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Abstract: High-charge and -energy (HZE) particles comprise space radiation and they pose a challenge
to astronauts on deep space missions. While exposure to most HZE particles decreases neurogenesis
in the hippocampus—a brain structure important in memory—prior work suggests that 12C does not.
However, much about 12C’s influence on neurogenesis remains unknown, including the time course
of its impact on neurogenesis. To address this knowledge gap, male mice (9–11 weeks of age) were
exposed to whole-body 12C irradiation 100 cGy (IRR; 1000 MeV/n; 8 kEV/µm) or Sham treatment.
To birthdate dividing cells, mice received BrdU i.p. 22 h post-irradiation and brains were harvested
2 h (Short-Term) or three months (Long-Term) later for stereological analysis indices of dentate gyrus
neurogenesis. For the Short-Term time point, IRR mice had fewer Ki67, BrdU, and doublecortin (DCX)
immunoreactive (+) cells versus Sham mice, indicating decreased proliferation (Ki67, BrdU) and
immature neurons (DCX). For the Long-Term time point, IRR and Sham mice had similar Ki67+ and
DCX+ cell numbers, suggesting restoration of proliferation and immature neurons 3 months post-12C
irradiation. IRR mice had fewer surviving BrdU+ cells versus Sham mice, suggesting decreased cell
survival, but there was no difference in BrdU+ cell survival rate when compared within treatment
and across time point. These data underscore the ability of neurogenesis in the mouse brain to recover
from the detrimental effect of 12C exposure.
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1. Introduction

Over fifty years ago, Altman and Das showed new neurons are generated in the adult mammalian
hippocampal dentate gyrus (DG) [1–3], thus disproving the long-standing belief that neurogenesis
ceases at birth. We now know a great deal about the function and regulation of adult DG neurogenesis,
including its role in memory and mood [4–9], its regulation by oxidative stress [10–15], and its
exceptional sensitivity to types of radiation [16–20]. Of note, the high-charge and high-energy (HZE)
particles—such as 56Fe and 28Si—that comprise cosmic radiation have been extensively studied for
their ability to impact DG neurogenesis in laboratory animals [21], with most work reporting a negative
impact of space radiation on indices of neurogenesis. Functionally, HZE exposure has been linked to
accelerated aging, anxiety-like symptoms, spatial learning and memory deficits, and decreased operant
responses in laboratory animals [22–28], all of which might be related to decreased DG neurogenesis.
As HZE particle exposure is an unavoidable aspect of deep space missions [29–33], it is important to
gain a complete understanding of how exposure to distinct HZE particles influences DG neurogenesis.

When compared to the many HZE particles that comprise space radiation, carbon (12C) has
received far less attention in regard to its impact on DG neurogenesis. This is somewhat surprising
given that 12C irradiation has emerged as a potential cancer treatment [34,35]. Specifically, 12C is a good
candidate to replace X-irradiation as the ability to target this heavy radiation beam enables sparing
of the normal tissue surrounding a tumor [36–38]. Even though heavy particle therapy for cancer
treatment is typically provided in a focal beam and HZE particle work relevant to space radiation is
typically provided as whole-body irradiation, the underlying mechanisms of how 12C disrupts brain
and behavior in the context of space travel is likely to also be relevant to heavy particle therapy.

While it is widely accepted that HZE irradiation decreases neurogenesis, only one study has
examined the impact of 12C on DG neurogenesis [39]. The authors studied the indices of neurogenesis
(with a quantitative assessment of cells immunoreactive [+] for Ki67 and doublecortin [DCX], and a
qualitative assessment of cells immunoreactive for the thymidine analog bromodeoxyuridine [BrdU])
and a neuronal nuclear protein [NeuN]) 9-months [mon] post-12C irradiation (100–300 cGy, 290 MeV/n,
and linear energy transfer [LET] 13 keV/µm). Despite the authors’ conclusion that the “changes
[in neurogenesis] are not only persistent but may worsen with time” [39], their statistical analyses do
not indicate decreased neurogenesis. Even though HZE particle-induced changes in DG neurogenesis
are known to be dynamic [40,41], the authors examined only a single time point post-12C irradiation
(9 mon). Thus, the conclusion drawn by Rola et al., 2005 that these changes are “persistent and
progressive” [39] merits revisitation with the inclusion of an earlier time point. In addition, the authors
sampled indices of neurogenesis at one level of the hippocampus (rostral/mid hippocampus). As the
hippocampus is a large structure driving diverse functions along its longitudinal axis [4,42–46],
stereological assessment might reveal previously-overlooked changes in neurogenesis, particularly in
the caudal or posterior hippocampus. Finally, as 12C exposure may result in more cognitive deficits
than equivalent doses of larger particles, such as 28Si and 48Ti [47], studies that more closely examine
12C impact on DG neurogenesis are warranted.

To address these knowledge gaps, here we define how whole-body 12C irradiation affects
DG hippocampal neurogenesis in male mice. A major consideration of our work was to
facilitate comparison with how other space radiation particles influence brain and behavior
(1H [22,23,48–59], 4He [60–63], 12C [22,39,47,64,65], 16O [22,47,54,60,66–74], 28Si [22,39,41,47,51,56,58,75–78],
48Ti [22,47,58,60,68,69,79], and 56Fe [22–25,28,39,40,48,51,55,56,71,80–121]). To this end, we age- and
sex-matched our subjects with the bulk of existing literature, choosing to use young adult male mice.
We mimicked space radiation using ground-based accelerators at NASA’s Space Radiation Laboratory
(NSRL) located at Brookhaven National Laboratories (BNL). Consistent with prior literature using other
particles, mice received a single exposure. To build on prior work with 12C, we examined neurogenesis
at both short (24 h [h]) and long (three mon) time points after irradiation. We find whole-body 12C
irradiation transiently decreases indices of proliferation and immature neurons in the mouse DG, but it
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does not change new neuron survival rate. These data underscore the ability of neurogenesis in the
mouse brain to recover from the detrimental effect of 12C exposure.

2. Results

2.1. 12C Irradiation Had No Overt Physiological Influence on IRR Mice Relative to Sham Mice

Young adult male mice received a single exposure of whole-body 12C irradiation (dose 100 cGy;
energy 1000 MeV/n; LET 8 kEV/µm) or Sham treatment and brains were collected 24-h or 3-mon
post-irradiation (Figure 1A). Similar to other work with whole-body exposure to HZE particles [41],
irradiation (IRR), and Sham mice had similar weight before and after irradiation and similar growth
rates, and no obvious effects of IRR (such as hair loss, lethargy, or sickness) were seen at any time point.
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time point. (B) Graphical representation of the mouse brain region that was the focus of this study. 
Upper left schematics depict three representative bregma coronal hemisections through the rostral, 
middle, and caudal hippocampal DG [122]. Main image depicts enlarged DG granule cell layer (GCL). 
Cells across the stages of DG neurogenesis are shown in the magnified GCL: neural stem cells (NSC), 
proliferating cells and clusters, immature neurons, and mature DG granule cell neurons. As indicated 
by the indices of neurogenesis on the bottom, proliferating cells/clusters can be labeled with 
antibodies against the endogenous proteins Ki67 or the exogenous thymidine analog BrdU (if 
examined shortly after BrdU injection), immature neurons can be labeled with an antibody against 
doublecortin (DCX), and surviving granule cell neurons can be labelled with an antibody against 
BrdU (if examined several weeks after BrdU injection). Figure modified from [41]. 

Figure 1. Schematic of experimental design and overview of neurogenesis indices examined. (A) Timeline
of the experimental design used to investigate the Short- and Long-Term (24 h and 3-mon post-
irradiation, respectively) effects of whole-body 12C irradiation in young adult mice (9–11 wks at
the time of irradiation) on dentate gyrus (DG) neurogenesis. All mice received the mitotic marker
bromodeoxyuridine (BrdU) 22-h post-irradiation, with brains collected at a Short-Term or Long-Term
time point. (B) Graphical representation of the mouse brain region that was the focus of this study.
Upper left schematics depict three representative bregma coronal hemisections through the rostral,
middle, and caudal hippocampal DG [122]. Main image depicts enlarged DG granule cell layer (GCL).
Cells across the stages of DG neurogenesis are shown in the magnified GCL: neural stem cells (NSC),
proliferating cells and clusters, immature neurons, and mature DG granule cell neurons. As indicated
by the indices of neurogenesis on the bottom, proliferating cells/clusters can be labeled with antibodies
against the endogenous proteins Ki67 or the exogenous thymidine analog BrdU (if examined shortly
after BrdU injection), immature neurons can be labeled with an antibody against doublecortin (DCX),
and surviving granule cell neurons can be labelled with an antibody against BrdU (if examined several
weeks after BrdU injection). Figure modified from [41].
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The focus of this study was on hippocampal neurogenesis, neurons that emerge from the
progeny of proliferative neural progenitors and mature to become granule cell neurons in the
hippocampal DG granule cell layer (GCL). Brains from both the Short-Term group (collected 24-h
post-irradiation) and Long-Term group (collected 3-mon post-irradiation; Figure 1A) were processed for
immunohistochemistry with antibodies against neurogenesis-relevant antigens Ki67, BrdU, and DCX
(Figure 1B). As shown previously [123–125], the cells immunoreactive for these antigens were restricted
to regions relevant to adult neurogenesis, including the DG GCL (Figure 2). Some immunoreactive
cells were also evident in the corpus callosum, as this region is a posterior extension of the anterior
neurogenic region the subventricular zone [126–128]. As no overt difference in regional distribution of
Ki67-immunoreactive (+), BrdU+, or DCX+ cells was observed between the Sham and IRR groups,
we used stereology to quantify these cells specifically in the DG GCL of mice in the Short-Term and
Long-Term groups to reflect proliferating progenitors, immature granule cell neurons, and mature
granule cell neurons (Figures 3–8).

2.2. 24-h Post-Irradiation, IRR Mice Had 57% Fewer Ki67+ Cells and 59% Fewer Ki67+ Clusters in the DG
GCL Relative to Sham Mice

Proliferation was measured at the Short-Term time point through the quantification of Ki67+
cells in the DG GCL (Figure 1B). Ki67+ cells had uneven, dark nuclei (Figure 3A), consistent with
previous studies [129,130]. 24-h after 12C irradiation, IRR mice had 57% fewer Ki67+ cells versus Sham
mice (Figure 3B). As cells and groups of cells—or “clusters”—can be differentially-regulated [123],
clusters of Ki67+ cells were also quantified. IRR mice had 59% fewer Ki67+ clusters versus Sham
mice (Figure 3C). As the function of the DG varies over the longitudinal axis of the hippocampus
(distance from bregma) [44,131–134], Ki67+ cell number was analyzed over relative distance from
bregma. Bregma analysis revealed main effects of Treatment and Bregma, but not a Bregma x Treatment
interaction (Figure 3D). Post-hoc analyses revealed three bregma positions (all in posterior DG) where
IRR mice had fewer Ki67+ cells relative to Sham (Figure 3D). Thus, at this Short-Term time point,
IRR mice had fewer Ki67+ cells and clusters—particularly in the posterior DG—when compared to
Sham mice.

2.3. 24-h Post-Irradiation, IRR Mice Had 50% Fewer BrdU+ Cells and 59% Fewer BrdU+ Clusters in the DG
GCL Relative to Sham Mice

BrdU injected 22-h post-irradiation was used to further explore proliferation in the Short-Term
group. As opposed to Ki67, which is endogenously expressed in cells in all stages of the cell cycle,
BrdU is an exogenous thymidine analog that incorporates into the cell’s DNA during the S-phase of
the cell cycle, thus labeling the nucleus (Figure 4A). In Sham mice, there were ~50% fewer BrdU+
cells in the Short-Term group relative to Ki67+ cells in the Short-Term group (Figure 4B vs. Figure 3B).
This comparison of BrdU and Ki67 is consistent with prior estimation of the length of the cell cycle
in the mouse DG GCL [129]. 24-h after 12C irradiation there were 50% fewer BrdU+ cells and 59%
fewer BrdU+ clusters in IRR versus Sham mice (Figure 4B,C). Bregma analysis revealed a main
effect of Treatment and Bregma, but not a Bregma × Treatment interaction (Figure 4D). Post-hoc
analyses revealed one bregma position in the posterior DG where IRR mice had fewer BrdU+ cells
than Sham (Figure 4D). Thus, at this Short-Term time point, IRR mice had fewer BrdU+ cells and
clusters—particularly in the posterior DG—when compared to Sham mice.
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Regions outlined in large panel are shown at higher magnification in smaller panels to the 
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Figure 2. Representative photomicrographs of cells immunoreactive for neurogenesis markers (Ki67, BrdU, and DCX) in the hippocampus. (A) Large panel shows
Ki67 immunoreactivity in a Sham mouse brain (mouse #14086) at low magnification (100×) collected 24 h post-sham treatment. Regions outlined in large panel (GCL,
Mol, CA1, or, cc, CA3/TH) are shown at higher magnification in smaller panels to the right. Ki67+ cells are evident in the Granule Cell Layer (GCL) and corpus
callosum (cc), but not in any other visible brain region. (B) Large panel shows BrdU immunoreactivity in a Sham mouse brain (mouse #14086) at low magnification
(100×) collected 2 h after BrdU injection and 24 h post-sham treatment. Regions outlined in large panel are shown at higher magnification in smaller panels to the right.
BrdU+ cells are evident in the GCL and cc, but not in any other brain region. (C) Large panel shows BrdU immunoreactivity in a Sham mouse brain (mouse #13851) at
low magnification (100×) collected 3 mon after BrdU injection and 3 mon post-sham treatment. Regions outlined in large panel are shown at higher magnification in
smaller panels to the right. A distinct BrdU+ cell is evident in the GCL, but not in other brain regions. (D) Large panel shows doublecortin (DCX) immunoreactivity in
a Sham mouse brain (mouse #13851) at low magnification (100×) collected 3 months after BrdU injection and 3 months’ post-sham treatment. Regions outlined in large
panel are shown at higher magnification in smaller panels to the right. DCX+ cells are evident in the GCL and cc, and DCX+ dendritic fibers are evident in the GCL
molecular layer (Mol), but immunoreactivity is not seen in any other visible brain region. Scale bar = 200 µm in large panel; 25 µm in GCL and Mol images; 50 µm in
CA1, or, cc, and CA3/TH images; applies to A–D. CA1 cornus ammonis 1; CA3 cornus ammonis 3; cc corpus callosum; GCL granule cell layer; Mol molecular layer;
or stratum oriens; TH thalamus.
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Figure 3. 24-h post-irradiation, whole-body exposure to 12C irradiation reduced the number of DG
GCL Ki67+ cells and clusters relative to Sham treatment. (A) Representative photomicrograph of
Ki67-immunoreactive (Ki67+) staining in the DG GCL of a Short-Term Sham mouse (mouse #14086;
400×, scale bar = 25 µm). (B) An unpaired two-tailed t-test revealed fewer Ki67+ cells in the DG
GCL 24-h after 12C irradiation versus Sham treatment (**** p < 0.0001; N = 6 Sham, N = 6 IRR).
(C) An unpaired two-tailed t-test revealed fewer Ki67+ clusters in the DG GCL 24-h after 12C irradiation
versus Sham treatment (**** p < 0.0001). (D) Bregma analysis of Ki67+ cells in the DG GCL through
two-way ANOVA (Bregma × Treatment) revealed main effects of Treatment (F1,10 = 50.7; **** p < 0.0001)
and Bregma (F9,90 = 3.089; ** p < 0.01), but no significant interaction (F9,90 = 1.442; p > 0.05). Post-hoc
(Sidak’s multiple comparison) test revealed fewer Ki67+ cells at bregma positions −2.89 (a p < 0.05),
−3.16 (a p < 0.05), and −3.43 (a”’ p < 0.0001) between Sham and IRR mice. Error bars ± SEM.
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Figure 4. 24-h post-irradiation, whole-body exposure to 12C irradiation reduced the number of DG
GCL BrdU+ cells and clusters relative to Sham treatment. (A) Representative photomicrograph of
BrdU staining in a Short-Term Sham mouse (mouse #14086; 400×, scale bar = 25 µm). (B) An unpaired
two-tailed t-test revealed fewer BrdU+ cells in the DG GCL 24-h after 12C irradiation versus Sham
treatment (**** p < 0.0001; N = 6 Sham, N = 6 IRR). (C) An unpaired t-test revealed fewer BrdU+ clusters
in the DG GCL 24-h after 12C irradiation versus Sham treatment (**** p < 0.0001). (D) Bregma analysis
of BrdU+ cells in the DG GCL through two-way ANOVA (Bregma × Treatment) revealed main effects
of Treatment (F1,10 = 115.4; **** p < 0.0001) and Bregma (F9,90 = 3.668; *** p < 0.001), but no significant
interaction (F9,90 = 0.6751; p > 0.05). Post-hoc (Sidak’s multiple comparison) test revealed fewer BrdU+
cells at bregma −2.62 in IRR mice relative to Sham mice (a p < 0.05). Error bars ± SEM.

2.4. 24-h Post-Irradiation, IRR Mice Had 33% Fewer DCX+ Cells in the DG GCL Relative to Sham Mice

In addition to proliferating cells, we also measured immature neuron number, as assessed via
DCX+ cells. DCX is a microtubule-associated protein expressed in adult-born cells from division
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into early maturation stages [135], and is even used as a stand-alone index of neurogenesis [135–140].
As DCX expression in the DG GCL is associated with a wide range of morphologies reflective of the
stage of maturity of the DCX+ cell [141], we quantified DCX+ cells presenting oval- or teardrop-shaped
soma with long, thin processes, as well as cells lacking processes (Figure 5A). 24-h after 12C irradiation,
there were 33% fewer DCX+ cells in IRR versus Sham mice (Figure 5B). Bregma analysis revealed main
effects of Treatment and Bregma, but no Bregma × Treatment interaction (Figure 5C). Post-hoc analyses
revealed one bregma location in the posterior DG where IRR mice had fewer DCX+ cells relative to
Sham mice. Thus, as with Ki67+ cells and BrdU+ cells at this Short-Term time point, IRR mice had
fewer DCX+ cells—particularly in the posterior DG—when compared to Sham mice.
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Figure 5. 24-h post-irradiation, whole-body exposure to 12C irradiation reduced the number of DG
GCL DCX+ cells relative to Sham treatment. (A) Representative photomicrograph of DCX staining in
a Short-Term Sham mouse (mouse #14088; 400×, scale bar = 25 µm). (B) An unpaired t-test revealed
fewer DCX+ cells in IRR versus Sham mice (**** p < 0.0001; N = 5 Sham, N = 6 IRR). (C) Bregma analysis
of DCX+ cells through two-way repeated measure ANOVA (Bregma × Treatment) revealed main
effects of Treatment (F1,9 = 43.53; **** p < 0.0001) and Bregma (F11,99 = 17.49; **** p < 0.0001), but no
significant interaction (F11,99 = 1.139; p > 0.05). Post-hoc (Sidak’s multiple comparison) test revealed
fewer DCX+ cells at bregma −3.16 in IRR versus Sham mice (a’ p < 0.01). Error bars ± SEM.

2.5. Three-mon Post-Irradiation, IRR Mice Had a Similar Amount of Ki67+ Cells and Clusters When Compared
to Sham

To complement the data from the Short-Term time point (Figures 3–5), proliferation was measured
at a Long-Term time point via the quantification of Ki67+ cells (Figure 6). Qualitatively, Ki67+ cells
presented a similar morphology in the Short- and Long-Term groups (Figure 3A vs Figure 6A), which is
as expected for this endogenous marker of cells in the cell cycle. Quantitatively, in the Sham mice
Ki67+ cell numbers were lower in the Long-Term group versus the Short-Term group (Figure 6B vs.
Figure 3B, calculations not shown). This is as expected since the proliferation of neural progenitors
in the DG decreases with age [142–145]. However, in the Long-Term group, there was no difference
in Ki67+ cell or cluster number between Sham and IRR mice (Figure 6B,C). While Bregma analysis
revealed a main effect of Bregma, there was not a main effect of Treatment or a Bregma x Treatment
interaction (Figure 6D). Thus, at this Long-Term time point, IRR mice had similar numbers of Ki67+
cells and clusters when compared to Sham mice.
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Figure 6. Three-mon post-12C irradiation, there was no difference in the number of Ki67+ cells or
clusters between IRR and Sham mice. (A) Representative photomicrograph of Ki67 staining in a
Long-Term Sham mouse (mouse #13850; 400×, scale bar = 25 µm). (B) An unpaired t-test revealed
no difference in the number of Ki67+ cells in the SGZ (p > 0.05; N = 4 Sham, N = 8 IRR). (C) An
unpaired t-test revealed no difference in the number of Ki67+ clusters in the SGZ (p > 0.05). (D) Bregma
analysis of Ki67+ cells in the SGZ through two-way ANOVA (Bregma × Treatment) revealed a main
effect of Bregma (F11,110 = 5.509; **** p < 0.0001), but not of Treatment (F1,10 = 0.2151; p > 0.05) and no
significant interaction (F11,110 = 0.4856; p > 0.05). Post-hoc (Sidak’s multiple comparison) test revealed
no significance at any single bregma. Error bars ± SEM.

2.6. Three-mon Post-Irradiation, IRR Mice Had 64% Fewer BrdU+ Cells, but a Similar Number of Clusters
When Compared to Sham Mice

To assess the survival of adult-generated DG GCL cells at the Long-Term time point, we quantified
BrdU+ cells 3-mon post-irradiation. While at our Short-Term time point BrdU labels proliferating
cells, at our Long-Term time point, those BrdU cells remaining reflect those cells or progeny that have
survived until the 3-mon time point (Figure 1B). Supporting that the 3-mon post-injection period is
sufficient for proliferating progenitors to mature into DG GCL cells [135], BrdU+ cells in the Long-Term
group presented labeled nuclei reminiscent of mature DG GCL neurons, often with a punctate pattern
(Figure 7A), as we have seen previously [41]. Quantitatively, 3-mon after 12C irradiation, there were
64% fewer BrdU+ cells in IRR versus Sham mice (Figure 7B), but a similar number of BrdU+ clusters
between IRR and Sham mice (Figure 7C). Bregma analysis of BrdU+ cells revealed main effects of
Treatment and Bregma, but no Bregma × Treatment interaction (Figure 7D). Post-hoc analyses of the
3-mon group revealed three bregma locations in the anterior DG where IRR mice had fewer BrdU+
cells relative to Sham mice. These data suggest decreased survival of DG GCL adult-generated cells in
IRR mice relative to Sham mice, particularly in the anterior DG.

Another way to utilize the BrdU labeling design used for this experiment (Figure 1B) is to compare
the percent of cells “surviving” between Short- and Long-Term groups in both Sham and IRR mice.
This is useful since at the Short-Term time point there was already a significant decrease in the number
of BrdU+ cells in IRR versus Sham mice (Figure 4B) [41]. To account for this pre-existing difference
in BrdU+ proliferating cell number in the Short-Term groups, we calculated the percent decrease
in BrdU+ cells across time points when comparing Sham to Sham and IRR to IRR (e.g., comparing
Figure 4B to Figure 7B, calculations not shown). In Sham mice, there were 70% fewer BrdU+ cells in
the Long-Term group relative to the Short-Term group. In IRR mice, there were 78% fewer BrdU+ cells
in the Long-Term group relative to the Short-Term group. Thus, BrdU+ cells between the Short- and
Long-Term time points have a similar survival rate in Sham and IRR mice.
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(mouse #13853; 400×, scale bar = 25 µm). (B) An unpaired t-test revealed fewer BrdU+ cells in IRR mice 
versus Sham mice (** p < 0.01; N = 4 Sham, N = 8 IRR). (C) An unpaired t-test revealed similar number 
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Figure 7. Three-mon post-12C irradiation, there were fewer DG GCL BrdU+ cells in IRR mice relative to
Sham mice. (A) Representative photomicrograph of BrdU staining in a Long-Term Sham mouse (mouse
#13853; 400×, scale bar = 25 µm). (B) An unpaired t-test revealed fewer BrdU+ cells in IRR mice versus
Sham mice (** p < 0.01; N = 4 Sham, N = 8 IRR). (C) An unpaired t-test revealed similar number of
BrdU+ clusters in IRR and Sham mice (p > 0.05). (D) Bregma analysis of BrdU+ cells through two-way
ANOVA (Bregma × Treatment) revealed a main effect of Treatment (F1,10 = 14.31; ** p < 0.01) and
Bregma (F11,110 = 5.964; **** p < 0.0001), but no significant interaction (F11,110 = 1.775; p > 0.05). Post-hoc
(Sidak’s multiple comparison) test revealed fewer BrdU+ cells at bregma positions −1.54 (a p < 0.05),
−1.81 (a’ p < 0.01), and −2.08 (a p < 0.05) in IRR mice relative to Sham mice. Error bars ± SEM.

2.7. Three-mon Post-Irradiation, IRR Mice Had Similar Number of DCX+ Cells Compared to Sham Mice

For the Long-Term group, DCX+ cell number was also quantified to gauge the number of
immature neurons, as had been done in the Short-Term group. Qualitatively, DCX+ cells presented
a similar range of morphologies in the Long-Term group (Figure 8A), as they did in the Short-Term
group (Figure 5A). Quantitatively, Sham mice had 75% fewer DCX+ cells in the Long-Term group
when compared to the Short-Term group (compare Figure 8B with Figure 5B, calculations not shown),
indicative of the decrease in neurogenesis that happens with age [143,146]. In regard to effect of 12C
irradiation, however, there was no difference in DCX+ cell number between Sham and IRR mice
at the Long-Term time point (Figure 8B). Bregma analysis revealed a main effect of Bregma and a
significant Bregma × Treatment interaction, but no main effect of Treatment (Figure 8C). Post-hoc
analyses revealed one bregma position in the posterior DG with fewer DCX+ cells in IRR mice relative
to Sham mice. Thus, at this Long-Term time point, the IRR mice had a similar number of DCX+ cells
when compared to Sham mice, with fewer DCX+ cells only noted in the posterior DG.

2.8. 24-h and 3-mon Post-Irradiation, IRR Mice Had Similar GCL Volume and Similar Density of Immature
Neuron Dendritic Processes Compared to Sham Mice

Changes in cell number may be accompanied by changes in volume of the underlying
structure [147,148], even when the changes in cell number are new neurons in the DG GCL [149].
To assess whether the transient loss of adult-generated neurons we report here (Figures 3–8) was
accompanied by loss of GCL area and relative volume, we used unbiased stereology and Cavalieri’s
principle (Figure 9A). Relative GCL volume at both the Short- and Long-Term timepoints was similar
between IRR and Sham-treated mice (Figure 9B,C), suggesting no overt influence of the transient loss
of new neurons.

Another index of GCL integrity—as well as of DCX+ neurons—is the number or density of
perpendicular dendritic processes that extend from DCX+ neurons into the GCL and through the
molecular layer [135,141,150–152]. Using each animal’s GCL cross-sectional area, we determined the
density of these perpendicular DCX+ dendrites in IRR and Sham-treated mice at Short- and Long-Term
time points (Figure 9A, inset). Similar to the result with GCL volume, the density of perpendicular
DCX+ dendrites was similar between IRR and Sham-treated mice (Figure 9D,E).
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Figure 8. Three-mon post-12C irradiation, DCX+ cell number was similar between IRR and Sham mice.
(A) Representative photomicrograph of DCX staining in a Long-Term Sham mouse (mouse #13851;
400×, scale bar = 25 µm). (B) An unpaired t-test revealed no difference in DCX+ cells between IRR
and Sham mice (p > 0.05; N = 4 Sham, N = 7 IRR). (C) Bregma analysis of DCX+ cells through two-way
ANOVA (Bregma × Treatment) revealed a main effect of Bregma (F11,99 = 9.038; **** p < 0.0001), but not
Treatment (F1,9 = 1.773; p > 0.05) and a significant interaction (F11,99 = 2.178; p < 0.05). Post-hoc (Sidak’s
multiple comparison) revealed fewer DCX+ cells at bregma −3.43 (a p < 0.05). Error bars ± SEM.
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combination with the optical fractionator and Cavalieri’s principle, this approach reveals the relative
GCL volume quantified in B and C. Inset: Higher magnification of the dendritic processes of DCX+
cells (arrowhead). The density of DCX+ dendritic processes perpendicular to the GCL is presented in
D and E. Scale bar = 100 µm main image; 50 µm inset. (B,C) Relative GCL volume in Sham and IRR
mice 24-h (Short-Term, B; N = 5 Sham, N = 6 IRR) and 3-mon (Long-Term, C; N = 4 Sham, N = 8 IRR)
post-irradiation (p’s > 0.05). (D,E) Density of DCX+ dendritic processes perpendicular to the GCL in
Sham and IRR mice 24-h (Short-Term, D; N = 5 Sham, N = 6 IRR) and 3-mon (Long-Term, E; N = 4 Sham,
N = 8 IRR) post-irradiation (p’s > 0.05).
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3. Discussion

The goal of the present study was to define the effects of whole-body 12C irradiation on classic
indices of neurogenesis in the young adult mouse DG GCL. Our results show that, relative to Sham
mice, mice exposed to 100 cGy 12C irradiation (1000 MeV/n; 8 kEV/µm) have a transient decrease
in the number of proliferating cells and immature neurons in the DG, but no change in new neuron
survival rate. Specifically, at the Short-Term time point (24-h post-irradiation), there were fewer Ki67+
and BrdU+ cells and clusters (indicative of decreased proliferation) and fewer DCX+ cells (indicative of
decreased immature neuron number) in IRR versus Sham mice. At the Long-Term time point (3-mon
post-irradiation), the numbers of Ki67+ cells and clusters and of DCX+ cells were similar in IRR and
Sham mice, suggesting the decrease in proliferation and immature neurons seen at the Short-Term time
point was transient. This normalization of Ki67+ and DCX+ cell number underscores the regenerative
capacity of the hippocampal DG several months after 12C irradiation. At the Long-Term time point,
BrdU+ cell number remained lower in IRR vs Sham mice. While we did not double-label these 3-mon
old BrdU+ cells with a neuronal marker, the vast majority of these surviving cells become neurons [41].
Thus, it might seem reasonable to conclude that 12C irradiation leads to a long-lasting decrease in
DG neurogenesis. However, there are two reasons that we conclude there is a transient—and not
a long-lasting—decrease in neurogenesis after 12C irradiation. First, there were fewer BrdU+ cells in IRR
versus Sham mice at both the Short-Term and Long-Term time points, and there was a similar percent
change (or survival rate) in BrdU+ cells from Short- to Long-Term within treatment. This suggests
that the decreased BrdU+ cell number in IRR versus Sham mice at the Long-Term time point was due
to the fewer proliferating BrdU+ cells at the Short-Term time point. Second, DCX+ cell number in
IRR mice returned to the Sham level at the Long-Term time point, suggesting normalization of this
marker of immature neurons by 3-mon after 12C irradiation. Taken together, these results show the
12C irradiation parameters used here result in a transient decrease in DG neurogenesis in the young
adult mouse.

Our results with 12C irradiation and neurogenesis fit well with the prior publications examining
the influence of other HZE particles (e.g., 56Fe, 28Si) on rodent DG neurogenesis. For example, smaller
particles like 12C (studied here) and 28Si [41] tend to transiently decrease DG neurogenesis, while 56Fe
leads to a more persistent decrease in neurogenesis [40,84]. However, our finding that 12C irradiation
transiently decreases DG neurogenesis is in contrast with the only other 12C irradiation and DG
neurogenesis publication [39]. There are several explanations for this apparent discrepancy in the
influence of 12C irradiation on DG neurogenesis. First, the prior 12C irradiation work only examined
one time point 9-mon post-irradiation and used sampling not stereology to quantify neurogenesis [39].
With the benefit of time, we were guided by the more recently-accepted view that stereology is
a rigorous, accurate, and unbiased approach to measure neurogenesis [153,154]. Perhaps it was our use
of stereological principles, as well as employing both Short- and Long-Term time points, which enabled
our detection of the transient decrease in DG proliferating cells and immature neurons shown here.
Second, the prior 12C irradiation work restricted analysis to the rostral and mid hippocampus [39].
This is notable since the hippocampus is an anatomically diverse and long structure, with distinct
neural connections and functions along its longitudinal axis [45,155–157]. In fact, hippocampal function
varies with distance from bregma: the anterior (also called dorsal or septal) hippocampus is linked
to spatial learning and memory, while the posterior (also called ventral or temporal) hippocampus
is linked to mood and emotions [4,42,45,158–160]. Neurogenesis, and neurogenesis-linked function,
also varies along the longitudinal axis of the hippocampus [42,44,161–165]. Thus, we opted to assess
12C irradiation-induced changes throughout the whole hippocampal DG, rather than just the rostral
and mid hippocampus. Interestingly, at the Short-Term time point in our study, there were fewer
proliferating cells (Ki67+ and BrdU+ cells) and immature neurons (DCX+ cells) specifically in the
posterior DG in IRR versus Sham mice. In contrast, at the Long-Term time point, there was a more
mixed effect: no difference in cell proliferation (Ki67+ cells), fewer immature neurons (DCX+ cells) at
one posterior bregma position, yet fewer surviving BrdU+ cells at several anterior bregma positions.
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While our experiment was not designed to assess behavioral changes in mice after irradiation,
these bregma results and the large literature connecting neurogenesis across the longitudinal axis with
distinct hippocampal functions indicate that future studies assessing mood-related behaviors soon
after irradiation may be warranted.

Given that we find a transient decrease in neurogenesis in 12C irradiated mice when compared
to Sham-treated mice, it is reasonable to consider whether there was an accompanying decrease
in the volume of the GCL. However, GCL volume between IRR and Sham mice was similar at
both the Short- and Long-Term time points. While we cannot exclude the possibility that GCL
volume was transiently decreased at an unexamined timepoint, another index of GCL integrity—
new neuron dendritic density—was also similar between IRR and Sham mice. The extension of
a DCX+ dendritic process through the GCL enables its integration into the hippocampal trisynaptic
network [135,141,150–152,166], and therefore it is an additional contributor to GCL volume. It is
perhaps not surprising that 12C irradiation does not change DCX+ dendritic density since DCX+ cells
with dendrites are post-mitotic, and HZE particles target proliferating cells rather than mature and
migrating neuroblasts. Taken together, these data suggest the transient decrease in neurogenesis in 12C
irradiated mice compared to Sham-treated mice was not accompanied by structural readjustments of
the DG, and may be primarily due to an initial decrease in the number of proliferating cells.

It is also important to question the mechanism that contributes to or underlies the 12C
irradiation-induced transient decrease in DG neurogenesis. Given the large literature on HZE particle
irradiation and oxidative stress [26,71,88,93,113,114,167–170], a reasonable hypothesis is that oxidative
stress and/or damage may play a role. Previously, we have reported indices of genomic instability in
the DG GCL of mice seven days and two-mon post-56Fe IRR [40]. For the present study, we attempted
to measure additional indices of oxidative stress after 12C irradiation using antigenic targets and IHC
protocols from our lab and from the published literature [40,171–177]. However, we were unable to
resolve any oxidative stress signal in tissue from the two time points studied. Since our data show that
12C irradiation transiently decreases neurogenesis but does not change the survival rate of new neurons
between IRR and Sham mice, it is possible that oxidative stress signals are also transient, increasing
after our Short-Term time point yet normalizing prior to our Long-Term time point. This hypothesis
remains to be tested, ideally with alternative detection methods (e.g., western blotting of tissue samples
rather than IHC), which may be sensitive enough to detect low levels of oxidative stress. If future
experiments support this hypothesis, then therapies to combat oxidative stress may be best employed
near the time of HZE exposure, as has been shown in preclinical studies [26,113,167,169].

While our current work with whole-body 12C irradiation has primary relevance to the 12C component
of galactic cosmic radiation to which astronauts will be exposed during interplanetary travel, there is
some clinical relevance as 12C has emerged as a focally-applied cancer treatment [34,35,178]. Previously,
X-irradiation was utilized to treat cancers, but in order to achieve a therapeutic effect, the dose
must be increased to a level that cannot be tolerated by surrounding tissue [179]. In contrast, 12C has
a narrow Bragg peak, enabling high dose delivery to tumor cells, while maintaining acceptable doses to
surrounding tissue [179,180]. Overall doses used in cancer are greater than the 100cGy 12C employed
here, but patients do receive fractionated doses that are more in line with the dose given in this
work [181]. Our finding that 12C irradiation transiently decreases DG neurogenesis in the young adult
mouse brain may serve as a launch pad for answering questions that are relevant to radiotherapy as
well as the influence of deep space travel on brain function.

4. Materials and Methods

4.1. Animals

For the experiments, (n = 24) male Nestin-CreERT2YFP/R26R-YFP (Nestin-CreERT2YFP) mice
were used. As previously described [182], the mice were generated by breeding homozygous
Nestin-CreERT2YFP mice on a C57BL/6J background with homozygous Rosa26Reporter:YFP knock-in
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mice to generate bitransgenic hemizygous for both genes. Mice had ad libitum access to food and
water, were kept on a light/dark cycle of 12-h (lights on 6:00 AM), and were housed four per cage.
At 5–7 weeks of age, Nestin-CreERT2YFP mice were injected with the estrogen ligand tamoxifen (TAM,
i.p. 180 mg/kg/d, dissolved in 10% EtOH/90% sunflower oil, one injection/day for five consecutive
days) [182]. Data from this inducible labeling (YFP+ cells) are the focus of a separate experiment,
and are not shown in this current work. At 9–11 weeks of age, all mice were shipped to BNL in
Brookhaven, New York and were allowed to acclimate for five days before irradiation (IRR) treatment
(Figure 1A; “Irradiation Procedures” below). 22-h post-12C irradiation or Sham treatment, all mice
received one injection of thymidine analog bromodeoxyuridine (BrdU; 150 mg/kg, i.p.; 10 mg/mL in
0.9% saline and 0.001M NaOH) to enable stereological assessment of stages of DG neurogenesis [183]
with a dose of BrdU sufficient to pulse label all S-phase DG cells [129], as consistent with previous
studies [40,41,84,184]. Half of the mice were killed 2-h post BrdU injection (24-h post-irradiation or
Sham treatment) at BNL, and were named the “Short-Term” group (Figure 1A). The remaining
“Long-Term” mice were shipped back to UT Southwestern Medical Center (UTSW), and killed
3-mon post-irradiation or Sham treatment (Figure 1A). Experimental protocols were approved by the
Institutional Animal Care and Use Committee (IACUC, APN 0960-07-02-1) of both UTSW (approved
April 2009) and BNL (approved October 2008), and mice were treated in accordance with National
Institute of Health (NIH) guidelines.

4.2. Irradiation Procedures

Irradiation was carried out at BNL, similar to our prior work [40,41,84]. 12C particles were
produced at the Alternating Gradient Synchrotron Booster at BNL and transferred to the NSRL facility
experimental beam line [185], and the delivered beam was 20 cm × 20 cm (uniformity 5%). IRR mice
were placed individually into ventilated and clean 50 mL conical tubes at a position perpendicular to
the beam (heads positioned to beam center). IRR mice received whole-body exposure to 100 cGy 12C
particles (1000 MeV/n, LET 8 KeV/µ) at a dose rate of 100 cGy/min. Control (Sham) mice were also
shipped to BNL, transferred to NSRL, handled and placed in conical tubes for a similar amount of
time as IRR mice, but were not exposed to the beam. The mice that are described in this work were run
during the Spring 2010 NSRL campaign.

4.3. Tissue Preparation and Immunohistochemistry (IHC)

Either 24-h or 3-mon post-irradiation (Figure 1A), mice were sacrificed by live decapitation,
and brains were subsequently extracted, bisected along the mid-sagittal suture, and post-fixed for
<3 days prior to cryoprotection (30% sucrose in 0.2% sodium azide) at 4 ◦C. Brain hemispheres were
sectioned coronally between bregma positions 0.02 and −4.84 (“bookends” to the DG) [122] at 30 µm
in a 1:9 series and stored in 1× PBS with 0.01% sodium azide at 4 ◦C until processing for IHC.

To stain for neurogenesis relevant markers (Figure 1B) [183], slide-mounted IHC for DCX+, Ki67+,
and BrdU+ cells in the DG was performed, as previously described [40,41,84,182]. One series of the
hippocampus (every ninth section) was mounted onto Fisher Scientific Microscope Superfrost/Plus
Precleaned charged slides from anterior to posterior and allowed to dry for 2 h. Antigen retrieval
was performed using 0.01 M citric acid (pH 6.0) at 100 ◦C for 15 min, then was washed in PBS at
room temperature. Endogenous peroxidase activity was inhibited by incubating with 0.3% hydrogen
peroxide (H2O2) for 30 min. For BrdU IHC, two additional pretreatment steps were performed
to allow the antibody access to DNA inside the cell nucleus: permeabilization and denaturation.
Permeabilization was performed using 0.1% Trypsin in 0.1 M TRIS and 0.1% CaCl2, and denaturation
was performed while using 2N HCl in 1× PBS. For all markers, non-specific binding was blocked with
3% serum (donkey) and 0.3% Triton-X in PBS for 1 h.

Following pretreatment and blocking, the slide-mounted sections were incubated with either
rabbit-α-Ki67 (1:500; Fisher Scientific, catalog #RM-9106S, Freemont, CA, USA), rat-α-BrdU (1:500;
Accurate, catalog #OBT 0030G, Westbury, NY, USA), or goat-α-DCX (1:8000; Santa Cruz Biotechnology,
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catalog #sc-8066, Dallas, TX, USA) in 3% serum and 0.3% Tween-20 overnight. After primary
antibody, incubation with biotinylated secondary antibodies for DCX: biotin-donkey-α-goat-IgG
(catalog #705-065-003), for Ki67: biotin-donkey-α-rabbit-IgG (catalog #711-065-152), or for BrdU:
biotin-donkey-α-rat-IgG (catalog #712-065-153), all 1:200, all from Jackson ImmunoResearch, West
Grove, PA, USA) for 1 h. Incubation with avidin-biotin complex was performed for 90 min (ABC Elite,
Vector Laboratories, catalog #PK-6100). Immuno-labeled cells were visualized with metal-enhanced
diaminobenzidine (DAB, Fisher Scientific, catalog #PI-34065, Pittsburgh, PA, USA) for 5–10 min. Finally,
slides were incubated for four-min in the nuclear counterstain Fast Red (Vector Laboratories catalog
#H3403). They were then dehydrated in increasing ethanol concentrations and Citrisolv, and cover
slipped with DPX (Electron Microscopy Sciences, catalog #13512).

4.4. Stereological Cell Counts

Ki67+, BrdU+, and DCX+ DAB cells were quantified by two blinded observers while using
stereological principles and an Olympus BX-51 microscope at 400× magnification, as described
previously [130,186,187]. The slides were code prior to IHC, and the code was not broken until
quantification of an individual experiment was complete. Consistency analyses were performed when
comparing the two observers, whose counts were within 10% of each other. Immunoreactive cells were
quantified in every 9th coronal hemisection in the granule cell layer (GCL) in the DG (for DCX, BrdU
and Ki67) spanning the entire anterior-posterior axis of the hippocampus (−1.00 mm to −3.97 mm
from Bregma). As the entire DG was examined via stereology, the number of sections per mouse varied
per stereology principles [188–190]. Stereology was performed under bright field microscopy, and the
total cell counts and clusters (Ki67 and BrdU) were multiplied by 18 to account for the whole DG:
×9 for every 9th section and ×2 because hemisections were stained and quantified. Data are presented
as total GCL cell counts in all mice (Figures 3B, 4B, 5B, 6B, 7B and 8B) and total cell clusters (Figures 3C,
4C, 6C and 7C). Data are also presented along the longitudinal axis of the DG (distance from Bregma,
Figure 3D, Figure 4D, Figure 5C, Figure 6D, Figure 7D, and Figure 8C).

4.5. Stereological Estimation of GCL Volume and Density of Immature Neuron Dendritic Processes

Unbiased stereological estimation of GCL volume was assessed using Cavalieri’s principle [191–193]
via the optical fractionator approach with contour tracing in Stereo Investigator software (MBF
Bioscience). In brief, using a Zeiss AxioImager M2 microscope at 200× magnification, an experimenter
blind to treatment traced the boundary of the DG GCL in every 9th coronal hemisection to quantify
the cross-sectional area. The sum of the areas of each animal was multiplied by the section thickness
(30 µm) and converted to mm3, as previously described [194], to reveal the relative volume of the GCL
for each animal.

Another index of GCL integrity that also provides insight into new neuron maturation is DCX+
dendritic analysis [135,141]. Young DCX+ cells have either no dendrite or a very short dendrite oriented
nearly parallel to the GCL, while the older DCX+ cells have a dendrite oriented nearly perpendicular
to the GCL, which branches and eventually projects into the DG molecular layer (e.g., Figures 1D,
7A and 9A). DCX+ cells of these different “ages” are differentially regulated, and quantification of their
dendrites is an increasingly common subindex of neurogenesis [135,141,150–152]. Here, we focused
on the older DCX+ cells by assessing the density of DCX+ dendrites oriented at 90◦ relative to the GCL.
In brief, the sum of these specific DCX+ dendritic processes were quantified within each outlined GCL
boundary and divided by the GCL area in order to reveal the density of processes from older DCX+ cells.

4.6. Statistical Analyses and Image Presentation

The data are displayed as mean ± SEM. Prism version 7.0 was used to perform the statistical
analysis and p < 0.05 was defined as statistical significance. The statistics are reported in the Results
section, in the figures (Figures 3–9), and the figure legends. Total cell, cluster counts, GCL volume and
dendritic process density (Figure 3B,C, Figure 4B,C, Figure 5B, Figure 6B,C, Figure 7B,C, Figures 8B
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and 9B–E) were analyzed with two-tailed unpaired t-tests with the variable of Treatment: Sham versus
IRR. Bregma analysis was done via two-way ANOVA Bregma x Treatment, and a post-hoc (Sidak’s
multiple comparison) test was used to determine significance at specific bregma positions (Figures 3D,
4D, 5C, 6D, 7D and 8C). Ki67+, BrdU+, and DCX+ cell and cluster survival rates were calculated as
100 × [(Short-Term cell/cluster count) − (Long-Term cell/cluster count)]/(Short-Term cell counts),
similar to previous works [41,195]. Two mice were omitted following IHC due to tissue quality issues:
one Sham mouse from the Short-Term DCX group and one IRR mouse from the Long-Term DCX group.
Photomicrographs presented in this study were collected on an Olympus BX51 microscope with a DP74
camera with CellSens software or a Zeiss AxioImager M2 microscope while using a Lumina High
Resolution Color Camera and StereoInvestigator software. Images were taken using 10, 20, and 40×
objectives, and they were collected in full screen with manual exposure, gain 1×, Snapshot/Process:
1920 × 1200 (3COMS), and were exported as .jpeg or .tiff. Images were imported into Adobe Photoshop
and saved, and a copy of the original image was subjected to the following: Image Size decreased
while resolution increased to 300 dpi (with resampling), Mode changed to grayscale, Levels bounded
to histogram with only gamma correction.
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h hour
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