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Abstract

Antisocial behavior (ASB) is believed to have neural substrates; however, the associa-

tion between ASB and functional brain networks remains unclear. The temporal vari-

ability of the functional connectivity (or dynamic FC) derived from resting-state

functional MRI has been suggested as a useful metric for studying abnormal behav-

iors including ASB. This is the first study using low-frequency fluctuations of the

dynamic FC to unravel potential system-level neural correlates with ASB. Specifically,

we individually associated the dynamic FC patterns with the ASB scores (measured by

Antisocial Process Screening Device) of the male offenders (age: 23.29 ± 3.36 years)

based on machine learning. Results showed that the dynamic FCs were associated with

individual ASB scores. Moreover, we found that it was mainly the inter-network

dynamic FCs that were negatively associated with the ASB severity. Three major high-

order cognitive functional networks and the sensorimotor network were found to be

more associated with ASB. We further found that impaired behavior in the ASB sub-

jects was mainly associated with decreased FC dynamics in these networks, which may

explain why ASB subjects usually have impaired executive control and emotional

processing functions. Our study shows that temporal variation of the FC could be a

promising tool for ASB assessment, treatment, and prevention.
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1 | INTRODUCTION

Antisocial behavior (ASB) is an important public health concern due to

its serious societal cost, not only involving directly financial loss but also

intangible mental pain and injury. There is increasing interest in

research on the neural associations of ASB and the risk prediction for

future ASB (Poldrack et al., 2017). Numerous studies in the field of

behavioral research have provided evidence that indicates disruptions

in cognitive functions in ASB subjects (Klapwijk, van den Bos, &

Güro�glu, 2017). These cognitive function disruptions include difficulties

in behavioral control (Murray, Waller, & Hyde, 2018), increased impul-

sivity (Mackey et al., 2017), risk-taking decisions (Syngelaki, Moore,

Savage, Fairchild, & Van Goozen, 2009), and excessive reward-driven

behavior (Murray, Shaw, Forbes, & Hyde, 2017), among others.
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Neuropsychological deficits in the cognitive functions are thought

to contribute to antisocial and aggressive behaviors according to

in vivo brain research using structural and functional magnetic reso-

nance imaging (MRI; Ogilvie, Stewart, Chan, & Shum, 2011). Increas-

ing studies using structural MRI have suggested that ASB might be

associated with structural or morphometric abnormalities in the high-

order cognitive function-related regions. For example, Raine, Lencz,

Bihrle, LaCasse, and Colletti (2000) found that individuals with severe

ASB had reduced gray matter volume in the dorsolateral and medial

prefrontal cortices, further confirmed by their subsequent study

(Raine, Yang, Narr, & Toga, 2011). Narayan et al. (2007) found medial

frontal cortex thinning in violent ASB individuals. A large cohort study

of ASB (N = 1,830) revealed that a higher impulsivity level was associ-

ated with decreased gray matter volume in the mediofrontal cortex

(Mackey et al., 2017). Sundram et al. (2012) used diffusion-weighted

imaging (DWI) and found abnormalities of the fibers in the frontal lobe

in ASB. While informative, the fact that ASB subjects usually have

impaired behavioral control calls for more functional studies.

The functional abnormalities in the high-level cognitive function-

related areas were also found in ASB subjects during task-based func-

tional MRI (fMRI) while the subjects were involved in decision making

and reward-based learning tasks (Klapwijk et al., 2017; Mackey

et al., 2017; Murray et al., 2017). For instance, during a monetary

reward/loss task, Murray et al. (2017) found that ASB was related to

less activation of the ventral striatum during reward anticipation and

less activation of the ventrolateral prefrontal cortex during reward

and loss anticipation. During decision making with morally distressful

stimuli, reduced activations were consistently found in the medial pre-

frontal cortex, posterior cingulate cortex, amygdala, and anterior tem-

poral areas in individuals with severe ASB (Harenski, Harenski,

Shane, & Kiehl, 2010; Marsh & Cardinale, 2014; Pujol et al., 2012).

Recently, to investigate brain function in more natural circumstances

and thus rule out potential confounding factors raised by the task exe-

cutions, our group has been using resting-state fMRI (rs-fMRI) to

investigate abnormal synchronizations of the spontaneous neural

activities among different brain regions with functional connectivity

(FC) metrics in subjects with severe ASB, that is, antisocial personality

disorders (Tang, Jiang, Liao, Wang, & Luo, 2014). Similar to our find-

ings, Yoder, Harenski, Kiehl, and Decety (2015) suggested that execu-

tive function-related networks could be the most targeted brain

functional system in ASB individuals.

Despite the progress in understanding of ASB, previous research

was mainly based on group-level analysis with statistical analysis, and

most of the work focused on subjects with severe ASB, for example,

those with violent behaviors (Poldrack et al., 2017), antisocial person-

ality disorders (Jiang et al., 2016; Jiang et al., 2017; Tang et al., 2014),

and psychopathy (Blair, 2012; Ly et al., 2012). Despite these studies

focused on contrasting severe ASB with normal controls, few studies

investigated how the brain structure or function changes with differ-

ent ASB severity levels, that is, the association between brain and

ASB scores. Specifically, traditional rs-fMRI-based FC studies of ASB

usually calculated a single FC matrix or map with the entire rs-fMRI

scan (Contreras-Rodríguez et al., 2015; Tang et al., 2014). The

resultant FC metrics have been interpreted as stable FC or time-

invariant (Lurie et al., 2018; Fan et al., 2008; Fan et al., 2007) which is

now considered to reflect “core connections” in the brain functional

networks and could not be used to characterize adaptive, complex

task control-related, “dynamic” brain functional organizations

(Hutchison et al., 2013; Liu, Zhang, Chang, & Duyn, 2018). Therefore,

it is less likely to identify any abnormalities based on such stable FC

metrics from the subjects with different ASB severity levels.

To reveal such subtle brain functional changes, dynamic FC (dFC)

studies have been recently proposed (Hutchison & Morton, 2016;

Medaglia et al., 2018). For example, the temporal variability of the

dFC has been found quite informative in detecting the switch of cog-

nitive states (Allen et al., 2014; Lurie et al., 2018) and sensitive to

many brain diseases (Jie, Liu, & Shen, 2018; Li, Zang, & Zhang, 2015;

Liao et al., 2014; Liu et al., 2018; Suk, Wee, Lee, & Shen, 2016; Yan,

Zhang, Sui, & Shen, 2018; Zhang, Chen, Zhang, & Shen, 2017).

Hutchison, Womelsdorf, Gati, Everling, and Menon (2013) suggested

that dFC may reflect an intrinsic brain property with a neural origin

and could index changes in large-scale neural activity patterns under-

lying cognition and behavior. Preti, Bolton, and Van De Ville (2017)

provided a comprehensive description of the state-of-the-art dFC

analysis approaches, including a widely adopted sliding window-based

correlation analysis for capturing time-resolved FC. By descriptive FC

measures over subsequent time windows, fluctuations in FC can be

captured (Preti et al., 2017). Currently, investigating temporal variabil-

ity of dFC is believed as an effective method to characterize FCs'

intrinsic temporal fluctuations and to associate functional networks'

activities and behaviors (Thompson et al., 2013). In their seminal

works, Kucyi et al. used standard deviation of a dFC time course to

track mind wandering (Kucyi, Salomons, & Davis, 2013) and

daydreaming (Kucyi & Davis, 2014). However, the standard deviation

of the dFC measures their temporal variability within the full fre-

quency range. To better remove spurious fluctuations and keep those

originated from neural activity and involved in changes in cognitive

states or brain diseases (Betti et al., 2013; Leonardi & Van De

Ville, 2015; Thompson et al., 2013; Wilson et al., 2015), Shen

et al. (2016) measured only low-frequency component of the dFC

time series (dFC-ALFF, amplitude of the low-frequency fluctuations of

dFC) for investigating taxi drivers' vigilance network and its

experience-related changes. Using dFC-ALFF to characterize ASB-

related brain functional changes is suitable to better understand the

neural associations of ASB.

In this study, we focused on ASB subjects with different severity

(including mild and severe ASB, measured by a continuous behavioral

scale, Antisocial Process Screening Device [APSD]) and tried to estab-

lish the individual-level associations between dFC-ALFF and the

APSD scores. Specifically, we adopted a recently established machine

learning method, namely connectome-based predictive modeling

(CPM; Finn et al., 2015; Fong et al., 2019; Scheinost et al., 2019), to

the dFC-based individualized ASB association analysis. Based on the

literature, we have the following hypotheses: (a) dFC-ALFF can be

associated with ASB severity levels, or the ASB score of a single sub-

ject can be reflected by his/her dFC pattern; (b) ASB severity could be
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mediated by the deteriorated dynamic interactions among the high-

level cognitive function-related brain regions; and (c) There exist spe-

cific functional networks (mostly high-order cognition-related) that

might be more probably targeted by ASB than others.

2 | MATERIALS AND METHODS

2.1 | Participants and antisocial behavior measure

A hundred and fifteen native Chinese male participants (age range

18–26 years old, 23.29 ± 3.36) were recruited from the School for

Youth Offender of Hunan Province. They were sentenced to receive an

“enclosed-style” reformatory education. Based on their self-reporting,

none of them was excluded due to any brain injury history or any major

mental illness, such as schizophrenia, depression, or anxiety neurosis.

All the subjects were right-handed with normal intelligence quotient

(IQ, 80–120) according to the Wechsler Adult Intelligence Scale

(Table 1) and without any history of substance abuse.

Two senior psychiatrists assessed the ASB severity for all the sub-

jects. The antisocial behavior and psychopathic traits were quantita-

tively estimated using the APSD, a 20-item questionnaire based on

the Psychopathy Checklist-revised (PCL-R; Frick & Hare, 2001;

Goodwin, Sellbom, & Salekin, 2015). APSD measures antisocial behav-

ior and psychopathic traits with regards to impulsivity, narcissism, and

callousness-unemotionality, which has been extended to younger

adults (Goodwin et al., 2015). Recent studies have shown that APSD

is reliable and valid for subjects from different countries (de Wied, van

der Baan, Raaijmakers, de Ruiter, & Meeus, 2014; Goulter, Kimonis, &

Heller, 2018; Li, Chan, Ang, & Huan, 2017; Pechorro, Maroco, Poi-

ares, & Vieira, 2013), including China (Wang, Deng, Armour, Bi, &

Zeng, 2015). The total APSD score reflects the severity of ASB and

was used as the target in our study, which ranged from 6 to 29, with a

mean of 16.69 and a median of 17 (Figure S1).

In this experiment, we also screened individual emotional status

using the Self-rating Anxiety Scale (SAS; Zung, 1971), which holds good

psychometric credentials (Tanaka-Matsumi & Kameoka, 1986). The

SAS has been extensively used in the research of emotional disorders

(Dunstan & Scott, 2018). Our subjects had the SAS scores ranging from

24 to 57, with a mean of 37.41 and a median of 36 (Figure S2A).

None of the subjects had access to alcohol for at least 6 months

before the MRI scan. Each of them was chaperoned by three regula-

tors while going out for the MRI scan. This study was approved by the

Ethical Committee of the School for Youth Offender of Hunan Prov-

ince and by the Ethical Committee of the Third Xiangya Hospital of

Central South University. Written informed consent was obtained

from each subject.

2.2 | Data acquisitions and preprocessing

All rs-fMRI data were acquired on a 3.0-T Philips scanner at the Third

Xiangya Hospital of Central South University. Before the scan, sub-

jects were instructed to relax, close their eyes, remain awake, and

refrain from any specific thinking. After the scan, a brief survey was

carried out to confirm that they did not fall asleep during the scan.

The rs-fMRI scans were performed using a gradient-echo echo-planar

imaging (EPI) sequence with the following parameters: repetition time

(TR) = 2,000 ms, echo time (TE) = 30 ms, flip angle (FA) = 90�, slice

thickness = 4 mm without gap, number of slices = 36, field of view

(FOV) = 128 mm × 128 mm, and matrix size = 64 × 64. The scan

lasted for 400 s, during which 200 volumes were obtained.

The rs-fMRI data were preprocessed based on an in-house

resting-state BOLD fMRI preprocessing pipeline as used by previous

studies (Shen et al., 2016; Zeng et al., 2014, 2018) based on SPM12

(www.fil.ion.ucl.ac.uk/spm). The first five volumes of the scanned data

were removed in consideration of the magnetic saturation, and the

remaining volumes were slice timing-corrected and head motion-

corrected. The corrected volumes were normalized to the standard

EPI template in the Montreal Neurological Institute (MNI) space and

resampled to 3 × 3 × 3 mm3 voxels (Luan, Qi, Xue, Chen, & Shen,

2008; Wu, Qi, & Shen, 2006). Spatial smoothing and temporal filtering

were performed using a Gaussian filter of 8-mm full-width half-

maximum kernel and a Chebyshev band-pass filter (0.01–0.08 Hz),

respectively. Linear detrending was carried out to remove any signal

drift. Both filtering and detrending were conducted in a voxel-wise

manner, including the voxels in the white matter and cerebrospinal

fluid; therefore, the covariates used in the later step were also filtered

and detrended in the same way. Finally, potential influences of physi-

ological noise and artifacts were further reduced by regressing out the

nuisance covariates, including six head motion parameters and the

mean signals from the white matter, cerebrospinal fluid, and the whole

brain, as well as their first-order derivatives (Chen et al., 2017).

2.3 | Calculation of dynamic FC and its temporal
variability

The processing flowchart is plotted in Figure 1. First, we segmented

the preprocessed rs-fMRI data into 160 regions of interest (ROIs) by

using a predefined atlas (Dosenbach et al., 2010). The regional rs-fMRI

signal of each ROI was calculated by averaging the blood-oxygen-

level-dependent (BOLD) signals across all voxels in it. A sliding

TABLE 1 Demographic characteristics of the subjects in this
study

Variables Mean SD

Gender Male

Number 115

Age (years) 23.29 3.36

IQ 94.28 12.47

APSD score 16.68 5.03

Abbreviations: APSD, Antisocial Process Screening Device (for measuring

antisocial behavior severity); IQ, intelligence quotient; SD, standard

deviation.
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temporal window with a size of 40 s (20 TRs) was slid with a step size

of 2 s (1 TR) along each ROI time series. Hutchison, Womelsdorf,

Allen, et al. (2013) noted that window sizes around 30–60 s could pro-

duce robust results of dFC; Shirer et al. reported that cognitive states

may be correctly identified from the covariance matrices estimated

on 30–60 s of data (Shirer, Ryali, Rykhlevskaia, Menon, &

Greicius, 2012). In a series of subsequent dFC studies (Hutchison &

Morton, 2015; Shen et al., 2016), the window length of 30–60 s was

commonly used to achieve a tradeoff between the ability to capture

FC dynamics and ensure sufficient signal-to-noise ratio (SNR). In our

study, 176 windows were derived, within each of which an FC

matrix was calculated by using Pearson's correlation of each pair of

ROI signals. As the FC is reciprocal, the entries in the lower triangle

(there are 160 × [160–1]/2 = 12,720 entries) of each FC matrix were

extracted for each window. Finally, by concatenating all the win-

dows, we constructed 12,720 dFC time series for each subject, each

of which was 176 (number of windows) in length.

To quantify the variability of each dFC time series over time, we

calculated the dFC-ALFF for each of the 12,720 dFC time series. The

dFC-ALFF reflects the total fluctuation power of a dFC time series

within a certain low-frequency range. Of note, ALFF has been tradi-

tionally widely used to measure the fluctuations of the BOLD rs-fMRI

signals and recently, was adopted to measure the temporal variability

of the dFC by our group and other researchers (Leonardi & Van De

Ville, 2015; Shen et al., 2016). The dFC-ALFF calculation includes the

following steps. First, a fast Fourier transformation (FFT) of each dFC

time series was conducted. Second, the ALFF was calculated by sum-

ming the amplitudes of the dFC frequency spectrum within a

predefined frequency band (in this study, it is 0–1/w Hz, where

w = 40 s, that is, the length of the sliding windows). Third, each dFC-

ALFF value was standardized to be a z-score by subtracting the mean

of all 12,720 dFC-ALFFs of the same subject and dividing by their

standard deviation. These z-scores of the dFC-ALFF were used as the

features of the following associative model (Figure 1b).

2.4 | ASB associative analysis based on whole-
brain dFC-ALFF

We used an SVM (support vector machine)-based regression (SVR) to

associate each subject's ASB score with the dFC-ALFF features.

SVM/SVR has been widely used to handle high-dimensional data.

Soft-margin SVM tries to find the maximal margin between two

groups while allowing some misclassifications. Theoretical and experi-

mental results have shown that such a soft margin can make the

model less prone to overfitting (Ben-Hur, Ong, Sonnenburg,

Schölkopf, & Rätsch, 2008). Second, the samples are usually not line-

arly differentiable in the original feature space. SVM could find a

F IGURE 1 Association analysis of antisocial behavior (ASB) scores with dFC patterns. (a) Individual dynamic functional connections and their
variability calculations; (b) Schematic of SVR association with nested leaveone-out cross-validation (LOOCV) which consisted of inner and outer
layers. The inner LOOCV was used to optimize the predictive model by feature selection (p-value from a predefined range .005–.05, with a step
of .001), then the optimal model (the selected features with the optimized p-value) was used to generate the result for the left-out sample in an
outer LOOCV
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decision boundary that is nonlinear in the original space but linear in a

higher-dimensional space using the “kernel trick” (Jäkel, Schölkopf, &

Wichmann, 2009). SVR retains the main features of SVM with only a

difference in loss penalty calculation. Here, we used an epsilon-

insensitive loss, which defines a “tube” with a width of epsilon around

the regression line in the hyperspace and there is no penalty for data

points far away from the regression line (Dosenbach et al., 2010).

To obtain the optimal model, we adopted a nested leave-one-out

cross-validation (LOOCV) strategy (Figure 1b). Because our sample

size (N = 115) is still considered small compared to the dimensionality

(12,720) of the features, LOOCV could ensure enough samples being

utilized in the model training (Dosenbach et al., 2010; Finn

et al., 2015). During the outer LOOCV, each sample was designated

as a testing sample in turn while the remaining samples were used to

train the SVR model. During the model training, we used nested inner

LOOCV to obtain an optimal model. Briefly, we used inner LOOCV to

optimize the p value from a predefined range (.001–.05, in a step of

.001) and selected the model with best association performance in

the inner LOOCV (the largest Pearson's correlation) as the optimal

model (Figure 1b). We used a range of p values instead of a certain

“predefined” p value because we were not sure about which p value

could select the most useful feature set for ASB prediction. Although

previous studies may use a single predefined p value, this p value may

not be suitable in our study. On the other hand, it is the common prac-

tice for machine learning studies to use a range of parameters and opti-

mize them, such as the p value here for feature selection (different p-

values only indicate the degree of association with ASB score), with

nested LOOCV (Chen, Cai, Ryali, Supekar, & Menon, 2016; Zhou

et al., 2020). In detail, in each inner LOOCV, with training samples, we

calculated the correlation between dFC features and the ASB score.

The features with p values less than the predefined p threshold were

used to train an SVR model that was then used to predict the testing

sample of the inner LOOCV. The p threshold that obtains the best asso-

ciation performance throughout the inner SVR prediction was used for

predicting ASB scores with the testing data in the outer LOOCV.

In this study, the selected features from the training data were

used to fit the SVR model with a linear kernel and a hyperparameter

C = 1 (Dosenbach et al., 2010; Finn et al., 2015). We did not optimize

the hyperparameter but rather fixed it because involving too many

freely estimable parameters could make the model less robust (Zhou

et al., 2020). For other hyperparameters, we kept them as defaults,

including insensitivity = 0 and an eInsensitive loss function (Dosenbach

et al., 2010; Finn et al., 2015). After the full outer LOOCV iterations,

each of the subjects had a model-generated ASB score. The final per-

formance of the model was assessed by using Pearson's correlation

between the model-generated ASB scores and the real ASB scores

across all the subjects. Of note, in the original CPM paper, feature

selections were carried out for the positively correlated (with the

behavior score) features and negatively correlated features to train

different associative models, separately (Finn et al., 2015). However,

we propose that both types of features should be included in the

same SVR model as an “integrated model” (using both positively and

negatively correlated features) to reach a relatively unbiased result.

2.5 | Identification of the consistently associative
dFC links

2.5.1 | Link-wise contribution evaluation

To reveal potential imaging features that are associated with ASB, we

identified the consensus dFC links that were consistently (100%)

selected across all the outer LOOCV loops in the integrated model.

For each consensus dFC, we further calculated the averaged

Pearson's correlation between its dFC-ALFF and the ASB score across

all the outer LOOCV loops, representing the contribution of each dFC

link (we hereby called it “link-wise contribution”). Specifically, we sep-

arately evaluated the links where weakened dFC-ALFFs were associ-

ated with severer ASB scores, and those where abnormally

strengthened dFC-ALFFs were associated with severer ASB scores.

2.5.2 | Region-wise contribution evaluation

Of all the consistently selected dFC links, we then determined which

brain regions were more associated with ASB. For each ROI, its

“degree of contribution” was defined by a sum of half of the absolute

values of the “link-wise contributions” across all the dFC links that

were connected to this region (Dosenbach et al., 2010). In this way,

the ROIs with higher “degree of contributions” were deemed to be

more important for ASB-brain association.

2.5.3 | Network-wise contribution evaluation

It is also important to identify which functional network(s) could be

more associated with ASB. Therefore, in addition to the link-wise and

region-wise contributions, we further summarized a “network-level”

degree of association for each predefined large-scale functional net-

work. Such a network-level degree of association included an intra-

network, an inter-network, and pairwise inter-network ASB associa-

tion index. The intra-network ASB association index was calculated by

a sum of the link-wise contribution across all selected intra-network

dFC links, while an inter-network ASB association index was calcu-

lated by the sum of the link-wise contribution across all the dFC links

connecting one network to all the other networks. If a dFC link con-

nected two networks, half of its link-wise contribution goes to each

network. Because the ROI number in each network was different, we

normalized both indices of the network-level degree of association by

multiplying its original value with Nmax/N, where Nmax presents the

maximum ROI number among the six networks, and N presents the

ROI number of the targeting network. To investigate the contribution

of special pairwise networks to the ASB-brain association, we calcu-

lated the percentage through the ratio of the sum of the link-wise

contribution between each pairwise networks over the sum of all

inter-network link-wise contribution.

Six well-known functional networks were chosen from a previous

study (Dosenbach et al., 2010). They are the cingulo-opercular network
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(CON), frontoparietal network (FPN), default mode network (DMN),

sensorimotor network (SMN), occipital network (OcN), and cerebellum

network (CereN). For each network, an intra- and inter-network ASB

association indices were generated, and the percentage of each

pairwise networks was also calculated. In this way, we generated intra-

network, inter-network, and pairwise-network contributions.

2.6 | ASB association based on network-specific
dFC-ALFF

In Section 2.4, whole-brain dFC-ALFFs were used to be individually

associated with ASB; to further look into which brain functional

network(s) might be better associated with ASB scores, we investi-

gated both intra-network connections (only the dFC-ALFF links within

the same network were used to be individually associated with ASB

scores, resulting in a total of six models) and pairwise inter-network

connections (all the dFC-ALFF links connecting each pair of the net-

works were used to be individually associated with ASB, resulting in a

total of 15 models since there are 15 network pairs). For each model,

we repeated the same nested-LOOCV analysis as used in the inte-

grated model. A threshold of p < 0.05 after false discovery rate (FDR)

correction was adopted to indicate (a) good associative model(s).

2.7 | Validation

To validate the effectiveness of the dFC-based ASB association, we also

used the traditional static FCs to associate with ASB scores and com-

pared the results with the dFC-ALFF-based results. The difference

between the two methods is that, for static FC-based ASB association,

Pearson's correlation of the entire regional rs-fMRI signals was calcu-

lated (Shen, Wang, Liu, & Hu, 2010). For each subject, the lower triangu-

lar entries in the 160 × 160 static FC matrix were standardized to z-

scores as we did for standardizing dFC-ALFF features. These z-score

transformed static FC features were used as features to feed into the

associative model for result comparison instead of the dFC-ALFF values.

To investigate the influence of head motion on the results, we

calculated Pearson's correlation between the extent of head motion

of the individuals and the 103 dFC-ALFF features that were identi-

fied to be most contributive in the brain-behavior association analy-

sis. To measure head motion, we calculated the mean absolute

displacement of each volume compared with the previous volume,

that is, the Euclidean norm of their first-order derivative terms

(
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δx2 +Δy2 +Δz2

p
) (Power, Barnes, Snyder, Schlaggar, & Petersen,

2012; Zeng et al., 2014).

To test whether specific mood states can alter the brain dFC and

its relationship with ASB, as suggested in Borchardt et al. (2018),

Eryilmaz, Van De Ville, Schwartz, and Vuilleumier (2011), Harrison

et al. (2008), Hyett et al. (2015), Kuppens, Oravecz, and Tuerlinckx (2010);

Kuppens and Verduyn (2017), we used SAS scores as targets in a control

correlation analysis, where SAS scores were used as targets to feed into

the associative model instead of the ASB scores. The same analysis

was conducted as that for dFC-ASB association study and compared

with the latter.

3 | RESULTS

3.1 | Performance of dFC-ALFF-based ASB
association

Based on the dFC-ALFF, we used nested LOOCV to investigate the

brain-behavior association and found that the SVR model achieved a

good performance, with r = .41 (p = 5.77 × 10−6) between the model-

generated and the observed ASB scores (Figure 2a).

3.2 | Contributing dFC-ALFF features

3.2.1 | Link-wise contribution

There were 66 negatively correlated features and 37 positively corre-

lated features consistently selected across 100% outer LOOCV runs

F IGURE 2 The brain-behavior association between dFC patterns and ASB scores. (a) Scatter plot between the model-generated and the
observed ASB scores for the integrated model. (b) Scatter plot between the model-generated and observed ASB scores for the dFC between
CON and FPN. (c) Scatter plot between the model-generated and observed ASB scores with the dFC between DMN and FPN
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(Figure 3a,b). We found that most of the consistently contributed

features were the dFC links connecting different networks (i.e., inter-

network dFC links), regardless of their positive or negative relation-

ship with the ASB scores. Specifically, there were 54 out of

66 (81.82%) negatively correlated features and 31 out of 37 (83.78%)

positively correlated features connecting different functional net-

works. Only a few intra-network dFC links consistently contributed to

the ASB-brain association (Figures 3 and 5a).

3.2.2 | Region-wise contribution

Based on the consistently selected dFC features, the ROI-level

degree of association with ASB scores was obtained for each

brain region and they were visualized in Figure 4 (see Table 2 for

details). In Figure 4, the size of an ROI was proportional to its

ASB associative level (i.e., the degree of contribution or impor-

tance to the associative model). The most important regions were

mainly located at the prefrontal cortex (PFC, including anterior,

medial, dorsolateral, and ventral prefrontal areas), cingulate cortex

(including anterior and posterior cingulate cortices), insula, thala-

mus, inferior and middle temporal cortices, and the parietal associ-

ation cortex (i.e., the precuneus, inferior parietal lobule [IPL],

intra-parietal sulcus [IPS], superior parietal lobule [SPL], posterior

parietal cortex [PPC]).

3.2.3 | Network-wise contribution

The network-level degree of association with ASB score showed

more network specificity and more correlation direction specificity.

That is, different large-scale functional networks were found to

differently contribute to the ASB-brain association. Generally, the

high-order function-related networks, such as CON (cingulo-

opercular network) and FPN (frontoparietal network), as well as one

of the primary networks (sensorimotor network, or SMN), contained

more negatively associated features (Figure 5a). This indicates

that the severer ASB the subjects had, the lesser their dFC fluctua-

tions were. On the other hand, the OcN (occipital network) had more

positively associated features than the negatively associated ones,

meaning that the greater the OcN's dFC fluctuations were, the

severer ASB the subjects had. While the default mode network

(DMN) and the cerebellar network (CereN) did not have such speci-

ficity regarding the positive or negative associations with the ASB

scores (Figure 5a), the DMN seemed more important than the CereN

in the ASB-brain association analysis in terms of the normalized

weight. Of all the six large-scale networks, CON appeared to be

more informative and more significantly associated with the ASB

scores. In addition, we observed a large difference between the

involvement of the inter-network and that of the intra-network dFC

links, with the former more contributive to the ASB-brain association

than the latter.

F IGURE 3 The dFC-ALFF links that were consistently selected during ASB-brain association, including (a) Functional connections with
negative correlation with the antisocial behavior score, and (b) Functional connections with positive correlation with the antisocial behavior score.
Curves in colors indicate intra-network dFC links; gray curves indicate inter-network dFC links. CereN, cerebellum; CON, cingulo-opercular
network; DMN, default mode network; FPN, fronto-parietal network; OcN, occipital network; SMN, sensorimotor network
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We also calculated the percentage of the involvement to measure

the possible contribution of each pairwise inter-network connections

in the ASB-brain association (Figure 5b,c). For the negatively corre-

lated connections, four groups of pairwise inter-network connections

were more involved in ASB-brain association than others. If the per-

centage of the involvement can indicate a degree of the contribution,

the inter-network dFCs among CON, DMN, FPN, and SMN showed

higher contributions than others. Among them, three pairwise inter-

network connections were related to CON (i.e., CON–DMN, CON–

FPN, and CON–SMN), which revealed the CON's important role in

the ASB-brain association. The FPN and DMN may also play impor-

tant roles with their high contributions identified (i.e., FPN–DMN and

CON–FPN for FPN, CON–DMN, and FPN–DMN for DMN). For the

positively correlated connections, DMN may play a relatively impor-

tant role in the ASB-brain association (i.e., more links of DMN–FPN

and DMN–SMN were involved). In addition, CON–OcN may also pre-

sent importance.

3.3 | Performance of network-specific ASB score
association

When using intra-network dFC links of each network to associate

with ASB, none of the six networks showed any significant associative

ability (p > .05). When using pairwise inter-network connections to

associate with ASB, the dFC between CON and FPN presented good

associative ability (r = .23, p < .05, FDR corrected, Figure 2b), while

the dFC between DMN and FPN showed an even better associative

ability (r = .41, p < .05, FDR corrected, Figure 2c and Figure S3). Other

pairwise networks did not show a significant relationship with ASB

(for details, see the Supplemental Document and Table S1).

3.4 | Performance of static FC-based ASB
association and validation

Compared to the success of the dFC-ALFF-based ASB association,

the traditional static FC was not able to generate any valid result

(r = −.0577, p = .54).

Among all the 103 contributive dFC-ALFF features, most of them

(100, 97.09%) had insignificant correlations with the extent of head

motion, while only three (2.91%) showed weak correlation but they

were not significant after FDR correction (Table S2). These results

imply that head motion may not play an important role in our study

(for details, refer the Supporting Information).

In the control correlation experiment, we used SAS scores as tar-

gets to feed into the associative model for dFC-SAS association study.

The results showed insignificant association between the dFC-ALFF

F IGURE 4 ROI-level degree
of associations with ASB scores.
The size of each ROI was
proportional to its ASB
associative level (i.e., the degree
of contributions to ASB-brain
association). For the definition of
the ASB associative level, see
main text. CereN, cerebellum;

CON, cingulo-opercular network;
DMN, default mode network;
FPN, fronto-parietal network; L,
left; OcN, occipital network;
SMN, sensorimotor network; R,
right

336 JIANG ET AL.



and SAS scores (r = −.0691, p = .4631; Figure S2B). From such results,

we concluded that the individual emotional status as measured by

SAS could not play a significant role in our study.

4 | DISCUSSION

4.1 | General discussions

In this study, we used temporal variations of the dFC from rs-fMRI to

investigate the ASB-brain association. As far as we know, it is the first

study that uses a dFC technique for individualized association with

ASB scores. Compared to static FC, time-varying, dynamic FC was

proved to be more sensitive and informative for ASB-brain associa-

tion. A simple and intuitive dFC metric, that is, dFC-ALFF (Leonardi &

Van De Ville, 2015; Shen et al., 2016), showed its promise in individu-

alized trait (ASB) association. More importantly, we revealed specific

patterns of dFC-ALFF associated with ASB. Based on the analysis at

different spatial scales, we found that (a) ASB score was mainly nega-

tively correlated with the degree of dFC's temporal variation, that is,

severer ASB corresponds to less fluctuation of the dFC; (b) All the

three high-order cognition-related functional networks (the DMN,

CON, and FPN) might be closely associated with the behavioral

abnormality in ASB subjects; (c) The inter-network dFCs might con-

tribute more than the intra-network dFCs to the ASB-brain associa-

tion; and (d) One of the primary networks, SMN, seems also

informative to ASB-brain association. Our results provide useful infor-

mation for the understanding of the potential neural influences on

ASB, and for guiding the future interventions or treatment for sub-

jects with severe ASB. In addition, we also found that such a brain

dFC-ASB association was less likely affected by head motion and an

individual's emotional status.

4.2 | Significantly improved ASB-brain association
based on dFC

Temporal variations of the dFC (dFC-ALFF) were considerably better

than the traditional static FC in the task of ASB-brain association. A

possible reason is that the dFC variation and the static FC amplitude

may reflect different network characteristics. The dFC was proposed

to be related to much higher-level cognitive functions, such as atten-

tion levels (Madhyastha, Askren, Boord, & Grabowski, 2015), con-

sciousness (Wang, Ong, Patanaik, Zhou, & Chee, 2016), and task

adaptive control (Reddy et al., 2018). The fluctuation of the FC along

time could reflect brain network flexibility (Medaglia et al., 2018).

Such network flexibility could be essential for human maintenance of

normative mental health (Kaiser et al., 2016; Rashid et al., 2016;

Sanfratello, Houck, & Calhoun, 2019) and cognitive abilities (Chen,

Cai, et al., 2016; Madhyastha et al., 2015; Xie et al., 2018). Subjects

with ASB show increased impulsivity (Mackey et al., 2017), risk-taking

decisions (Syngelaki et al., 2009), and reward-driven behavior (Murray

et al., 2017); all these abnormalities could be more related to dFC.

Since most of our subjects had mild ASB, their dFC could be more

easily affected than the static FC.

In this study, dFC was found more sensitive to ASB scores than

static FC for the mild ASB subjects. Compared to the previous studies,

we found that the sensitivity could vary in different ASB-brain associ-

ation tasks. For example, our previous study has shown that static FC

could be useful for classifying subjects with severe ASB (i.e., antisocial

personality disorders) from normal controls (Tang et al., 2014). Such a

patient versus healthy control classification task is easier than discrim-

inating different degrees of ASB in the current regression analysis. As

for disease detection sensitivity, other groups also found that dFC

was more sensitive than static FC in the studies of different cognitive

statuses (Kucyi & Davis, 2014; Medaglia et al., 2018; Reddy

F IGURE 5 Network-wise contribution. (a) Normalized network-
level degree of association with ASB. Blue bars indicate the network-
level contributions by the negatively correlated dFC only, and red bars
indicate the network-level contributions by the positively correlated
dFC only. Dashed bars indicate contributions of intra-network dFC,
and solid bars indicate contributions of inter-network dFC; (b) The
contribution of each pairwise inter-network connections to the ASB-
brain association by the negatively correlated dFC only; and (c) The
contribution of each pairwise inter-network connections to the ASB-
brain association by the positively correlated dFC only. CereN,
cerebellum; CON, cingulo-opercular network; DMN, default mode
network; FPN, fronto-parietal network; OcN, occipital network; SMN,
sensorimotor network
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TABLE 2 Brain regions correlated with antisocial behavior scores

Brain region

MNI coordinates

Weight Network Brain region

MNI coordinates

Weight Networkx y z x y z

Temporal −59 −47 11 1.73 CON aPFC 29 57 18 0.57 FPN

Thalamus 11 −12 6 1.50 CON dlPFC 46 28 31 0.56 FPN

Thalamus −12 −3 13 1.36 CON dlPFC 40 36 29 0.52 FPN

Basal ganglia 14 6 7 1.34 CON vPFC −52 28 17 0.30 FPN

Thalamus −12 −12 6 0.84 CON vlPFC 39 42 16 0.29 FPN

Precuneus 8 −40 50 0.81 CON IPL −48 −47 49 0.29 FPN

Fusiform 54 −31 −18 0.64 CON dFC 44 8 34 0.28 FPN

Parietal 58 −41 20 0.59 CON dFC 40 17 40 0.27 FPN

Post insula −30 −28 −9 0.58 CON dlPFC −44 27 33 0.26 FPN

dACC 9 20 34 0.54 CON Occipital −29 −75 28 0.87 OcN

mFC 0 15 45 0.54 CON Post occipital 13 −91 2 0.66 OcN

Basal ganglia 11 −24 2 0.54 CON Occipital 15 −77 32 0.58 OcN

aPFC 27 49 26 0.52 CON Occipital 36 −60 −8 0.54 OcN

Ant insula −36 18 2 0.52 CON Post occipital −29 −88 8 0.53 OcN

vFC −48 6 1 0.52 CON Occipital 29 −73 29 0.52 OcN

Post cingulate −4 −31 −4 0.52 CON Occipital −44 −63 −7 0.38 OcN

Angular gyrus −41 −47 29 0.31 CON Occipital 20 −78 −2 0.30 OcN

Temporal 51 −30 5 0.31 CON Occipital 9 −76 14 0.30 OcN

Basal ganglia −20 6 7 0.30 CON Occipital 19 −66 −1 0.28 OcN

TPJ −52 −63 15 0.28 CON Post occipital −5 −80 9 0.28 OcN

Basal ganglia −6 17 34 0.28 CON Occipital −34 −60 −5 0.26 OcN

vFC 51 23 8 0.27 CON Occipital −18 −50 1 0.26 OcN

Mid insula 37 −2 −3 0.27 CON Parietal 46 −20 45 1.32 SMN

Temporal 43 −43 8 0.26 CON Parietal −38 −27 60 1.19 SMN

vPFC 34 32 7 0.26 CON dFC 60 8 34 0.89 SMN

Inf temporal −59 −25 −15 1.46 DMN Post parietal −41 −31 48 0.85 SMN

Occipital −2 −75 32 0.85 DMN Mid insula 33 −12 16 0.84 SMN

Precuneus −6 −56 29 0.84 DMN Sup parietal 34 −39 65 0.84 SMN

Inf temporal −61 −41 −2 0.80 DMN Post insula 42 −24 17 0.82 SMN

IPS −36 −69 40 0.79 DMN Parietal 41 −23 55 0.82 SMN

Occipital 45 −72 29 0.58 DMN Precentral gyrus 44 −11 38 0.58 SMN

vmPFC −6 50 −1 0.58 DMN Parietal −24 −30 64 0.57 SMN

Post cingulate −5 −43 25 0.57 DMN Precentral gyrus −54 −9 23 0.55 SMN

Precuneus 11 −68 42 0.56 DMN Frontal 53 −3 32 0.55 SMN

Occipital −9 −72 41 0.55 DMN vFC 43 1 12 0.52 SMN

Sup frontal −16 29 54 0.53 DMN vFC −55 7 23 0.51 SMN

Post cingulate −5 −52 17 0.31 DMN Parietal −47 −18 50 0.31 SMN

Post cingulate 10 −55 17 0.29 DMN Pre SMA 10 5 51 0.29 SMN

ACC 9 39 20 0.28 DMN Temporal −53 −37 13 0.27 SMN

vmPFC −11 45 17 0.27 DMN Precentral gyrus −54 −22 22 0.26 SMN

Inf temporal 52 −15 −13 0.27 DMN Precentral gyrus 58 −3 17 0.26 SMN

Occipital −28 −42 −11 0.27 DMN SMA 0 −1 52 0.26 SMN

Post cingulate −8 −41 3 0.27 DMN Temporal −54 −22 9 0.25 SMN

vlPFC 46 39 −15 0.27 DMN Parietal −26 −8 54 0.25 SMN

mPFC 0 51 32 0.27 DMN Inf cerebellum −34 −67 −29 0.83 CereN
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et al., 2018; Shen et al., 2016) or other brain diseases or disorders

(Rashid et al., 2016; Rashid, Damaraju, Pearlson, & Calhoun, 2014; Su

et al., 2016). Our study suggests that it is better to use dFC as fea-

tures if the effect of interest is subtle (e.g., mental disorders at their

preclinical stages).

4.3 | Potential neural association of ASB

4.3.1 | Inter-network dFC deteriorations in ASB

Regarding the brain functional connections that show dFC-ASB corre-

lation, one of the major findings is that the inter-network dFC links

are mainly involved. It may suggest that it is the inter-network dFC

that could be mainly associated with behavioral deficits, while the

intra-network dFCs could be largely intact and resilient (Figures 3 and

5). Such difference might indicate that ASB could mainly target inter-

network communications, therefore making the subjects manifesting

difficulties in handling social behaviors. Inter-network communica-

tions have been regarded essential in maintaining healthy executive

control functions (Gallen, Turner, Adnan, & D'Esposito, 2016;

Schultz & Cole, 2016). Poor executive control functions might intro-

duce externalizing antisocial behaviors of the offenders (Klapwijk

et al., 2017). On the other hand, intra-network connections are mainly

for certain specialized brain functions that are less complex than those

mediated by or relying on the inter-network connections (Gallen

et al., 2016; Schultz & Cole, 2016). The largely intact intra-network

dFCs could be the reason that these ASB subjects still look normal in

a general sense.

The network-specific ASB association revealed three higher-order

networks (CON, FPN, and DMN) that were more strongly associated

with ASB than the other functional networks. Interestingly, these

three networks have also been mentioned and studied as a triple

network model (Menon, 2011), which relies on the assumption that

the aberrant inter-network connections could underlie a wide range

of psychiatric and neurological disorders (Wu et al., 2016). Our results

showed that the temporal variability of the inter-network dFCs, espe-

cially those among the three networks, might be more important in

maintaining normative cognitive functions and affective statuses, such

as healthy social behaviors. Therefore, we provided another support

to the importance of the triple network model from the dFC point

of view.

4.3.2 | Disruptions of the network-specific dFC

The CON and FPN are considered as two major networks related to

control functions (Dosenbach et al., 2010). In our study, both CON

and FPN showed less dFC variability with each other and with other

networks for the subjects with severer ASB. These two control net-

works may contribute to the flexible control of the goal-directed

behaviors, such as executive control, attentional control, and emo-

tional control through their moment-to-moment interactions and

those with other regions (Coste & Kleinschmidt, 2016; Dosenbach

et al., 2010; Dosenbach, Fair, Cohen, Schlaggar, & Petersen, 2008;

Sadaghiani & D'Esposito, 2015). The CON was believed to provide

stable task control over entire task epochs, while the FPN seems to

be able to initiate and adjust control in response to feedbacks

(Dosenbach et al., 2008; Duncan, 2010; Spreng, Sepulcre, Turner, Ste-

vens, & Schacter, 2013). In a recent study investigating executive

functions, the CON and FPN were consistently engaged across

switching, updating, and inhibiting tasks (Engelhardt, Harden, Tucker-

Drob, & Church, 2018). The impaired dFC variability between the two

control networks and between them and other networks in the ASB

subjects may result in insufficient control and dysregulation of behav-

iors, thus leading to more impulsive or involuntary behaviors.

TABLE 2 (Continued)

Brain region

MNI coordinates

Weight Network Brain region

MNI coordinates

Weight Networkx y z x y z

Post cingulate 1 −26 31 0.26 DMN Inf cerebellum 18 −81 −33 0.58 CereN

Angular gyrus −48 −63 35 0.25 DMN Inf cerebellum −6 −79 −33 0.53 CereN

Post cingulate −11 −58 17 0.25 DMN Lat cerebellum −28 −44 −25 0.29 CereN

IPL −41 −40 42 1.14 FPN Med cerebellum −11 −72 −14 0.28 CereN

IPL 54 −44 43 0.87 FPN Inf cerebellum 33 −73 −30 0.28 CereN

Post parietal −35 −46 48 0.86 FPN Lat cerebellum 21 −64 −22 0.27 CereN

IPS −32 −58 46 0.86 FPN Med cerebellum 14 −75 −21 0.27 CereN

IPS 32 −59 41 0.82 FPN Med cerebellum −6 −60 −15 0.27 CereN

IPL −53 −50 39 0.61 FPN Med cerebellum 5 −75 −11 0.26 CereN

Note: Brain region names were adopted from a predefined atlas (Dosenbach et al., 2010). The related links are consistently selected by the associative

model. Weight was calculated by a sum of 0.5 × absolute value of the “link-wise contribution” across all the dFC links that connected to this ROI

(Dosenbach et al., 2010). See the main text for more information.

Abbreviations: CereN, cerebellum; CON, cingulo-opercular network; DMN, default mode network; FPN, fronto-parietal network; OcN, occipital network;

SMN, sensorimotor network.
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We found both positively and negatively correlated DMN-related

dFC with ASB scores, indicating its complex relationship to the abnor-

mal behaviors. The DMN's functionality and its interaction with the

control systems have been proposed to play an important role in

regulating a wide range of internal thoughts (Andrews-Hanna,

Smallwood, & Spreng, 2014; Buckner & DiNicola, 2019; Spreng,

Mar, & Kim, 2009), emotion regulation, future planning, and self-

inspection (Mak et al., 2017). Apathy, defined as loss or reduction of

motivation and associated with decreases in at least two out of three

of goal-directed behavior, cognitive activity, or emotion (Husain &

Roiser, 2018), has been regarded mainly related to the alterations of

the DMN (Husain & Roiser, 2018). However, the statistical DMN fluc-

tuations reported in those studies were the product of contrasting

between two or more conditions (i.e., a target condition vs. a baseline

condition, or a healthy status vs. a diseased status). Here, we revealed

the association between DMN's dFC fluctuations and continuous ASB

scores. Specifically, we found that the DMN's FC trajectories within a

few minutes or the DMN-related FC's temporal dynamics were asso-

ciated with ASB scores, which may be correlated with altered high-

order functions carried out by DMN, such as apathy, self-inspection

deficiency, absence of long-term planning, and difficulty with behavior

control in ASB individuals.

The SMN is the only primary functional system that was found to

be responsible for ASB, where its dFC variability with CON was found

to be negatively associated with ASB, while its dFC variability with

DMN was found to be positively associated with ASB. This might

imply that it is difficult for the ASB subjects to receive control infor-

mation sent from these high-level networks to maintain behavioral

adaption to the fast-changing environment. It is also possibly associ-

ated with abnormal behavioral responses, which could be externalized

as antisocial behavior performance, including impulsivity, risk-taking,

violent, aggressive behavior, and affective instability.

It should be noted that, due to the nature of multivariate machine

learning analysis with nested LOOCV, the predictive results and the

contributive features between the whole brain-based and specific

network-based ASB associations were not strictly the same. We used

embedded- (or nested-) LOOCV to select features and the selected

features were fed into an SVR model for training the association

model. When different features were considered, the complex rela-

tionship among them also changed, which resulted in different classifi-

cation hyperplane and “weights” on the selected features derived

from the SVR training. This multivariate analysis will generate differ-

ent results compared to the mass-univariate analysis such as regres-

sion (as each link will be evaluated independently in the latter

method). Nevertheless, we found that the results are still consistent

to a large extent. On one hand, almost all the predictive links are

inter-network links based on whole-brain-based association analysis,

which is consistent with the network-wise association analysis with

only significant inter-network link-based associations. On the other

hand, the CON, DMN, and FPN are among the most useful functional

networks compared to the others (Figure 5a), which is consistent with

the network-wise association results (only links between CON and

FPN, as well as those between DMN and FPN, show significant asso-

ciative abilities with the ASB scores; Figure 2b,c).

4.4 | Possible compensatory effect of cognitive
function damage in ASB

In our study, we found that several connectivities showed positively cor-

related dFC variation with ASB severity, which might indicate a possible

compensatory effect against the impaired executive control functions in

ASB subjects. These dynamic links are mainly inter-network connections

(Figures 3 and 5). Neuroscience research has revealed strong brain plas-

ticity in motor, sensory, and cognitive domains, even in the social capaci-

ties (Valk et al., 2017). This type of functional compensation is

considered as a neural plastic effect of structural or functional distur-

bances (Iraji et al., 2016; Tomassini et al., 2016). Therefore, we assume

that these increased dFC links in the subjects with severer behavioral dis-

turbance are more likely to be related to functional compensation.

4.5 | Limitations and future work

In this study, the low-frequency fluctuations of dFC were used as fea-

tures to be associated with ASB scores. This metric characterizes the

temporal variability of the dFC but might ignore other rich information

in the dFC, such as the covariance among different dFC time series

(i.e., “high-order FC”; Chen et al., 2016). The sample size of the mild

ASB participants is also relatively small for the associative analysis.

We will carry out a further experiment and use a large sample size to

validate our findings. Additionally, we followed the previous studies

to perform within-subject standardization to the dFC-ALFF features,

because it is suggested for reducing undesirable relationships with

nuisance variables and increasing test–retest reliability of ALFF met-

rics (Yan, Craddock, Zuo, Zang, & Milham, 2013). In the future, we will

investigate the differences between subject-specific z-scoring and

other commonly used feature standardization methods in the machine

learning field. Since resting state is a less constrained “status” where it

is difficult to monitor or maintain subjects' status during the rs-fMRI

scan, the interpretation of the rs-fMRI-based findings should be care-

fully made. Many studies have indicated that varying emotional or

cognitive events during the so-called “resting state” could modulate

dFC (Barnes, Bullmore, & Suckling, 2009; Cole, Bassett, Power,

Braver, & Petersen, 2014; Gonzalez-Castillo et al., 2015; Grigg &

Grady, 2010). However, due to technical limitations, monitoring sub-

jects' emotional and cognitive statuses during rs-fMRI scan was not

achieved at the time when the data was collected. More careful

experimental design, such as monitoring and controlling emotional

and cognitive statuses, should be conducted in our future study.

Finally, we did not investigate whether the associations between brain

dFC and ASB may be modulated by the severity of ASB. Such a study,

however, is interesting and will be investigated in the future when we

enrolled enough samples.
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5 | CONCLUSIONS

Our study demonstrated the effectiveness of using dynamic FC in

antisocial behavior severity association in a machine learning frame-

work. Dynamic neural circuit disruptions were found to possibly be

associated with less cognitive control and more antisocial behavior,

such as the inter-network dynamic FCs between the high-level control

networks and other functional systems. In particular, three high-order

cognitive function-related networks showed to be associated with

ASB, especially the impaired controllability as reflected by the reduced

dFCs among the control networks. Our study demonstrates that the

temporal FC variation measured by the dFC-ALFF method could be a

promising tool for ASB assessment, treatment, and prevention.
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