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Circular RNAs (circRNAs) are stable covalently closed non-coding RNAs (ncRNAs). Many
studies indicate that circRNAs are involved in the pathological and physiological
processes of liver cancer. However, the functions of circRNAs in liver cancer immunity
are less known. In this review, we summarized the functions of circRNAs in liver cancer,
including proliferative, metastasis and apoptosis, liver cancer stemness, cell cycle,
immune evasion, glycolysis, angiogenesis, drug resistance/sensitizer, and senescence.
Immune escape is considered to be one of the hallmarks of cancer development, and
circRNA participates in the immune escape of liver cancer cells by regulating natural killer
(NK) cell function. CircRNAs may provide new ideas for immunotherapy in liver cancer.

Keywords: liver cancer, circRNA, immune evasion, natural killer (NK) cells, innate immunity
INTRODUCTION

Liver cancer, a disease with high mortality and poor prognosis, is one of the most common
malignant tumors in the world (1). Statistics show that liver cancer ranks the fifth in cancer
incidence, the second in all cancer deaths, and the third in cancer mortality (2). Liver cancer
includes three major pathological types: hepatocellular carcinoma (HCC), intrahepatic
cholangiocarcinoma (ICC), and HCC-ICC mixed type (3). The occurrence of liver cancer is
closely related to hepatitis B, hepatitis C, and non-alcoholic fatty liver disease (4–6). According to
the patient’s overall conditions, a range of therapies have been utilized in the liver cancer treatment,
such as surgical resection, liver transplantation, immunotherapy, local ablative therapies, and
systemic chemotherapy. However, liver cancer is generally detected at the late stage because the
patients might not perform the clinical symptoms at the beginning. Its recurrence is approximately
50–80% after treatment within 5 years (7). A better understanding of the molecular mechanisms of
liver cancer is essential to largely improve the overall prognosis and discover novel effective
therapies of liver cancer.

Immune escape refers to the growth and metastasis of tumor cells through various mechanisms
to avoid recognition and attack by the immune system (8). The mechanisms of immune escape are
mainly related to modifications, changes in tumor cells and alterations in the tumor immune
microenvironment. Through the mechanisms of modification and change, tumor cells themselves
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can enhance their ability to evade immune surveillance and
attack. Tumor has a highly heterogeneous structure, and tumor
cells interact with many cells and factors including immune cells
and immune factors to form a complex tumor immune
microenvironment. The tumor microenvironment is the place
where the immune system interacts with tumor cells. Natural
killer (NK) cells are involved in tumor immune escape
through multiple mechanisms (9–11). Various soluble
factors and cytokines released by tumor cells or the tumor
microenvironment reduce the activity of NK cells and their
cytotoxic activity (12–14). Therefore, restoration of NK cell
function is an important area of research in antitumor
immunotherapy. Various strategies have been developed to
restore NK cell function, including cytokine therapies,
monoclonal antibodies, and adoptive cell transfer (15–18). NK
cells can be divided into CD56bright and CD56dim based on the
expression of CD56. Two subpopulations of CD56 are present, of
which the CD56bright subpopulation can be amplified by IL-2
stimulation. The CD56bright subpopulation can be amplified by
IL-2 stimulation, and about 10% of them express killer cells.
Immunoglobulin-like receptor secretes synthetic TNF-associated
apoptosis-inducing ligand (TRAIL). CD56dim subpopulation is
insensitive to IL-2 stimulation, and 85% of CD56dim are KIR+
(19–22). In HCC, Rae1 is expressed on the surface of HCC cells,
and this factor, as a ligand of NKG2D, the NK cell activation
receptor, can activate NK cells and promote their anti-tumor
immunity. On the other hand, the immune function of NK cells
is limited, and the subsets of CD56dimNK cells in the peripheral
blood of HCC patients were significantly lower than those in
the healthy control group (23). CD56dimNK cells in the
tumor area of HCC patients expressed fewer IFN-g than non-
CD56dimNK cells, which was associated with CD4+CD25+
Tregs in vitro. During hepatocarcinogenesis, changes in the
microenvironment of the extracellular matrix and the secretion
of TGF-b by hepatic stellate cells can inhibit the activity and
function of NK cells, thus weakening their monitoring function
of hepatocytes (24). TGF-b secreted by Treg can inhibit NK cell
activation by down-regulating NKG2D, affecting its immune
killing function against liver cancer cells (25). Studies have
reported that in liver cancer, circular RNAs (circRNAs) are
involved in NK cell-associated immune evasion. Targeting
circRNAs to restore NK cell function may provide new
directions for the treatment of liver cancer.

Non-coding RNAs (ncRNAs), without the ability to translate
into protein, were seen as ‘junk DNA’ by scientists for
years. However, an array of ncRNAs nowadays has been
discovered based on advances in sequencing technologies. In
addition, accumulating lines of evidence indicate that ncRNAs
play major roles in the processes of carcinoma initiation,
progression, and metastasis by regulating proliferation,
apoptosis, and cell cycle (26, 27). Based on the length and
shape of RNA molecules, the ncRNAs are divided into three
types including short ncRNAs (<200 nucleotides) and long
ncRNAs (lncRNAs, >200 nucleotides) and circRNAs.
CircRNAs, a novel category of endogenous ncRNAs, come
from non-canonical back-splicing events of precursor mRNAs
Frontiers in Oncology | www.frontiersin.org 2
(pre-mRNAs) (28). CircRNAs were originally discovered in an
RNA virus in 1976 and observed in eukaryotic cells in 1979 (29–
31). CircRNAs have been recognized as ‘splicing noise’ or
aberrant byproducts for a long time because they present a
covalently joined continuous loop structure without 5′caps and
3′tails (32, 33). However, high-throughput sequencing and
bioinformatics algorithms have clearly shown that circRNAs
are not the accidental byproducts (34–37). Besides, circRNAs
have been proved to be abundant and evolutionarily conserved,
and are expressed in different types of tumors (38, 39). CircRNAs
can not only regulate the expression of host genes by acting as
transcriptional regulators, but also serve as microRNA (miRNA)
sponge to fine-tune the regulatory axis of miRNA-mRNA (40–
45). It has been confirmed that circRNAs can be used as
prognostic biomarkers because they have remarkably stable
characteristics (46). Furthermore, studies demonstrated that
circRNAs can encode hidden peptides, and serve as a new
drug targets resource bank (47–50). We herein illustrated the
circRNAs molecular mechanisms connected to liver cancer,
offered a novel perspective and a new horizon for cancer
treatment and diagnosis. CircRNAs provide new ideas for the
study of immune escape in liver cancer.
BIOGENESIS OF CIRCRNAS

CircRNAs are stable RNAs that are resistant to RNase R,
circRNAs are mainly produced by the pre-mRNA through
backsplicing. Although backsplicing is considered as an
alternative splicing, it has different molecular mechanisms
from linear alternative splicing. The hypothesis of backsplicing
is that the downstream splicing site is reversed, and the upstream
splicing site is connected to form a closed circRNA molecule.
According to the region of origin, circRNAs can be divided into
three types: (a) exon–intron circRNAs (EIcircRNAs), (b) exon
circRNAs (ecircRNAs), (c) Intronic RNAs (ciRNAs) (Figure
1) (51).

The circularization model of circRNA is divided into intron
circularization and exon circularization. There are three models
for the circularization of EIcircRNAs and ecircRNAs: Intron
pairing, Lariat and RNA-binding protein (RBP) (Figure 1) (52).
Intron pairing-driven circularization, which known as direct
backsplicing, is achieved by direct base pairs of intron flanking
complementary sequences or reverse repeats (53, 54). The main
component of intron pairing-driven circularization is the cis-
acting elements, which enable direct base pairing between flank
introns, either as short interspersed nuclear elements or as non-
repeating complementary sequences (55, 56). Lariat-driven
circularization, which is known as exon-skipping, is formed
during linear splicing. During the transcription, the pre-mRNA
can be partially folded, which formed an RNA lariat containing
a 7 nt GU-rich element adjacent to the 5′ splice site and an 11 nt
C-rich element closed to the branch point site consensus motif
(28, 57). In addition, the third pattern is RBP-driven
circularization. Through protein-protein interactions or the
dimerization of the RBPs, the splicing sites are pulled closer,
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and the spliceosomes participate in the backsplicing reaction
(40, 58). RBP-driven circularization is guided by two flanking
intron pairs that are close to the flanking intron reverse
complementary sequences (59). Above all, biogenesis of
circRNA is a complicated process, and there are many
regulatory details need to dig into.
Frontiers in Oncology | www.frontiersin.org 3
FUNCTIONS OF CIRCRNAS

CircRNAs have become a hot topic in the field of ncRNA. The
function of circRNAs has been extensively studied. Different types
of circRNAs have different characteristics. EIcircRNAs and ciRNAs
are usually located in the nucleus, and ecircRNAs are usually
located in the cytoplasm. Different locations make them play
different functions. The main mechanisms and biological
functions of circRNAs are shown in Figure 2 and discussed below.
TRANSCRIPTION REGULATION

A growing number of studies have shown that circRNAs play a
role in regulating gene expression. CircRNAs, ciRNA, and
EIciRNAs are located in the nucleus that can regulate protein
expression by regulating transcription or post-transcription (59,
60). EIciRNAs can regulate transcription because they retain
intronic sequences of host genes (61). For instance, circEIF3J and
circPAIP2, which are located in the nucleus, can interact with U1
small nuclear ribosomal nucleoprotein (snRNP) to promote the
transcription of host genes by binding to RNA polymerase
II (RNA pol II) (41). Although EIciRNA and ciRNA do not
have the function of miRNA sponge, they can regulate
gene transcription and expression in transcription or post-
transcription (Figure 2a).
TRANSLATION

Traditionally, the 5′ and 3′ untranslated regions (UTRs) have
been regarded as the basic elements of translation in eukaryotic
cells. Although circRNAs contain exons, the absence of a 5′ cap
FIGURE 2 | Functions of circRNAs. (a) EIcircRNAs and ciRNAs can regulate gene transcription via binding to U1 snRNP and RNA pol II in the nucleus; (b)
ecircRNAs exported into cytoplasm; (b1) IRES-mediated cap-independent translation of ecircRNAs; (b2) m6A-mediated cap-independent translation of ecircRNAs;
(c) ecircRNAs act as miRNA sponges; (d) ecircRNAs interact with RBP motifs; (e) ecircRNAs can form pseudogenes; (f) ecircRNAs can be secreted from the cell to
outside via exosomes; (g) ecircRNAs act as biomarkers.
A B C

FIGURE 1 | CircRNA biogenesis. (A) exon–intron circRNAs (EIcircRNAs). (B)
exon circRNAs (ecircRNAs). (C) Intronic RNAs (ciRNAs).
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structure and a poly A tail is considered to be ncRNA that does
not encode proteins. However, an increasing number of
researches have shown that some circRNAs can be translated
into proteins. The researchers constructed artificial circRNAs
containing an infinite reading frame to recruit 40s ribosomal
subunits and translation into peptides in vitro (62). In 2017,
Legnini et al. found that circ-ZNF609, a backsplicing product
of ZNF609 exon 2, can be translated into proteins based on
high-throughput phenotype screening. And, it can be translated
into proteins in a splice-dependent and cap-independent
manner (63).

More and more circRNAs are found to be able to translate
into proteins, so how do the circRNAs initiate the translation
mechanism? In some conditions, such as viral infection,
mRNA translation can be initiated via internal ribosome entry
site (IRES), which is an alternative mechanism for cap-
independent translation (64, 65). IRESs can recruit ribosomes
directly to initiate translation. IRES mediated translation is a
widely accepted mechanism for initiating translation of
circRNAs (66–68). Studies have shown that circRNA can be
translated when an IRES is introduced into it (62). Both IRES
and N6-methyladenosines (m6A) can drive circRNA translation
(Figure 2b). The presence of methylated adenosine residues in
m6A form is another cap-independent translation mechanism
(69). Studies have shown that m6A can directly bind to
eukaryotic initiation factor 3 and initiate the translation of
circRNAs into proteins in human cells (69, 70).
MIRNA SPONGE

MiRNA is a type of ncRNA with a length of about 19–25 nt,
which regulates the transcription of the target gene by binding to
the 3′ UTR of the target gene through its seed sequence (71).
Studies have shown that circRNAs contain miRNA response
elements (MREs), which can competitively bind to miRNA (72).
That is, circRNAs can bind to miRNA as miRNA sponges and
then regulate the expression of target genes (71), such as,
overexpression of circITCH can bind miR-17 and miR-224 to
regulate p21 and PTEN genes to inhibit the development of
breast cancer (73). CircHIPK3 inhibits the growth of cancer cells
by binding to various miRNAs such as the tumor suppressor
miR-124 (74, 75) (Figure 2c).
PROTEIN REGULATION

Some circRNAs have been shown to bind to RBP, and can isolate
RBP and transfer proteins to specific subcellular sites (76). The
combination of circPABPN1 and RBP (HuR) prevented the
interaction between HuR and PABPN1 (mRNA) and inhibited
the translation of PABPN1 (77). High expression of circANRIL
can be combined with peccadillo ribosomal biogenesis factor 1
(PES1) to control ribosomal RNA maturation (78). CircAmotl1
can promote the nuclear translocation of PDK1, AKT1, STAT3,
c-myc, and other proteins by interacting with RBP and regulate
Frontiers in Oncology | www.frontiersin.org 4
the expression of corresponding target genes (79–81). The above
lines of evidence suggest that circRNAs can regulate the function
of proteins by binding to PBP instead of a single protein
(Figure 2d).
FORM PSEUDOGENES

Pseudogenes are typically derived from reverse-transcriptional of
linear mRNA, which integration into the host genome. In the
human genome, thousands of pseudogenes are found at about
10% of the gene sites (82, 83). In 2016, the research revealed for
the first time that mammalian genomes contain pseudogenes
derived from circRNA by establishing a new type of computing
analysis process (CIRCpseudo). It revealed that mice circSATB1
source of pseudogenes can be combined with CTCF, which
prompts the pseudogenes derived from circRNAs to have the
potential to control gene expression. This study showed a fresh
perspective on the fact that circRNAs can be inserted into the
genome via reverse transcription to alter genomic genetic
information and regulate gene expression. Furthermore, many
pseudogenes derived from circRNAs have been identified by
searching for non-collinear backsplicing in both mouse and
human genomes (84). In mice, the reverse transcription of
circRFWD2 produced pseudogenes associated with long
terminal repeats. The molecular mechanism of circRNA
reverse transcription remains to be further studied (Figure 2e).
OTHER FUNCTIONS

Exosomes are a type of vesicles with a diameter of 40–150 nm; it
is released by the majority of cell types (85). Exosome contains
miRNA, lncRNA, circRNA, mRNA, transcription factors, lipids,
and proteins (86). Exosomes can be used for liquid biopsy to
monitor the development and metastasis of tumors. CircRNAs
can be transported to the extracellular via exosomes (Figure 2f)
(87). It has been found that exosomes contain abundant
circRNAs, and the role of exosomal circRNAs remains to be
further explored. CircRNA can be secreted into the blood, saliva,
and other body fluids as a biomarker for disease prediction
(Figure 2g). CircRNA is stable in body fluids because of its
properties, and it is a promising biomarker for the diagnosis of
cancer (88).
THE FUNCTIONS OF CIRCRNAS IN LIVER
CANCER

The high mortality, poor prognosis, and lack of effective
treatment methods of liver cancer force us to search for
effective therapeutic targets and better tumor biomarkers. The
studies have shown that a large number of circRNAs are
abnormally expressed in liver cancer, which play a regulatory
role in the development of liver cancer. The expression and
function of circRNA in liver cancer are shown in Figure 3.
February 2021 | Volume 10 | Article 598464
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PROLIFERATIVE, METASTASIS,
AND APOPTOSIS

Studies have shown that circRNAs can regulate the proliferation,
migration, invasion, apoptosis, and metastasis of liver cancer
cells. In liver cancer, hsa_circ_0000567, hsa_circ_0085154,
hsa_circRNA_0007874, hsa_circ_0005986, hsa_circ_0001730,
c i r cRNA-0072309 , hsa_c i r c_0070269 , c i r cHIAT1 ,
circADAMTS13, ciRS-7/Cdr1as, and hsa_circ_0018665
suppressed ce l l pro l i f e ra t ion (44 , 89–98) . Whi le ,
hsa_circ_0101432, SCD-circRNA 2, circVAPA, circ_0015756,
circ_0001178, circMYLK, circ-ZEB1.33, circZFR, circ-FOXP1,
circMAN2B2, hsa_circ_0091581, hsa_circ_0005075,
hsa_c irc_101280 , hsa_c i rc_103809 , c i rcDYNC1H1,
hsa_circ_0000092, circFBXO11, circLARP4, hsa_circ_0001649,
circ_0001955, and circ-TCF4.85 promoted tumor growth (99–
120). Circ_0067934, hsa_circ_0007144, hsa_circRBM23,
circHIPK3, circSLC3A2, circRHOT1, circb-Catenin, circRNA-
104718, circ-PRMT5, ciRS-7/Cdr1as, exosomal circ-DB,
circ_0015756, circ_0091579, and circZFR enhanced
cell proliferation, migration, and invasion (121–134).
However, circCDK13, circC3P1, circ_0003418, circTRIM33-12,
hsa_circ_0001445, and hsa_circ_0008450 inhibited cell
proliferation, migration, and invasion (135–140). The study
showed that circRNA_100338 increased cell invasive (141).
CircRNA_000839 enhanced cell invasion and migration (142).
Exosomal circPTGR1, circASAP1, and exosomal circRNA-
100338 increased cell metastasis (143–145). Circ-10720 and
circ-ZNF652 induced epithelial–mesenchymal transition
(EMT) (146, 147). CircSMAD2 suppressed the EMT (148).
And, circRNA_101368 suppressed the migration (149). The
research showed that circRNA_101505 decreased cell
proliferation and induced apoptosis (150). Conversely,
hsa_circ_0016788, circFBLIM1, circ-BIRC6, circ_0000267, and
circ_0008450 promoted cell proliferation, invasion, and
Frontiers in Oncology | www.frontiersin.org 5
suppressed the apoptosis (151–155). The research validated
that circRNA_5692 suppressed the progression and invasion,
induced apoptosis (156). On the contrary, hsa_circ_0003645
promoted cell migration, invasion and suppressed cell
apoptosis (157). Circ-HOMER1 enhanced the proliferation,
migration, invasion, and suppressed apoptosis (158).
In addition, exosomal hsa_circ_0051443 enhanced cell
apoptosis (159).
LIVER CANCER STEMNESS

Both cancer stem cells (CSCs) and circRNAs could affect the
carcinogenesis and development of liver cancer, but there are few
studies on the relationship between CSCs and circRNAs. Recent
studies have found that circ-MALAT1, generated by the
backsplicing of lncRNA, promoted the self-renewal of liver
cancer CSCs (160). In addition, the researchers found that
circZKSCAN1 can regulate the CSCs of HCC via Qki5/
circZKSCAN1/FMRP/CCAR1/Wnt signaling axis (161). These
findings revealed the role of circRNA in regulating stem cells and
enrich the function of circRNA.
CELL CYCLE

An increasing number of studies have shown that circRNAs can
be involved in the regulation of the cell cycle in liver cancer. For
instance, hsa_circ_0000567 induced G1/S arrest in HCC cells by
sponging miRNA-421 (89). Hsa_circ_0005986 suppressed the
cell proliferation of HCC through promoting the G0/G1 to
S phase transition (91). Circ-ZEB1.33 increased the percentage
of S phase by regulating CDK6/Rb (105). Inhibition of
hsa_circRNA_103809 significantly induced G1/S arrest (113).
FIGURE 3 | Functions of circRNAs in liver cancer.
February 2021 | Volume 10 | Article 598464

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Tang et al. CircRNAs in Liver Cancer
Down-regulation of circFBXO11 induced G1/G0 arrest (116).
Furthermore, exosome-derived circRNA could be involved in the
regulation of the cell cycle. Such as, exosome-transmitted
hsa_circ_0051443 arrested the cell cycle in HCC (159).
GLYCOLYSIS

Hepatoma cells required glycolysis to meet their proliferation
needs under hypoxia conditions, and glucose reprogramming is a
feature of cancers. Under the hypoxia environment, circMAT2B
enhanced glycolysis of HCC via the miR-338-3p/PKM2 axis
(162). Furthermore, circ-PRMT5 increased glycolysis of HCC by
the miR-188-5p/HK2 axis (129).
ANGIOGENESIS

Cancer cells secrete the angiogenic factors that lead to the
formation of abnormal vascular networks. Tumor blood vessel
is the key target of tumor treatment. A recent study found that
hsa_circ_0000092 promoted angiogenesis in HCC (115).
DRUG RESISTANCE/SENSITIZER

Resistance to chemotherapy is one of the causes of failure in
the treatment of hepatocellular carcinoma. The research showed
that circRNA_101505 inhibited cisplatin chemoresistance
through miR103/Oxidored-Nitro Domain-Containing Protein
1 pathway (150). In addition, circ_0003418 sensitized HCC to
cisplatin by Wnt/b-Catenin pathway (137). CircFBXO11
regulated oxaliplatin resistance through miR-605/FOXO3/
ABCB1 axis in HCC (116). The expression of hsa_circ_
0006294 and hsa_circ_0035944 was decreased in resistant
HCC cells, and they may play a key role in sorafenib-resistant
HCC cells (163). Therefore, circRNAs may provide us with a new
strategy for the treatment of HCC.
SENESCENCE

Cell senescence is a defense mechanism to prevent and control
cell damage and a barrier to prevent tumorigenesis. p53 and p21
are regulatory molecules in the senescence process. Research has
found that circLARP4 promoted cellular senescence by
regulating miR-761/RUNX3/p53/p21 signaling in HCC (117).
IMMUNE EVASION

Dysfunction of the immune system can lead to abnormal
immune surveillance of liver cancer, and liver cancer cells can
also act on the immune system to lead the immune escape. NK
cells account for 50% of the total number of hepatic lymphocytes
Frontiers in Oncology | www.frontiersin.org 6
and are cytotoxic cells with antitumor functions mediated by the
release of cytotoxic granules, FasL and TRAIL (164). NK cells do
not rely on antigen presentation; this allows NK cells to target
stress and damaged self-cells (165).

Liver cancer cells avoid being destroyed by immune escape.
Studies showed that circRNA could be involved in immune
escape. Activation receptor natural killer group 2 member D
(NKG2D) and its ligands in NK cells play a crucial role in cell-
mediated immune responses to cancer (166). The researchers
examined the expression of NKG2D in 200 patients with HCC
and showed that the number of NKG2D-positive cells in HCC
tissues was significantly reduced compared to adjacent non-
tumor tissues. The expression of circTRIM33-12 was positively
correlated with the number of NKG2D-positive cells in HCC.
The result showed that circTRIM33-12 may enhance immune
function by protecting Ten eleven translocation 1 (TET1) via
sponging miR-191 (138). TET1, one of the 2-OG-dependent
dioxygenases, is involved in regulating the formation of 5-
hydroxymethylcytosine (5hmC) and has been proposed to be
involved in DNA demethylation process (167). The studies have
indirectly linked TET1 as a tumor suppressor in HCC (168).
Hsa_circ_0085154 could enhance the innate immune
monitoring effect of NK cells by up-regulating UL16 binding
protein 1 (ULBP1), which suggests that circRNA may play a role
in tumor immunity (169). In HCC, hsa_circ_0085154 promoted
ULBP1 expression and assisted NK cells to recognize target
tumor cells (169). ULBP1 is an NKG2D ligand that activates
receptors expressed by NK cells (170) (Figure 4). NKG2D is a
basic activation receptor belonging to the C-type lectin-
like family that is constitutively expressed on NK cells
(171). The apparently invariant activation receptor NKG2D
binds promiscuously to a variety of ligands, such as major
histocompatibility complex class I-associated chains A and B
(MICA/B) and a unique family of long 16 binding proteins
(ULBPs), which are poorly expressed on healthy cells, but they
are up-regulated under DNA damage (172). The up-regulation of
these ligands may lead to a shift in NK cell homeostasis from
inhibition to activation. The research revealed that ULBP1, one
of the NKG2D ligands, was not expressed in poorly differentiated
human hepatoma tissues and cell lines, but was abundantly
expressed in hyperplastic abnormal nodules and well to
moderately differentiated HCC cells (172). These findings
provided conclusive evidences for the role of NK cells and the
NKG2D receptor pathway in immune surveillance of HCC. In
addition, HCC-derived exosomal circUHRF1 induced
impairment of IFN-g and TNF-a secretion in NK cells. In
HCC, high level of circUHRF1 suggested poor clinical
prognosis and dysfunction of NK cells. CircUHRF1 inhibited
the secretion of NK cell-derived IFN-g and TNF-a. High level of
plasma exosomal circUHRF1 was associated with a decreased
proportion of NK cells and decreased NK cells tumor infiltration.
In addition, circUHRF1 up-regulated the expression of T cell
immunoglobulin and mucin domain 3 (TIM-3) by degrading
miR-449c-5p, thereby inhibiting the function of NK cells
(173) (Figure 4). TIM-3 plays an important role in cell
immunity, it was expressed in NK cells and affects cellular
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immune responses (174). In recent years, many studies have
focused on the expression of TIM-3 in HCC and its mechanism
(175). TIM-3 polymorphisms have been found to play an
important role in the susceptibility and characteristics of HCC.
The TIM-3 promoter region is associated with certain features of
HCC, including lymph node metastasis and tumor stage (176).
Modulation of the role of TIM-3 in innate immunity offers new
directions for HCC treatment.
CONCLUSION

Structurally and mechanistically, the liver is an immune organ. It
is rich in immune cells. Immune cells including dendritic cell
(DC), NK cell, myeloid-derived suppressor cell (MDSC), CD8+
T cell, CD4 +T cell, regulatory T cell (Treg), T helper cell 1 (Th1),
T helper cell 2 (Th2), T helper cell 17 (Th17), and tumor-
associated macrophages (TAMs) (177–179). Liver cancer is one
of the most common malignancies in the world. It is seriously
threatening the health of Chinese people. In recent years, tumor
immunotherapy is a major advance in cancer treatment, and
targeted blocking of PD-1/PD-L1 immune checkpoints
antibody-therapy is a milestone in the development of cancer
immunotherapy. Currently, the FDA approved PD-1 antibody
drug nivolumab (Opdivo) is being used in the treatment of
cancer, and pembrolizumab (Keytruda) with the popular anti-
cancer drug docetaxel (Sorafenib) combination for the treatment
of HCC has been effective (180, 181). However, due to the
primary/secondary drug resistance, immune escape, and
antibody-drug effectiveness, the survival rate did not increase
significantly in liver cancer. Therefore, it is of great significance
Frontiers in Oncology | www.frontiersin.org 7
to find a new way to improve the immunotherapy of liver cancer.
NK cells are a new target for immunotherapy. There is a growing
body of research using NK cell-related therapies to fight cancer
(182, 183). NK cell-mediated immune surveillance is an important
mechanism for tumor suppression. NK cells kill tumor cells
through the release of perforin and granzyme and the secretion
of pro-inflammatory cytokines and chemokines (184).

More and more studies have shown that circRNAs are
involved in the carcinogenesis and progression of liver cancer.
In this review, we summarized the functions of circRNAs in liver
cancer. We found that circRNAs affect the cytotoxicity of NK
cells. CircUHRF1 up-regulated TIM-3, the immune checkpoint,
to inhibit the function of NK cells. Binding of TIM-3 to its ligand
induces immune tolerance by depletes NK cells (185). It has been
found that in tumor cells, immune checkpoints can lead to NK
cell dysfunction, blocking these immune checkpoints (e.g. TIM-
3, NKG2A, CTLA-4, PD-1, KIR2DL-1/2/3, CD96, TIGIT) can
restore the function of NK cells (186). We can inhibit circUHRF1
to enhance NK cell function by down-regulating the expression
of TIM-3. CircUHRF1 may provide a potential therapeutic
strategy for immune checkpoints in liver cancer. More
circRNAs regulating immune checkpoints are yet to be
discovered, and targeting circRNAs provided a new direction
for immune checkpoint therapy. Furthermore, circRNAs can
affect the function of NK cells by regulating the receptor and
ligand of NK cells. However, the relationship between circRNAs
and other immune cells still needs further study. Understanding
the mechanism of circRNAs in HCC patients is important in the
design of effective immunotherapeutic protocols. Although
circRNAs have shown an important role in liver cancer, many
fields remain to be studied. For instance, the mechanism that
FIGURE 4 | The role of circRNAs in liver cancer immunity.
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