotic factors 
or by phagocytosis [34].

NF-κB
NF-κB, located in almost all eukaryotic cells, is a protein com-
plex that regulates DNA transcription, cytokine production, 
and cell survival [35]. NF-κB modulates multiple processes 
such as inflammation, immunity, apoptosis, cell survival, and 
the development of cancer; furthermore, it also controls the se-
cretion of immune and inflammatory response genes [36]. NF-
κB activation in glia plays a crucial role in the process of inflam-
mation by causing neurodegeneration [37]. In particular, lipo-
polysaccharide (LPS), also known as endotoxin, causes systemic 
inflammatory response syndrome via toll-like receptor (TLR) 
signaling. LPS activates several signals, including phos-
phoinositide 3-kinase/protein kinase, mitogen-activated pro-
tein kinase, and mammalian target of rapamycin, which ulti-
mately result in NF-κB activation [1]. Activated NF-κB then in-
stigates the production of pro-neuroinflammatory mediators 
such as pro-inflammatory cytokines, inducible enzymes and 
chemokines, iNOS, and COX-2 [38].
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Pro-inflammatory cytokines
Cytokines play a role in cell proliferation, survival, and death, 
and contribute to increased levels of leukocytes in the brain [39]. 
Even though physiological levels of cytokines, such as TNF-α 
and IL-1β, are important for synaptic plasticity during consolida-
tion and memory formation, excessive cytokine levels are harm-
ful [12,40]. As stated earlier, microglia induce TNF-α signaling, 
leading to inflammation and apoptosis [1]. For example, exces-
sive apoptosis of hippocampal neurons is associated with high 
TNF-α level, suggesting that elevated concentrations of TNF-α 
can be an early indicator of apoptosis [4,41]. Similar to TNF-α, 
IL-1β has also been implicated in neuronal disruption, which is 
observed before neuronal death. It induces BBB breakdown, up-
regulates adhesion molecule expression, and promotes the 
spread of toxic substances such as nitric oxide [42]. Consequent-
ly, TNF-α and IL-1β play a pivotal role in acute neuroinflamma-
tory conditions such as ischemia, stroke, and brain injury, and in 
chronic neurodegenerative diseases such as AD and PD [43].

Mitochondrial dysfunction and ROS
Mitochondria are organelles of eukaryotic cells that contribute to 
bioenergetic metabolism and regulate cellular homeostasis. They 
are involved in the generation of ATP using electron transport 
and oxidative phosphorylation, the initiation and execution of 
mitochondria-mediated apoptosis, and the production of ROS 
[44]. Mitochondria are a vital source of ROS, which are pro-
duced from the electron transport chain. ROS can have a toxic 
impact on biological macromolecules and can activate several 
genes that initiate inflammatory signaling cascades [1]. Although 
physiological levels of ROS regulate cell metabolism, excessive 
levels of ROS cause mitochondrial dysfunction and tissue injury 
through oxidative damage, leading to neuroinflammation [1]. 
Specifically, mitochondrial dysfunction in microglia results in 
excessive production of ROS. This promotes redox imbalance 
and regulates pro-inflammatory gene transcription and the ex-
pression of cytokines, such as IL-6, IL-1β, monocyte chemotactic 
protein-1, and TNF-α, by encouraging the expression of oxida-
tive stress-modified mitochondrial DNA and polynucleotides, 
which causes inflammatory signaling in astrocytes [1,45].

Neuroinflammatory Disease
Alzheimer disease
It is well known that neuroinflammation plays a vital role in the 
development and progression of AD, which is a fatal neurode-
generative disorder that affects more than 15 million people 

worldwide [46]. Extracellular and intracellular protein aggrega-
tion contributes to the development of AD. Specifically, AD is 
characterized by a sequence of major pathogenic events and the 
presence of amyloid-β peptide (Aβ) plaques and neurofibrillary 
tangles (NFTs), which result in the formation of the microtubule-
associated protein tau, and the onset of synaptic and neuronal 
dysfunction and loss [47]. The accumulation of Aβ plaques, tau 
protein, and NFTs in the brain induces neuroinflammation and 
plays a pivotal role in regulating the pathogenesis of AD [48]. 
This causes neuronal dysfunction and increased expression of 
inflammatory mediators around Aβ plaques and NFTs [49]. In 
the early stages of AD, microglia are activated, leading to the 
production and secretion of neurotoxic cytokines such as TNF-α 
and IL-1β, the generation of ROS, the inhibition of neuroprotec-
tive effects, and mitochondrial dysfunction [50,51].

Parkinson disease
PD is a common and complex neurological disorder. It is a neu-
rodegenerative disease involving the early prominent death of 
dopaminergic neurons in the substantia nigra pars compacta 
[52]. In addition, PD is also associated with numerous non-
motor symptoms, some of which precede motor dysfunction 
by more than a decade [53]. Even though the etiology of PD is 
unknown, according to some studies, PD is induced by inflam-
matory reactions [3], oxidative stress [4], mitochondrial dys-
function [5], proteotoxic stress [6], and kinase dysfunction [7], 
resulting in movement disorders like bradykinesia, which is re-
sponsible for postural instability and resting tremor [54]. These 
physical disorders result from the accumulation of α-synuclein  
protein, which forms insoluble Lewy bodies, and the selective 
loss of dopaminergic neurons in the substantia nigra pars com-
pacta region of the brain, which is responsible for limiting 
movements [54-56]. The α-synuclein clusters and neuronal ne-
crosis eventually activate the microglia. These microglia pro-
duce ROS, cytokines such as TNF-α, and chemokines [57]. 
Postmortem studies of the brains of PD patients have shown 
significant astrocyte activation and increased levels of various 
cytokines and microglia [58-60]. In addition, the increase in the 
levels of TNF-α and TNF-α receptors is an essential mediator of 
PD. This increase triggers the onset of extrinsic neuronal apop-
tosis, which is one of the key factors that induces PD [61].

Amyotrophic lateral sclerosis
ALS, also called Lou Gehrig’s disease, is the most common 
chronic motor neuron disease. It is characterized by selective 
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motor neuron loss, weakness, and atrophy [62]. ALS is charac-
terized by muscle stiffness and twitching, which insidiously 
worsen due to decreased muscle size. Although the cause of 
ALS is still unknown, potential evidence suggests that the in-
nate immune system may be a focal contributor that promotes 
the activation of macrophages/microglia [63], which leads to 
the production of pro-inflammatory neurotoxic cytokines such 
as IL‐1β, thereby promoting the death of motor neurons [64]. 
Protein aggregates play a central role in superoxide dismutase 1 
(SOD1)‐mediated ALS pathogenesis [65] and wild-type SOD1 
aggregates have also been recently linked to sporadic ALS pa-
thology [66]. Furthermore, ALS protein aggregates are robust 
immune response mediators in microglia [64]. The NOD-like 
receptor and the pyrin domain containing receptor 3 (NLRP3) 
inflammasome, an intracellular signaling complex, are a key 
factor in the innate immune system. Expression of the NLRP3 
inflammasome is promoted by the aggregation of proteins and 
has been associated with neurodegenerative diseases [67]. Acti-
vation of the inflammasome requires a priming signal for the 
upregulation of NLRP3 and cytokine precursors, such as pro‐
IL‐1β and pro‐IL‐18, followed by an activation step, which con-
tributes to the recruitment of the inflammasome adapter, apop-
tosis‐associated speck‐like protein containing a caspase recruit-
ment domain (ASC), the activation of caspase‐1 protease, and 
the cleavage and release of IL‐1β and IL‐18.

Multiple sclerosis
MS is a chronic autoimmune disease caused by CNS demyelin-
ation and inflammation, leading to damage of axons and my-
elin sheaths [4]. Although there might be a relationship be-
tween the development of the disease and systemic inflamma-
tion, there is little evidence supporting a relationship between 
inflammatory stimuli and the disrupted axons and myelin-pro-
ducing cells [4]. Activation of the innate immune response, 
which involves the activation of microglia and macrophages, is 
responsible for the damaged axons observed during MS [68]. 
Systemic inflammation might contribute to the disruption of 
myelinated cells in MS. This explains the increased possibility 
of relapse following infection. Inflammation in MS results from 
the adaptive immune response, which involves T helper cells 
(Th1 and Th17) [69] and B cells [70]. Pro-inflammatory mole-
cules generated by these glial cells and lymphocytes contribute 
to the initiation of MS [71].

EFFECTS OF EXERCISE ON NEUROINFLAMMATION

Exercise in AD
Several studies have demonstrated that exercise is a positive reg-
ulator of AD (Table 1). For example, Kim et al. [72] found that 
treadmill running decreased the Aβ plaque burden, neuro-in-
flammation, and mitochondrial dysfunction, suggesting that ex-
ercise enhanced the cognitive performance of 3xTg-AD mice. 
Similarly, Kim et al. [73] showed that 20 weeks of treadmill run-
ning ameliorated neuroinflammation and apoptotic neuronal 
cell death in high-fat-diet (HFD)-induced 3xTg-AD mice. These 
results suggest that treadmill running protects against AD pa-
thology and cognitive deficiency in HFD-induced 3xTg-AD 
mice. In another study, wheel running was reported to increase 
microglia activation [74], attenuate microglia cytokine produc-
tion, and protect against the negative effects of immune system 
activation [75]. Tapia-Rojas et al. [76] showed that voluntary 
running decreased neuronal loss, Aβ burden, and spatial memo-
ry loss, and increased neurogenesis in an AD animal model. Ro-
driguez et al. [77] reported that voluntary wheel running affected 
microglial density and activation-associated changes in microg-
lial morphology. Zhang et al. [78] suggested that treadmill exer-
cise significantly inhibited neuroinflammation by reducing the 
expression of pro-inflammatory factors and increasing the ex-
pression of anti-inflammatory factors. Exercise also attenuated 
oxidative stress induced by methane dicarboxylic aldehyde and 
dramatically elevated SOD and Mn-SOD activity. Therefore, 
treadmill exercise is a positive regulator of neuroinflammation 
and oxidative stress in AD. Sixteen weeks of treadmill running 
decreased the level of β-amyloid precursor protein (β-APP or Aβ 
peptide) in transgenic (TgCRND8) mice with AD phenotypes 
[79]. Treadmill running ameliorated ROS generation and mtD-
NA oxidative damage, increased the activity of mitochondrial 
antioxidant enzymes, and prevented mitochondrial dysfunction 
in APP/PS1 transgenic mice with an AD phenotype [80].
  Stress deterioration on the hippocampal function, leading to 
short-term memory problems has been shown, also, to impair 
lower urinary tract functions [81]. Whereby, Heo et al. [82] in-
vestigated, not only CNS effects, but concomitant renal injuries 
associated with short-term memory disturbance. Treadmill ex-
ercise ameliorated short-term memory impairment, suppressed 
AChE expression and enhanced angiogenesis in mice with sco-
polamine-induced amnesia.
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Exercise in PD
PD is a neurodegenerative disease characterized by the death of 
dopaminergic neurons, leading to decreased dopamine trans-
mission and changes in motor and cognitive function [83,84]. 
Exercise may be one of the most promising therapeutic ap-
proaches because it inhibits the factors that promote neurode-
generative diseases and increases the levels of neurotrophic fac-
tors, resulting in a healthy CNS in the elderly population [85,86]. 
Real et al. [87] showed that 4 weeks of treadmill running re-
duced neuroinflammatory processes, thereby decreasing the 
risk of PD development, the activation of astrocytes and mi-
croglia, and the oxidative stress response. Tuon et al. [88] also 
reported that treadmill running modulated α-synuclein activity, 
brain-derived neurotrophic factor (BDNF), and sarcoplasmic 
reticulum Ca2+ ATPase (SERCA) II levels for 8 weeks in the 
striatum of a PD animal model. These results demonstrated 
that exercise protected the dopamine system in a 6-hydroxydo-
pamine-induced PD animal model. Koo et al. [89] reported 
that 8 weeks of treadmill exercise inhibited TLR2 expression, 
microglial activation, neuroinflammation, ROS production, 
and apoptosis, and suppressed the expression of the nicotin-
amide adenine dinucleotide phosphate oxidase subunit, NF-κB, 
TNF-α, and IL-1β in a preclinical model of PD. The authors 

showed that treadmill exercise is a nonpharmacological tool for 
managing neurodegeneration in PD. Human studies confirmed 
the beneficial effect of exercise by demonstrating that intensive 
exercise resulted in a 16% increase in serum BDNF levels and 
improvements in scores on the Unified Parkinson’s Disease 
Rating Scale, which evaluates the benefits of therapeutic inter-
ventions [90]. In another study, moderate exercise for 8 weeks 
increased the level of serum BDNF, decreased the level of se-
rum vascular cell adhesion molecule by 25%, and reduced the 
level of serum TNF-α in PD patient [91]. Bloomer et al. [92] re-
ported that 8 weeks of resistance exercise decreased the oxida-
tive stress caused by malondialdehyde and hydrogen peroxide. 
The study also confirmed an increase in the levels of SOD (9%) 
and glutathione peroxidase (15%), but these changes were not 
significant in PD patients. These central effects seem to propa-
gate across to peripheral systems, as well. In a study applying 
treadmill exercise on PD rat models, Lee et al. [93] showed im-
provement of cerebellar functions by inhibiting Purkinje cell 
apoptosis. A summary of the effects of exercise on PD is shown 
in Table 2.
 
Exercise in ALS
Exercise is considered to be a key regulator in ALS, a chronic 

Table 1. The effects of exercise on Alzheimer disease (AD)			 

Subjects Exercise protocol Effect Reference

3xTG-AD mice Treadmill running
6 m/min to 20 m/min for 40 min, 
  5 days per week for 12 weeks

↓Aβ plaque burden
↓Neuroinflammation
↓Mitochondrial dysfunction

Kim et al. [72] 

HFD with 3xTG-AD mice Treadmill running
5 m/min to 10 m/min for 30 min, 
  5 days per week for 20 weeks

↓Neuroinflammation
↓Apoptotic neuronal cell death

Kim et al. [73]

BALB/c mice Wheel running for 8 weeks ↑Microglia expression
↑IGF expression

Kohman et al. [74]

APPswe/PSEN1ΔE9 mice Voluntary running for 10 weeks ↓Neuronal loss
↓Spatial memory loss
↑Neurogenesis

Tapia-Rojas et al. [76]

3xTg-AD mouse model of AD Voluntary wheel running for 9 months ↑Microglia surface, volume, 
  and soma volume

Rodriguez et al. [77]

APP/PS1 mice Treadmill running at 12 m/min for 45 min, 
  5 days/week for 12 weeks

↓Pro-inflammatory factors
↓MDA
↑SOD and Mn-SOD

Zhang et al. [78]

APP/PS1 Tg mice with AD phenotype Treadmill running at 11 m/min for 30 min, 
  5 days/week for 20 weeks

↓ROS generation
↓mtDNA oxidative damage
↑Mitochondrial antioxidant enzymes

Bo et al. [80]

Aβ, amyloid beta; HFD, high-fat-diet; IGF, insulin-like growth factor; APP, amyloid precursor protein; MDA, malondialdehyde; SOD, superoxide 
dismutase; ROS, reactive oxygen species; ↑, increase; ↓, decrease.	
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motor neuron disease. Exercise prevents ALS by regulating 
neuroinflammation. The effects of exercise in ALS are summa-
rized in Table 3. Just-Borràs et al. [62] showed that moderate 
exercise, including running and swimming, maintained the 
BDNF/TrkB signaling pathway and downstream signaling for 
45 days in an ALS animal model. These results are encouraging, 

since they show improvements even when therapy is started af-
ter the onset of the disease. Flis et al. [94] evaluated the effects 
of swimming exercise for 15 weeks on oxidative stress and mi-
tochondrial function in an ALS animal model. They observed 
that mitochondrial function was maintained and oxidative 
stress was lowered, and that there was an exercise-induced de-

Table 2. The effects of exercise on Parkinson disease (PD)		

Subjects Exercise protocol Effect Reference

6-OHDA-induced rats Treadmill running at 10 m/min for 40 min, 
  3 days per week for 30 days

↑Motor behavior
↑CD-11c/b expression
↑GFAP immunostaining

Real et al. [87]

MPTP-injected C57BL6J mice Treadmill running at 10 m/min for 60 min, 
  5 days per week for 8 weeks

↓TLR2 expression
↓Microglial activation
↓Neuroinflammation
↓ROS, apoptosis
↓NADPH oxidase subunit expression
↓TNF-α, NF-κB, and IL-1β

Koo et al. [89]

6-OHDA-induced rats Treadmill running at 13–17 m/min, 
  3 or 4 days/week for 8 weeks

↑BNDF, SERCA II,
↑SOD and CAT
↓Oxidative damage 

Tuon et al. [88]

PD patients Treadmill exercise, heart rate reserve of 60%–70%
  at maximal speed of treadmill
Scrolling of 3.5 km/h for 30 min, 
  every day for 4 weeks

↑Serum BDNF by 16%

↓UPDRS

Frazzitta et al. [90]

PD patients Moderate-intensity interval training using cycling 
  at 60%–75% of patients’ individualized maximum 
  heartrate

↓Serum soluble vascular cell adhesion 
  molecule 1
↓UPDRS
↓Serum BDNF
↓TNF-α level

Zoladz et al. [91]

PD patients Resistance exercise, 3 to 5 times of a 1-repetition 
  maximum for 8 weeks.

↓Oxidative stress
No change in SOD 
No change in glutathione peroxidase

Bloomer et al.  [92]

CD-11c/b, microglial activation; GFAP, glial fibrillary acidic protein; TLR2, toll-like receptor 2; ROS, reactive oxygen species; NADPH, nicotinamide 
adenine dinucleotide phosphate; TNF-α, tumor necrosis factor-α; NF-κB, nuclear transcription factor-κB; IL-1β, interleukin-1β; BNDF, brain-de-
rived neurotrophic factor; SERCA, sarcoplasmic reticulum Ca2+ ATPase; SOD, superoxide dismutase; CAT, catalase; UPDRS, Unified Parkinson’s 
Disease Rating Scale; ↑, increase; ↓, decrease.	

Table 3. The effects of exercise on amyotrophic lateral sclerosis (ALS)			 

Subjects Exercise protocol Effect Reference

ALS mice Running (13 m/min) or swimming for 40 min, 
  5 days/wk for 45 days

↑BDNF
↑TrkB.T1
↑PKA activation

Just-Borràs et al. [62]

ALS mice Swimming training for 30 min, 
  5 days/wk for 15 weeks

↑Citrate synthase
No MDH or COX activity, and mitochondrial 
  consumption

Flis et al. [95]

ALS mice Treadmill running
20 m/min for 45 min, 5 days/wk for 7 weeks

↑Microglia activation
↑Motor neuron counts

Kassa et al. [96]

BNDF, brain-derived neurotrophic factor; TrkB.T1, truncated trkB receptor; PKA, protein kinase A; MDH, malate dehydrogenase; COX, cyclooxy-
genase; ↑, increase; ↓, decrease.		
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celeration in ALS development. Recently, Flis et al. [95] also re-
ported that there were no significant changes in malondialde-
hyde, COX activity, and mitochondria oxygen consumption in 
an ALS mouse model after 15 weeks. In another study, Kassa et 
al. [96] reported treadmill running-induced increases in mi-
croglia activation and motor neuron counts in ALS mice. This 
suggests that exercise can ameliorate ALS symptoms and pro-
gression [97]. Taken together, exercise of various types and in-
tensities can influence various aspects of ALS.

Exercise in MS
There is compelling evidence for the beneficial effects of exercise 
in MS. Accumulating evidence supports the role of exercise in 
neuroinflammation in MS (Table 4). For example, Kierkegaard et 
al. [98] reported that resistance exercise decreased plasma TNF-α 
level for 12 weeks in MS patients. Another study showed that re-
sistance training significantly reduced serum levels of cytokines, 
including IL-4, IL-10, C-reactive protein, and interferon-gamma 
(IFN-γ) in MS patients [99]. In another study, Donia et al. [100] 
suggested that 1 hour of moderate aerobic exercise (60% of peak 
oxygen uptake) decreased plasma TNF-α levels in MS patients. 
Interestingly, combined aerobic training and Pilates training im-
proved BDNF and physical performance, suggesting that com-
bining forms of exercise might yield a beneficial effect in MS pa-
tients [101]. Castellano et al. [102] demonstrated that acute and 
long-term cycle exercise, which involved 60% of peak O2 uptake 
for 3 days per week over the course of 8 weeks reduced plasma 
TNF-α, IL-6, and IFN-γ levels in MS patients. Further investiga-
tions will help to elucidate the effects of exercise on neuroinflam-
mation in MS.

CONCLUSIONS

In this article, we highlighted neuroinflammation-related dis-
eases, such as AD, PD, ALS, and MS. These diseases are associ-
ated with the activation of microglia, NF-κB, pro-inflammatory 
cytokines, mitochondrial dysfunction, and ROS. Even though 
further research is needed to confirm our findings, exercise 
might mitigate neuroinflammation in AD, PD, ALS, and MS. 
In order to elucidate the cellular and/or molecular mechanisms 
that underlie the role of exercise in attenuating the activation of 
microglia, NF-κB, pro-inflammatory cytokines, mitochondrial 
dysfunction, and ROS in the brain, further clinical and preclini-
cal studies should be conducted.
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