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ABSTRACT Here, we announce the draft genome sequences of three Fusarium circi-
natum isolates that were used to inoculate slash pines (Pinus elliottii) at the U.S.
Forest Service Resistance Screening Center in Asheville, North Carolina. The genomes
of these isolates were similar to other publicly available genomes, with average nu-
cleotide identity values of �0.98.

The fungus Fusarium circinatum (class Sordariomycetes, phylum Ascomycota) causes
pitch canker disease in Pinus species (1, 2) and also infects Pseudotsuga menziesii (3,

4), maize, and native grasses (5). This diverse host range and its ability to infect seed
have allowed the fungus to spread around the world (6, 7). Three isolates (S, V, and LB)
collected from Florida, where pitch canker symptoms are prevalent (8), were selected
from eight isolates previously used to inoculate southern pines (9).

The pathogens were isolated from pine trees with a spore trap and cultured for DNA
extraction (10). Single-spore isolates were cultured on acidified quarter-strength potato
dextrose agar (aqPDA) (BD Difco, Detroit, MI) and incubated at 25°C for 5 days. The
leading edges of growing mycelia were extracted and ground with a micropestle in
Eppendorf tubes with 200 ml of sterilized distilled water, and 50 �l of solution was
streaked onto sterilized 100-mm cellophane disks (Bio-Rad Laboratories, Hercules, CA)
laid on top of aqPDA, as performed by Cassago et al. (11). Cultures were grown for 48
h at 25°C to produce medium-free mycelia for storage in bead beater tubes, which were
frozen in liquid nitrogen prior to lyophilization and homogenization with steel beads.
DNA was extracted following an optimized phenol-chloroform genomic DNA extraction
protocol described by Feehan et al. (12).

Samples were sequenced at the University of Florida Interdisciplinary Center for
Biotechnology Research. Fifty nanograms of size-selected DNA was used for Illumina
library preparation. Sequencing libraries were prepared using a NEBNext Ultra II DNA
library preparation kit and NEBNext multiplex oligomers (New England Biolabs, Ipswich,
MA) following the manufacturer’s protocol. Library enrichment and barcoding were
performed with five to seven cycles of amplification prior to AMPure bead purification. The
final library was quantitated with a Qubit 3.0 fluorometer (Thermo Fisher Scientific,
Waltham, MA) and sized on the 2200 TapeStation (Agilent Technologies, Santa Clara, CA).
DNA sequencing libraries were normalized and pooled equimolarly for sequencing in a
single Illumina MiSeq v.3 run (2 � 300 cycles). Approximately 50 million high-quality
paired-end reads (�90% of reads had a score of at least Q30) yielded approximately 15 Gb
of sequence data. Trim Galore v.0.6.5 was used to trim and pair raw reads, which were
assembled into contigs using SPAdes v.3.13.0 with k-mer values of 21, 33, 55, 77, 99, and
127 (13, 14). Bowtie 2 v.2.3.5 aligned reads against the filtered contigs to produce the SAM
format alignment (15). SAMtools v.1.10 converted these alignments to BAM files for
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polishing with Pilon v.1.22 using default parameters to output FASTA files (16, 17). Default
parameters were used except where otherwise noted.

Table 1 summarizes assembly data and provides comparisons between publicly
available references and newly sequenced isolates. The genomes of these isolates are
similar to publicly available genomes from the American clade of the Fusarium fujikuroi
species complex (18–21). Sequences include the conditionally disposable chromosome.

Data availability. Genome assemblies are available in GenBank under accession
number PRJNA623862 for assemblies GCA_013168835.1, GCA_013168815.1, and
GCA_013168825.1, while Illumina reads used for assembly are available under accession
numbers SRX8085557, SRX8085558, and SRX8085556 for isolates S, V, and LB, respec-
tively.
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Fourie G, Georgieva M, Ghelardini L, Hantula J, Ioos R, Iturritxa E, Kanetis
L, Karpun NN, Koltay A, Landeras E, Markovskaja S, Mesanza N,
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T, Raitelaitytė K, Raposo R, Robin C, Rodas CA, Santini A, Sanz-Ros AV,
Selikhovkin AV, Solla A, Soukainen M, Soulioti N, Steenkamp ET, Tsopelas P,
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