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Summary

Bacterial cell division involves the dynamic assembly

of a diverse set of proteins that coordinate the invagi-

nation of the cell membrane and synthesis of cell

wall material to create the new cell poles of the sepa-

rated daughter cells. Penicillin-binding protein PBP

2B is a key cell division protein in Bacillus subtilis

proposed to have a specific catalytic role in

septal wall synthesis. Unexpectedly, we find that a

catalytically inactive mutant of PBP 2B supports cell

division, but in this background the normally dispen-

sable PBP 3 becomes essential. Phenotypic analysis

of pbpC mutants (encoding PBP 3) shows that PBP

2B has a crucial structural role in assembly of the

division complex, independent of catalysis, and that

its biochemical activity in septum formation can be

provided by PBP 3. Bioinformatic analysis revealed a

close sequence relationship between PBP 3 and

Staphylococcus aureus PBP 2A, which is responsible

for methicillin resistance. These findings suggest

that mechanisms for rescuing cell division when the

biochemical activity of PBP 2B is perturbed evolved

prior to the clinical use of b-lactams.

Introduction

Bacillus subtilis exhibits moderate resistance to a variety

of antimicrobial compounds, particularly those that tar-

get cell wall biosynthesis (e.g., b-lactams, nisin and cati-

onic antimicrobial peptides) (Helmann, 2006). The

integrity of the cell wall is crucial for the viability of bac-

teria because it protects the cell from mechanical dam-

age derived either from environmental factors or the

osmotic pressure of the cytoplasm, which would other-

wise burst the cell membrane and cause cell lysis. The

major structural component of most bacterial cell walls

is a net like matrix of long glycan strands cross-linked

by peptide bridges (peptidoglycan; PG) (Sobhanifar

et al., 2013). During cell growth, and also during cell

division, new cell wall material is synthesised to allow

cell expansion and to make the dividing wall (septum).

The final steps of PG synthesis are presumed to be car-

ried out predominantly by bifunctional (class A)

penicillin-binding proteins (PBPs) that possess both gly-

cosyltransferase activity, used to extend the glycan

chains, and transpeptidase (TPase) activity, which gen-

erates the peptide cross-links. Additional monofunctional

(class B) PBPs that have only TPase activity are also

present and have essential roles in PG synthesis,

although their precise biochemical role is unclear. b-

lactam antibiotics inhibit the TPase activity of PBPs with

varying degrees of specificity (Spratt, 1975). Previous

analyses have indicated that resistance/tolerance to

b-lactam antibiotics is mediated by transcriptional regu-

lation through extra cytoplasmic function (ECF) sigma

factors and the messenger molecule c-di-AMP (Luo

and Helmann, 2012; Commichau et al., 2015). Full

details of these resistance mechanisms remain to be

characterised.

Bacterial genomes often encode 10 or more PBPs,

although many of them are non-essential, suggesting

functional redundancy. However, there is usually at least

one essential PBP and several laboratories have shown,

in various organisms, that a PBP specialised for wall

synthesis in the division septum is essential (Yanouri

et al., 1993; Kato et al., 1988; Massidda et al., 1998;

Daniel et al. 2000; Datta et al., 2006; Sauvage et al.,

2014). In B. subtilis, the essential division specific
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enzyme, PBP 2B, is targeted to division sites by interac-

tion with one or more components of the division

machinery, orchestrated by the FtsZ protein (Daniel

et al., 2000; 2006). The functions of the other B. subtilis

PBPs in cell growth are less well understood, although

in B. subtilis it seems that PBP 2A has a major role in

elongation of the cylindrical part of the wall, albeit a role

that is partially redundant to that of PBP H (Wei et al.,

2003).

All PBPs carry a well-characterised catalytic triad with

a conserved active site serine. This serine makes a

covalent adduct with b-lactam antibiotics, which renders

the enzyme inactive. Substitutions of this serine com-

pletely inactivate the TPase activity of the enzyme (Gof-

fin and Ghuysen, 2002). Remarkably, we have found

that elimination of catalytic activity by substitution of the

active site serine of PBP 2B (PBP 2B(S309A)) has almost

no effect on cell division in B. subtilis, even though

depletion of the entire protein is lethal (Daniel et al.,

1996). The structural role of PBP 2B and its equivalents

has been quite well-documented in B. subtilis (Daniel

et al., 2006) and in other bacteria (Goehring and Beck-

with, 2005; Karimova et al., 2005; Wissel et al., 2005;

Datta et al., 2006; Valbuena et al., 2006), but the notion

that catalytic activity was not essential was quite unex-

pected. Further analysis of the PBP 2B(S309A) mutant

revealed that PBP 3, previously shown to be dispensa-

ble (Murray et al., 1996), takes on an essential role in

this background. We show that the essential function of

PBP 3, in the absence of biochemically active PBP 2B,

lies in its TPase activity.

By characterising the sensitivity of B. subtilis strains

lacking individual PBPs, we have found that the loss of

PBP 3 or PBP 2A makes B. subtilis significantly more

sensitive to b-lactams. The increased sensitivity of the

PBP 2A null mutant is potentially explained by the fact

that the mutant does exhibit a mild growth defect (Mur-

ray et al., 1998), but was unexpected for the strain lack-

ing PBP 3. Overall, our results suggest that the division

machinery is assembled in such a way that if the TPase

activity of the architectural PBP 2B enzyme is inacti-

vated (e.g., by covalent antibiotic binding), PBP 3 can

provide the necessary activity to allow the division sep-

tum to be synthesised. The results also indicate that

PBP 3 is intrinsically resistant to the binding of several

b-lactams, suggesting that it may provide a resistance

mechanism comparable to that recently acquired by

Staphylococcus aureus MRSA, a notion further sup-

ported by sequence analysis. This may explain how the

acquisition of a heterologous resistant PBP can provide

antibiotic resistance without the immediate need for

extensive protein-protein interactions with the resident

synthetic machinery.

Results

A mutant with biochemically inactive PBP 2B is viable

During our work to characterise the essential cell divi-

sion gene pbpB, coding for PBP 2B, we tested whether

the transpeptidase activity of the protein was important

for its function in synthesising the division septum. We

aligned PBP 2B with PBP 2X of S. pneumoniae, and

other PBPs that have defined active sites, to identify the

probable active site residue required for transpeptidation

(Pares et al., 1996; summarised in Supporting Informa-

tion Fig. S1 panel A). From this analysis, the serine at

position 309 was clearly located in the consensus

sequence for the active site of these PBPs. The amino

acid numbering for PBP 2B used here is based on the

translational start site being located at the fourth amino

acid of the coding sequence as it is currently annotated

in Swiss-Prot entry PBPB_BACSU Q07868 (Xu, 2008).

We then made a serine to alanine (S309A) substitution

by site directed mutagenesis to generate a mutant pbpB

gene denoted pbpB*. To confirm that the S309A muta-

tion had inactivated the TPase activity of the protein,

both the wild type and the mutant forms of PBP 2B

were overexpressed in E. coli. Both proteins were found

to be predominantly present in the membrane fraction of

E. coli, but on exposure of the proteins to a fluorescent

derivative of a b-lactam antibiotics, bocillin-FL, the

mutant protein did not detectably bind bocillin, whereas

the wild type protein was heavily labelled (Fig. 1A lane

1; compared to lane 2), confirming that the S309 resi-

due is required for penicillin binding.

The same pbpB* mutation was then introduced into B.

subtilis at the ectopic amyE locus under the control of a

xylose-inducible promoter (Pxyl). The coding sequence

of the green fluorescent protein (gfp) gene was also

fused to the N-terminal coding end of the pbpB* gene

so that the localisation of the mutant protein could be

studied. Then, a Pspac (IPTG-dependent) promoter was

inserted in front of the wild-type copy of pbpB, to allow

repression of the native copy of the gene. Unexpectedly,

in the absence of IPTG but in the presence of xylose,

thus expressing only the mutant protein, the strain

(4004) was found to grow as well as that expressing the

wild-type protein (Fig. 1B).

Fluorescence microscopy of the cells showed that the

mutant protein was targeted to division sites, similar to

the wild type protein, and the cells were morphologically

normal even when only the mutant copy of pbpB was

expressed (Fig. 1F, panel X). However, when xylose and

IPTG were both withheld, repressing both copies of

pbpB, growth of the culture was severely impaired

(Fig. 1B). Microscopic examination of these cultures

showed that the cells grew as long filaments which
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eventually lysed (Fig. 1E), consistent with the previous

result that PBP 2B is essential for cell division. These

results suggested that PBP 2B(S309A) was still functional

for cell division, although it was possible that the Pspac

promoter was not sufficiently repressed and provided

sufficient wild-type PBP 2B for division to occur. West-

ern blotting using polyclonal anti-PBP 2B antisera (Fig.

1C) indicated the presence of a very small amount of

wild-type PBP 2B in total protein samples of strain 4004

grown in the absence of IPTG (Fig. 1C lane ‘X’).

Fig. 1. A. Penicillin binding activity of wild type and mutant forms of PBP 2B. PBP 2B and PBP 2B(S309A) were overproduced in E. coli and
the membrane fraction was purified, labelled with Bocillin-FL and separated by SDS-PAGE. The left panel is an image of the protein gel
following Coomassie staining showing that similar amounts of total protein and overproduced PBP 2B protein were present on the gel and the
right panel shows an image of the same gel when scanned for fluorescence. The gel was loaded with membrane preparations from E. coli
over expressing WT pbpB (lane 1); pbpB* (2); control (vector only) (3).
B. Growth curve of strain 4004 in various inducer conditions. Strain 4004, which contains the pbpB* allele controlled by a xylose induced
promoter (Pxyl) and a WT pbpB controlled by an IPTG induced promoter (Pspac), was grown in PAB with IPTG then transferred to Fresh PAB
media with various combinations of supplements (XI, media supplemented with xylose and IPTG; X, xylose alone; I, IPTG alone; -, no
addition.) and the growth against time was measured by optical density.
C. Inducer dependence of PBP 2B and GFP-PBP 2B. Western blot of total protein samples taken at the start of the experiment (t0) and 1 h
after removing or adding inducers (arrow in panel B) and probed with polyclonal antisera specific for PBP 2B.
D. An image obtained by fluorography showing the binding profile of bocillin–FL to B. subtilis PBPs from strains 168 (wild-type), pbpB*, DpbpH
and DpbpH pbpB*. The identity of each PBP is indicated on the left of the image.
E. Phase contrast images of strain 4004 grown in the presence of IPTG (I) or in the absence of any inducers (-).
F. Localisation of GFP-PBP 2B(S309A) in cells in the presence or absence of WT pbpB expression. Cells of strain 4004 grown with xylose and
IPTG (XI) and xylose alone (X). Each panel shows a fluorescence micrograph and the corresponding phase contrast image.
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However, a similar amount of PBP 2B was also detecta-

ble when strain 4004 was grown in the absence of both

IPTG and xylose (Fig. 1C lane ‘-’), although under these

conditions division was not well supported (as deter-

mined by microscopy; Fig. 1E).

To eliminate the possibility that leaky transcription

from the Pspac promoter was providing sufficient wild-

type PBP 2B to allow cell division/growth, and to confirm

that PBP 2B(S309A) could support cell division, we

directly replaced the wild-type pbpB allele with the

mutant allele to generate a strain that was isogenic with

the wild type except for the presence of the pbpB* muta-

tion. The growth rate of this mutant strain (4001) was

again similar to that of the wild-type strain 168, while

microscopic analysis showed that the average cell

length of the mutant cells (2.4 6 0.4 mm) was slightly

(about 25%) greater than that of the wild type (1.9 6 0.3

lm) (Table 1). To confirm that the mutant protein had

lost its TPase activity and was unable to bind bocillin

when expressed in B. subtilis, live cell bocillin-FL label-

ling was used for both the wild-type strain 168 and the

mutant strain 4001 (Fig. 1D). As PBP 2B co-migrated

with PBP H in the gel, DpbpH and DpbpH pbpB*

mutants (strains 4017 and 4024 respectively) were con-

structed and analysed by live cell bocillin-FL labelling to

confirm the lack of labelling of the mutant PBP 2B.

These results confirmed that while PBP 2B protein

is absolutely required for cell division, its TPase activity

is not.

Biochemically inactive PBP 2B mutant requires the
function of PBP 3

The unexpected result that a mutant carrying a bio-

chemically inactive form of PBP 2B was viable sug-

gested that either cross-linking of glycan chains is not

required at the division site or that this activity can be

provided by another enzyme. To test the latter idea,

mutations in each of the known vegetatively expressed

PBP genes (pbpA, pbpC, pbpD, pbpF, pbpH and ponA)

were introduced into both the pbpB* mutant and a wild-

type strain, with the expectation that knocking out a

gene that could substitute for the cell division TPase

activity of PBP 2B would be lethal in the pbpB* mutant

background. As expected, in the pbpB1 background

introduction of any of the null mutations gave colonies at

high frequency expected for single uncomplicated trans-

formation events (Rivolta and Pagni, 1999). Similar

transformation results were obtained for the pbpB*

mutant with all of the null mutations except pbpC. For

pbpC, the transformation efficiency was much lower

(less than 10% of that seen for the wild-type strain) and

two colonies types were obtained; the majority were

small and could not in general be sub cultured, whereas

a minority were normal in size. Microscopic examination

of the small colonies revealed that their cells were fila-

mentous, whereas those of the large colonies were wild-

type. Sequencing of the pbpB locus from several of the

large and a few small colonies that grew up showed that

what was grown had lost the pbpB* mutation. These

were most likely generated by a double transformation

event in which they acquired the unselected copy of the

wild-type allele of pbpB together with the pbpC null

mutation. These results suggested that PBP 3 is essen-

tial in the absence of the TPase activity of PBP 2B.

To test whether the TPase activity of PBP 3 was

required for complementation of PBP 2B(S309A), and to

eliminate the possibility that the pbpC null mutation had

unexpected polar effects on neighbouring gene expres-

sion, we constructed a plasmid carrying a mutant pbpC*

allele (PBP 3(S410A)). This mutation was expected to

eliminate its TPase activity as it removed the serine resi-

due that was predicted to be located in the active site of

the PBP (Supporting Information Fig. S1A). This plas-

mid (pSG5666) was then integrated into the chromo-

some at the pbpC gene locus. In a wild-type recipient,

Table 1. Cell length analysis.

Strains (relevant genotype)

Mean cell lengtha mm 6 SD Mean cell widtha mm 6 SDa

– IPTG 1 IPTG – IPTG 1 IPTG

168CA (wild type) 1.9 6 0.3 0.8 6 0.08
4001 (pbpB*) 2.4 6 0.4 ND 0.8 6 0.07 ND
KS50 (Pspac pbpC) 1.8 6 0.4 1.8 6 0.4 0.7 6 0.09 0.7 6 0.1
KS51 (pbpB* Pspac pbpC) 2.4 6 0.7 2.5 6 0.6 0.7 6 0.1 0.7 6 0.1
KS53(Pspac pbpC*) 1.8 6 0.4 1.8 6 0.4 0.8 6 0.1 0.7 6 0.08
KS54 (pbpB* Pspac pbpC*) 2.4 6 0.3 2.4 6 0.4 0.8 6 0.09 0.8 6 0.07
KS52 (Pspac pbpC DpbpC(cat)) 1.8 6 0.3 1.8 6 0.3 0.8 6 0.07 0.8 6 0.07

a. Dimensions were determined from images of exponentially growing cultures in which the cells were stained with membrane dye (FM 5.95).
Greater than 100 cell measurements were taken for each sample; the values shown represent the mean cell size and the standard deviation
(SD) for that sample.
ND indicates where cell length was not determined.

Penicillin-binding proteins in Bacillus subtilis 307

VC 2017 The Authors. Molecular Microbiology published by John Wiley & Sons Ltd., Molecular Microbiology, 106, 304–318



sequence analysis of 20 independent clones revealed

that about 75% of the clones picked up the mutant allele

in the functional copy of pbpC a frequency close to

expectation, based on a single crossover recombination

event. However, none of the pbpB* recipients (0/12

checked by sequencing) acquired the pbpC* mutation.

Thus, the pbpC* mutation probably renders PBP 3

unable to complement the function of PBP 2B(S309A). To

confirm this, a strain (4009) was constructed with both

the pbpC* and pbpB* mutant alleles and a second wild-

type copy of gfp-pbpB under the control of the Pxyl pro-

moter. In the presence of xylose, to allow expression of

the catalytically active version of pbpB, strain 4009 was

indistinguishable from the wild-type, but in the absence

of xylose the cells became filamentous and could not be

cultured. These results indicate that the TPase activity

of either PBP 2B or PBP 3 is essential for cell division,

and this activity is either unique to these PBPs or is

related to how these PBPs interact with other division

proteins.

Mid cell localisation of PBP 3

As described earlier, the strain with an inactive PBP 2B

(4001), although growing at a comparable rate to the

wild-type strain, exhibited elongated cells during expo-

nential growth (�25% longer; Table 1). Thus, although

PBP 3 activity can support cell division it is apparently

not as efficient as PBP 2B. This suggested that PBP 3

may not be recruited to the division site efficiently and

so is not able to provide the required TPase activity to

permit the normal progression of cell division in the

pbpB* mutant. To test this, we initially used the Pxyl

inducible GFP-PBP 3 described by (Scheffers et al.,

2004). This was found to be at least partly functional, as

it supported cell division in the absence of active PBP

2B (strain 4005). However, Western blot analysis using

a polyclonal anti-PBP3 antibody showed that the GFP

fusion was either unstable, or that the expressed protein

was processed such that detectable levels of both PBP

3 and GFP-PBP 3 were present in the culture, even

when chloramphenicol selection was maintained during

growth (Supporting Information Fig. S2 A). Conse-

quently, we used immunofluorescence to resolve the

localisation question. Initial inspection of images of cells

suggested that PBP 3 may exhibit a bias toward localis-

ing to the division site and the poles of the cell in strain

lacking an active PBP 2B compared to the wild type, but

it was difficult to visually quantify any significant differen-

ces between strains where PBP 2B was functional or

inactive (Supporting Information Fig. S2 B and C). To

obtain a qualitative understanding of the sub-cellular dis-

tribution of PBP 3, heat maps representing the

fluorescent signal obtained by IFM for the long axis of

individual cells were generated for both wild type (168)

and pbpB* (4001) strains (Fig. 2A and B). PBP 3 tended

to localise mainly at mid cell, except in short cells in

which a more distributed or polar localization was evi-

dent. The pattern was similar in wt and pbpB* cells

except that the mutant cells were in general longer and

almost all cells had PBP 3 enriched at mid cell position

in elongated cell. The PBP 2B distribution was similar in

both wild-type and mutant, with a distinct mid cell local-

ization except in a roughly similar proportion of the short

cells. For comparison, the same analysis was done

using antisera specific for PBP 2B (Fig. 2C and D),

where clear accumulation of the protein occurs at the

mid cell position even in relatively short cells, suggesting

earlier localisation.

The image analysis also showed that the cells of

strains lacking PBP 2B were clearly longer than those

of the wild-type, suggesting, perhaps, an insufficiency of

PBP3. However, overexpression of the pbpC from the

strong hyperspank promoter (Vavrov�a et al., 2010) did

not change cell length or morphology in a pbpB* back-

ground (Supporting Information Fig. S3 and Table 1).

PBP 3 localisation at division sites depends on FtsZ

and PBP 2B

Assembly of the divisome is regulated by the polymer-

ization of FtsZ, a tubulin like protein, into a ring at mid-

cell (Bi and Lutkenhaus, 1991). Depletion of FtsZ

resulted in a shift in the localization of PBP 2B from

midcell to the lateral wall and an arrest in cell division

(Scheffers et al., 2004). The depletion of PBP 2B also

results in a cell division block, which suggests that PBP

2B might have a role in the co-assembly of other cell

division proteins (Daniel et al., 2006). To investigate

whether PBP 3 is part of the multiprotein complex

involved in PG synthesis during cell division, we exam-

ined the localization of PBP 3 in PBP 2B or FtsZ

depleted cells using IFM. Immediately after the washing

step to begin depletion of PBP 2B, PBP 3 showed the

expected predominant localization at midcell and the cell

poles, with only occasional localization along the cell

periphery (Fig. 3A). One hour after the removal of

inducers, the cells were filamentous as expected follow-

ing the depletion of FtsZ or PBP 2B. In both cases, PBP

3 localized in a dispersed peripheral pattern with no

sign of localization between nucleoids, where Z ring pro-

teins would be expected to assemble (Fig. 3, panels B

and C respectively). In the FtsZ depletion experiment,

we also stained for PBP 2B and its localization was also

dispersed, consistent with expectation that its divisome

localization depends on FtsZ. These results are
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consistent with PBP 3 being mainly associated with the

cell division machinery and dependent on the presence

of FtsZ.

PBP 3 shows significant similarity to PBP 2A of

S. aureus

PBP 3 has the sequence motifs characteristic of a class

B PBP (Murray et al., 1996). Sequence comparisons

revealed that PBP 3 is strongly conserved in the Bacilli,

with many strains encoding a protein with substantial

similarity (> 48% identity). Interestingly, PBP 3 exhibits

a similar degree of relatedness (41% identity for the

entire gene) to the S. aureus PBP 2A (SaPBP 2A),

which is encoded by mecA (Lim and Strynadka, 2002),

including presence of the domain MecA-N (pfam:

05223) which is infrequently present in PBPs (Support-

ing Information Fig. S4). SaPBP 2A is an accessory

PBP that endows resistance to b-lactam antibiotics,

being largely responsible for the MRSA phenotype

(Hartman and Tomasz, 1984). The suggestion that PBP

3 might have a related function to both PBP 2B and

SaPBP 2A prompted us to conduct a series of

experiments to determine the role of PBP 3 in resist-

ance to b-lactam antibiotics.

Disruption of pbpC increases sensitivity to

specific b-lactams

Antibiotic sensitivity tests showed that the loss of PBP 3

made cells more sensitive to certain b-lactams com-

pared to the wt strain (Fig. 4). The strain carrying the

DpbpC mutation (4015) only grew on plates containing

oxacillin and cephalexin when inoculated at significantly

higher densities (�1000 fold) than the wild type or the

other pbp null mutants tested (ponA, strain 4014; pbpD,

4013; pbpE, 4011 and pbpF, 4012) except a strain lack-

ing PBP 2A. The latter strain was more sensitive to oxa-

cillin and cephalexin, which could be related to the mild

growth defect that this null mutation causes (Murray

et al., 1998). However, the reasons behind the

increased sensitivity of the pbpC mutant were less clear.

Microtitre based MIC tests (Table 2) also demonstrated

a clear increase in sensitivity to both oxacillin and ceph-

alexin for a strain deleted for pbpC, whereas there was

no significant change in the MIC for penicillin G.

Fig. 2. Graphical representations of the subcellular distribution of PBP 3 and PBP 2B as a function of cell length. To permit the
representation of the distribution of PBP 3 and PBP 2B on the long axis of the cell in a population of cells, immunofluorescence images were
analysed using a line scan function. The output of this was then used to generate heat maps where each horizontal line represents an
individual cell (sorted according to cell length) and the colour indicates the level of fluorescence detected (ranging from dark blue to red and
yellow in terms of strength). To provide a second landmark for the interpretation of the images, the subcellular distribution of the chromosomal
DNA was determined exploiting DAPI labelling and quantitation of the fluorescence signal in the same way. Panels A and B show PBP 3
cellular distribution in the wild-type strain and 4001 (pbpB*) respectively, whereas C and D indicate PBP 2Bs distribution. For each
immunofluorescent analysis, the corresponding DNA distribution is shown. For 168, the data represents the analysis of> 140 cells, whereas
for 4001 the panel is the summary of> 400 cells.
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The crystal structure of SaPBP 2A with several b-

lactams suggested that the reason behind the resist-

ance of SaPBP 2A to certain b-lactams is the structure

of the TPase active site of the protein (Otero et al.,

2013). Such observation suggests that SaPBP 2A pro-

vide the TPase activity required to crosslink the peptides

in PG when other SaPBPs are blocked by b-lactams. To

test if PBP 3 in B. subtilis has a comparable resistance

mechanism to b-lactams, several mutants including

mutants with inactive PBP 2B(S309A) or PBP 3 deleted

were tested against oxacillin. As shown in Fig. 4, cells

lacking PBP 3 showed increased sensitivity to oxacillin

compared to wild-type cells. To further investigate the

resistance mechanism of PBP 3 to oxacillin, either a

wild type copy of the pbpC gene or a mutant copy of

pbpC (pbpC*) analogous to the pbpB* (S309A) muta-

tion, were introduced in the amyE locus under the con-

trol of Phyper-spank promoter. In the absence of IPTG, all

mutants lacking PBP 3 showed increased sensitivity to

oxacillin compared to wild type (Supporting Information

Fig. S3, panel A). The addition of IPTG, which allowed

the expression of one of the pbpC alleles, pbpC or

pbpC*, showed that the ectopic expression of PBP 3 but

not PBP 3(S410A) decreased the sensitivity of cells to

oxacillin, restoring it to almost wild type levels. These

results confirm that PBP 3 is the ‘resistance allele’ and

that the active site serine was required for b-lactam

resistance. Previous analyses have indicated that both

oxacillin and cephalexin may have specificity towards

PBPs involved in cell division in B. subtilis, which

Fig. 3. Cellular localisation of PBP 3 in FtsZ and PBP 2B depleted strains.
Epifluorescence images of cells immunolabeled for PBP 2B and/or PBP 3 for the wild type (strain 168, A, a strain depleted for FtsZ (strain
1801, B) and a strain depleted for PBP 2B (strain 3941, C). Each panel shows the phase contrast image of the cells visualised,
epifluorescence images corresponding to the specific immune stains used and finally a DAPI stain images to show the localisation of the
DNA.

Fig. 4. Resistance to specific types of b-lactam antibiotics is a function of PBP 3.
An exponentially growing culture of each bacterial strain was diluted to a specific optical density and used as the starting point for a fourfold
dilution series. Samples (10 ll) of the dilutions were spotted onto nutrient agar plates containing the antibiotics Cephalexin (A; 0.08 lg ml21),
Oxacillin (B; 0.04 lg ml21), Penicillin G (C; 0.005 lg ml21) and no antibiotic (D). Plates were then incubated at 378C for 18 h prior to being
photographed.

310 J. Sassine et al. �

VC 2017 The Authors. Molecular Microbiology published by John Wiley & Sons Ltd., Molecular Microbiology, 106, 304–318



suggests that PBP 3 could potentially be acting redun-

dantly to PBP 2B that is more sensitive to certain b-

lactams (Stokes et al., 2005). It was also found that

ectopic expression of PBP 3* as a competitor for the

natively expressed PBP 3 had no significant effect on

cell viability, cell morphology or b-lactam resistance

(Supporting Information Fig. S3, panel A).

Previous transcriptional analysis by Nicolas et al. had

indicated that pbpC was constitutively expressed and

not subject to upregulation by stress. However, it has

been shown that antibiotic exposure leads to the induc-

tion of a diverse set of genes under the control of vari-

ous ECF sigma factors, particularly SigM, and this

increased expression permits the cell to grow in the

presence of antibiotics. To determine if the PBP 3 had a

role in this ‘resistance’ mechanism, we analysed the

sensitivity of a strains lacking both pbpC and sigM to

oxacillin, penicillin G and moenomycin (as a non b-

lactam cell wall synthesis inhibitor) (Supporting Informa-

tion Fig. S5) compared to isogenic single null mutants

and a strain lacking all 7 ECF sigma actors (BSU2007).

Loss of PBP 3 had no effect on moenomycin resistance,

whereas a strain lacking sigM was significantly more

sensitive (as was a strain lacking multiple ECF genes

(BSU2007); as seen by Lou and Helmann, 2012). Thus,

PBP 3 probably has no role in the ECF mediated resist-

ance to cell wall inhibitors. However, when penicillin G

and oxacillin were used the effects of the sigM and

pbpC mutations were additive, with pbpC apparently

contributing more to the sensitivity (Supporting Informa-

tion Fig. S5).

b-lactam binding specificity of PBPs

The increased sensitivity of the pbpC mutant was con-

sistent with the notion that PBP 3 has a protective role

against the action of b-lactam antibiotics. If so, this

should be detectable at the biochemical level via differ-

ences in the specificity of oxacillin and cephalexin bind-

ing to the PBPs expressed in B. subtilis.

To test this, we developed an assay based on direct

binding of bocillin-FL (Gutmann et al., 1981; Zhao et al.,

1999) to live cells, bypassing the need to purify mem-

branes and allowing rapid and reproducible processing

of samples (Fig. 5). (Note that in these experiments

PBP 2B overlaps with PBP H, rather than PBP 2A, for

reasons that are not clear.) The bocillin-FL labelling pro-

files of wild type culture samples pre-treated with b-

lactams revealed that one higher molecular weight PBP

and PBP 5 (Atrih et al., 1999) (asterisks in Fig. 5) were

relatively refractory to binding of any of the three com-

pounds at the concentrations tested. The former protein

was identified as PBP 3 by absence of the correspond-

ing fluorescent band in the PBP profile of a pbpC null

mutant (Supporting Information Fig S3; panel B, lane

DpbpC compared to the WT). To exclude the possibility

Table 2. MICs of specific b-lactams.

MIC (mg ml21)a

b-lactam
Strain Oxacillin Cephalexin

Penicillin
G Cefoxitin

168 0.028 0.6 2.4 0.03
(wildtype) (0.032–0.016) (1.0–0.5) (4–0.8) (0.04–0.01)
4001 0.03 0.8 2.8 0.004
(pbpB*) (0.032–0.016) (1.0–0.5) (4–0.8) (0.005–0.003)
4015 0.008 0.16 2.6 0.02
(pbpC) (0.01–0.005) (0.2–0.05) (4–0.4) (0.04–0.01)

a. Value in brackets indicate the maximum and minimum values
obtained for MICs for individual experiments.

Fig. 5. PBP profiles from in vivo labelled bacterial strains.
Image obtained by fluorography showing the binding profile of
bocillin–FL to B. subtilis PBPs after separation by SDS-PAGE. The
identity of each PBP is shown on the right of the panel and the
labels along the top of each gel indicates the pre-treatment of the
culture prior to being incubated with 0.5 lg ml21 bocillin-FL and
total protein being extracted and separated by SDS-PAGE.
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that the poor binding of oxacillin and cephalexin to PBP

3 was due to inability of these compounds to access the

active site in vivo, a range of other b-lactams were

screened for their ability to bind PBP 3. From this analy-

sis, it was clear that although oxacillin and cephalexin

did not show strong affinity for PBP 3, cefoxitin (Sup-

porting Information Fig. S5) did exhibit binding to PBP 3

at comparable concentrations to other b-lactams under

the same conditions, showing that prior treatment with

at least one b-lactam can prevent bocillin-FL binding to

PBP 3. It was also found that a strain lacking active

PBP 2B (pbpB*; 4001) exhibited increased sensitivity to

cefoxitin (Table 2). It was also notable that the strains

lacking functional PBP 2B were more filamentous when

cultured in media containing sub-inhibitory concentra-

tions of cefoxitin compared to the wild-type strain.

Discussion

The results presented here show that PBP 3 is impor-

tant for b-lactam resistance in B. subtilis and that it has

a crucial role in enabling cell division when the catalytic

activity of PBP 2B is compromised. As such, PBP 3

may provide a fail-safe mechanism that can rescue cells

from the potentially catastrophic division failure. The

inactivation of PBP 2B homologue in S. pneumoniae,

PBP 2X, was lethal (Peters et al., 2014), probably due

to the absence of any other PBP that could functionally

supply the transpeptidase activity necessary for cell divi-

sion. Many relatives of B. subtilis, have recognisable

PBP 3 homologues, suggesting that this back up to the

division-associated TPase is a common function in this

bacterial family. Interestingly, database searches exclud-

ing the Bacilli revealed PBP 3 to have similarity to

SaPBP 2A in methicillin-resistant Staphylococcus aur-

eus (MRSA). SaPBP 2A is responsible for b-lactam tol-

erance in MRSA and it works by providing a TPase with

a low affinity for b-lactam antibiotics that is able to func-

tion in cell wall synthesis when the other PBPs are

inhibited. As for PBP 3 in B. subtilis, SaPBP 2a endows

S. aureus with resistance to a range of b-lactams, not

least high level resistance to oxacillin, which is a distin-

guishing marker for MRSA. As PBP 3 homologues are

present in a wide range of Bacillus spp. few if any of

which are pathogenic, it is unlikely to have been

acquired as a result of man’s use of antibiotics. Our

results therefore lend support to the idea that b-lactam

antibiotics have exerted selective evolutionary pressure

long before they were exploited by man. In accordance

with previous speculation (Kreiswirth et al., 1993), our

observations on the role of PBP 3 in Bacillus suggest

that a mechanism to protect the cell from an abortive

attempt to divide may be either very ancient in origin or

a result of convergent evolution resulting in a similar

solution to abortive division in the Entero/Staphylococci

through clinical use of b-lactams. In this respect, the

data presented here has strong parallels with that seen

for PBP 2A in S. aureus (Pinho and Errington, 2005).

However, the constitutive expression of PBP 3 during

vegetative growth in addition to the active recruitment of

PBP 3 to the assembling divisome suggests that PBP 3

might have an active role in septal PG synthesis and

does not only function as a backup under antibiotic

stress (Murray et al., 1996; Nicolas et al., 2012).

The results presented here provide a functional role

for another PBP encoded in the genome of B. subtilis

and expressed in vegetative growth. Using this data and

previous analyses (Popham and Setlow, 1996; Kawai

et al., 2009, 2011), it is apparent that there is significant

functional redundancy for these cell wall synthetic

enzymes. This highlights the functional importance of

correct wall synthesis for bacterial viability and the ability

to adapt to rapidly changing growth conditions or expo-

sure to inhibitory compounds. PBP 3 does not appear to

be upregulated upon cell wall stress, despite the exis-

tence of a diverse set of transcriptional regulation sys-

tems designed to respond to cell wall perturbation [e.g.,

ECF signal factors (Helmann, 2002)], but is constitu-

tively expressed (see Supporting Information data). Spe-

cifically, the ECF sigma factor SigM is thought to play

an important role in intrinsic resistance to antibiotics in

B. subtilis (Lou and Helmann, 2012). However, a strain

with sigM and pbpC mutations was more sensitive

against b-lactams than the single mutants suggesting

an additive effect. These results support the premise

that PBP 3 contributes to the intrinsic resistance of B.

subtilis to b-lactams independently of SigM (Supporting

Information Fig. S5). These results could be interpreted

as indicating that the process of septum formation dur-

ing cell division is prone to perturbations that result in

the need for functionally redundant enzymes that pro-

vide a robust system to avoid abortive cell division.

In the light of these results, we seem to have identi-

fied a point at which the septal PG synthesis can be

arrested where it seems that full assembly of the com-

plex has occurred. This is consistent with the results

obtained by Bisson-Filho et al. (2017) looking at the

dynamics of the division complex in living cells. Both

these results and ours suggest that the lack of the key

biochemical activity provided by PBP 2B or PBP 3 can

block the constriction of the division site. Consequently,

we are now focused on determining the biochemical

role of PBP 2B in the division process and how PBP 3

is able to provide this activity. This potentially explains

the delayed division phenotype observed for strains

lacking active PBP 2B and offers a novel route toward

looking at the dynamics of the division process by
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microscopy. Following submission of this work, similar

results have been obtained by Angeles et al. (2017).

Experimental procedures

General methods

The strains, plasmids and oligonucleotides used in this
study are listed in Table 3.

B. subtilis strains were transformed according the method

of (Anagnostopoulos and Spizizen, 1961) as modified by
(Jenkinson, 1983). Simple genetic constructions where

markers were moved from one background to another are
described in Table 3, whereas more complex strain con-
structions are described below.

DNA manipulations and E. coli transformations were car-

ried out using standard methods (Sambrook et al., 1989).
Plasmid DNA was purified using DNA purification systems
of Qiagen and Promega according to the manufacturer’s

instructions.
B. subtilis was cultured on nutrient agar (Oxoid) as a

solid medium, and antibiotic medium 3 (Difco) for liquid cul-

tures. Genetic constructs were selected for using kanamy-
cin at 5 mg ml21, chloramphenicol at 5 mg ml21 and
spectinomycin at 50 mg ml21. IPTG (0.5 mM) and/or xylose

(0.5%) were added as necessary. E. coli strains were cul-
tured on nutrient agar or in 2YT (Sambrook et al., 1989),

supplemented with ampicillin (100 mg ml21) as required.
Protein samples from B. subtilis and Western blotting

was done as described by Daniel et al. (2000). Strain con-
structions were confirmed both by antibiotic resistance,

dependence upon specific inducers (where appropriate)
and by the use of PCR amplification across the regions of

insertion, combined with DNA sequencing of the region if
required.

Determination of sensitivity to b-lactam antibiotics

Serial dilutions of test b-lactams in PAB and inoculated with
between 100 and 5000 cells in a final volume of 200 ll
(confirmed post analysis by conventional CFU determina-

tion on nutrient agar plates) and incubated at 378C in a
BMG microtitre plate reader with shaking. The optical den-

sity of the cultures was then measured after 8 h incubation
at 378C. The lowest concentration of antibiotic preventing
growth of the culture was defined as the MIC. The results

of 8 independent assay are summarised in Table 2. How-
ever, as this represented a very small bacterial culture, it
was impractical to use for analytical methods so the con-

centration of antibiotic necessary to lyse a culture at an
optical density (600 nm) of 0.2 was determined and
denoted the Minimum Lytic Concentration (MLC). The MLC

values for of oxacillin, cephalexin and penicillin G for
168CA grown in PAB were determined to be 0.3 (6 0.1),
0.8 (6 0.15) and approximately 20 (6 4) lg ml21

respectively.
To allow comparative sensitivity of strains, cultures of the

test strains were incubated overnight at 308C in PAB

medium and then diluted 1:10 in the same medium and
incubated for a further 1 h at 378C. After this time, the

cultures were diluted to OD600 5 1.0 and a series of fourfold

dilutions were made using SMM. A 10ll spot of each dilu-

tion serial was dropped onto nutrient agar (NA) plates con-

taining cephalexin, oxacillin or penicillin G as well as onto a

NA plate with no antibiotic. The plates were then incubated

at 378C for 24 h before being photographed. The antibiotic

concentrations required to detect differential strain sensitiv-

ity were determined empirically (using the MIC values as a

guide). Form this analysis, it was found that 0.08 mg ml21

cephalexin, 0.04 mg ml21 oxacillin and 0.005 mg ml21 peni-

cillin G gave the best differentiation and reproducible

results.

Elimination of the transpeptidase activity of PBP 2B by

the S309A mutation

To test the ability of PBP 2B and PBP 2B(S309A) to bind

penicillin, the coding sequence of pbpB was amplified by

PCR from genomic DNA of strain 168 (using oligonucleo-

tide primers PBPB- F and R), digested with BamHI and

KpnI and ligated with similarly digested pQE31. The trans-

formation of this DNA into NM554 (pREP4) allowed the iso-

lation of pSG5670 in which the wild-type pbpB gene was

expressed from the IPTG-inducible promoter of pQE31.

The S309A mutation was then introduced into pSG5670 by

site directed mutagenesis (primers SDM B-F and R) to give

pSG5671.
Cultures of NM554 (pREP4) with pSG5670, 5671 or

NM554 alone (as a negative control) were grown in 2YT to

an optical density (600nm) of 0.5, at which point IPTG was

added to the cultures and incubation continued for 1 h at

378C. Samples (50ml) of each culture were then harvested

and the cell pellets were washed by PBS and then sus-

pended in 15 ml PBS and held on ice. The cells in each

sample were broken by three passages through a French

Press (2,000 lb in22). The resulting cell lysates were centri-

fuged at 2,000 r.p.m. in a bench top centrifuge for 20 min

to remove unbroken cells and large bits of debris. The

supernatants were then centrifuged at 80,000 r.p.m. for 30

min at 48C to pellet membrane vesicles. The resulting pel-

lets were suspended in 400 ll PBS by sonication for 2 s.

The resulting suspension was then divided into aliquots of

100 ll and stored at 2208C.

The affinity of the PBP 2B and PBP 2B(S309A) for penicil-

lin was determined by adding 2 ll (1 mg ml21) of bocillin-

FL (Invitrogen) to 100 ml of the cell membrane samples, fol-

lowed by incubation at room temperature for 15 min. 100 ml

2 3 SDS was then added to each sample and the proteins

denatured at 998C for 2 min prior to being separated by

SDS-PAGE. The proteins with covalently bound bocillin-FL

were then identified by scanning the protein gel for fluores-

cent emission using a Fuji FLA3000 scanner (Zhao et al.,

1999). The protein gel was stained with Coomassie Blue

(R250; Sigma) to confirm that approximately equal amounts

of E. coli total membrane proteins and PBP 2B and PBP

2B(S309A) had been loaded (Fig. 1). A fluorogram of the gel

(Fig. 1) showed that only the wild type PBP 2B was fluores-

cent, with no detectable fluorescence in the equivalent posi-

tion in the lane with the mutant protein, although

Coomassie staining showed that similar amounts of protein
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Table 3. Bacterial strains, plasmids and oligonucleotides.

Strain/plasmid Relevant genotype/features Source/construction

B. subtilis
168 trpC2 Laboratory stock
1801 trpC2 chr:: pJSIZDpble (Pspac-ftsZ ble) (Marston et al., 1998)
3941 trpC2 pbpB1–1104b lacI aph-A3 Pspac pbpB pSG5601!168
3105 trpC2 pbpC1–768 cat Pxyl gfp-pbpC (Scheffers et al., 2004)
4000 trpC2 pbpB1–1104 lacI aph-A3 Pspac pbpB*a pSG5662!168
4001 trpC2 pbpB(S309A) This work
4002 trpC2 amyE X (spc Pxyl gfp-pbpB) pSG5663!168
4003 trpC2 amyE X (spc Pxyl gfp-pbpB *) pSG5664!168
4004 trpC2 lacI aph-A3 Pspac pbpB amyE X (spc Pxyl gfp-pbpB *) This work
4005 trpC2 pbpB * pbpC1–768 cat Pxyl gfp-pbpC 3105!4001
4006 trpC2 pbpB * amyE X (spc Pxyl gfp-pbpB) 4002!4001
4007 trpC2 pbpC aph-A3 pbpC739–2004 pSG5665!168
4008 trpC2 pbpC * aph-A3 pbpC739–2004 pSG5666!168
4009 trpC2 pbpC * pbpB* amyE X (spc Pxyl gfp-pbpB) 4008! 4006
PS18050 trpC2 DpbpE::erm (moved into168CA) (Popham and Setlow, 1993)
PS18690 trpC2 DpbpF::erm (Popham and Setlow, 1993)
PS20220 trpC2 DpbpD::erm (Popham and Setlow, 1994)
PS20620 trpC2 DponA::spc (Popham and Setlow, 1995)
PS23520 trpC2 pbpC::cat (Murray et al., 1996)
PS24650 trpC2 pbpA::(pTMM4) cat (Murray et al., 1997)
HB00310 trpC2 DsigM::kan (Luo and Helmann, 2012)
BSU20070 168 sigMWXYZV ylaC (D7ECF) (Asai et al., 2008)
DPVB1330 trpC2 DpbpH::spc (Wei et al., 2003)
4011 trpC2 DpbpE::erm PS1805!168
4012 trpC2 DpbpF::erm PS1869!168
4013 trpC2 DpbpD::erm PS2022!168
4014 trpC2 DponA::spc PS2062!168
4015 trpC2 pbpC::cat PS2352!168
4016 trpC2 pbpA::(pTMM4) cat PS2465!168
4017 trpC2 DpbpH::spc DPVB133!168
4018 trpC2 pbpB* DpbpE::erm 4011! 4001
4019 trpC2 pbpB* DpbpF::erm 4012! 4001
4020 trpC2 pbpB* DpbpD::erm 4013! 4001
4021 trpC2 pbpB* DponA::spc 4014! 4001
4022 trpC2 pbpB* pbpC::cat 4015! 4001
4023 trpC2 pbpB* pbpA::(pTMM4) cat 4016! 4001
4024 trpC2 pbpB* DpbpH::spc 4017! 4001
KS50 trpC2 amyE X (spc Pspank pbpC) pKS4!168
KS51 trpC2 pbpB* amyE X (spc Pspank pbpC) pKS4!4001
KS52 trpC2 amyE X (spc Pspank pbpC) pbpC::cat 4015!KS50
KS53 trpC2 amyE X (spc Pspank pbpC*) pKS5!168
KS54 trpC2 pbpB* amyE X (spc Pspank pbpC*) pKS5!4001
KS55 trpC2 pbpC::cat amyE X (spc Pspank pbpC*) pKS5!4015
RD300 trpC2 DsigM::kan HB0031!168
RD301 trpC2 DpbpC::cat DsigM::kan RD300!4015

E. coli
DH 5a F-endA1 hsdR17 supE44 thi-1 k-recA1 gyrA96 relA1 D(lacZYA-argF)

U169 U80 dlacZ DM15
Laboratory stock

NM554 recA13 araD139 D(ara-leu)7696 D(lac)l7A galU galK hsdR rpsL (Strr)
mcrA mcrB

Laboratory stock

Plasmids
pSG441 bla aph-A3 lacI Pspac (Illing and Errington, 1991)
pSG5601 bla aph-A3 lacI Pspac pbpB1–1104 This work
pSG5662 bla aph-A3 lacI Pspac pbpB1–1104* This work
pQE31 ori (ColE1) bla T5 promotor/lac operator Qiagen
pSG5670 pQE31 pbpB This work
pSG5671 pQE31 pbpB* This work
pSG1729 bla amyE30 spc Pxyl gfp amyE50 (Lewis and Marston, 1999)
pSG5663 bla amyE30 spc Pxyl gfp-pbpB amyE50 This work
pSG5664 bla amyE30 spc Pxyl gfp-pbpB* amyE50 This work
pSG5045 bla cat Pxyl gfp-pbpC1–768 (Scheffers et al., 2004)
pUK19 aph-A3 bla Gift from W. G. Haldenwang
pSG5665 aph-A3 bla pbpC739–2004 This work
pSG5666 aph-A3 bla pbpC739–2004* This work
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had been loaded, confirming that the covalent binding of
penicillin to PBP 2B was abolished by the S309A

substitution.

Construction of strains with conditional expression of
modified pbpB genes

To allow repressible expression of pbpB and to introduce
mutations into the genome of B. subtilis, plasmid pSG5601

was constructed such that the 50 portion of the pbpB gene,
comprising the RBS and the coding sequence of the first

368 amino acids, using PCR primers pbpB-1 and pbpB-2 to
amplify the gene and cloning it into pSG441 such that the

RBS of pbpB gene was placed in front of the Pspac pro-
moter. Plasmids pSG5601 was then transformed into 168

selecting for the kanamycin resistance in the presence of
IPTG. A clone that was IPTG dependent for growth for iso-

lated and designated strain 3941.
To determine the functionality of PBP 2B(S309A), the wild-

type pbpB was amplified by PCR, with primers pbpB-3 and -
4, and the resulting DNA fragment inserted into plasmid

pSG1729 to give plasmid pSG5663; this construct was
designed to produce a GFP fusion to PBP 2B that was

under the control of the Pxyl promoter and could be inte-
grated into the amyE locus of B. subtilis. Site directed muta-

genesis was then used to change the Serine 309 codon of
pbpB to encode alanine (using primers SDM B-F and R),

resulting in plasmid pSG5664. Plasmids pSG5663 and
pSG5664 were transformed into strain 168 to give strains

4002 and 4003 respectively, giving strains with a second
copy of either wild type or mutant PBP 2B (PBP 2B(S309A))

under the control of the Pxyl promoter. To determine if the
inducible PBP 2B(S309A) genes could complement depletion

of the wild protein, the Pspac promoter was inserted immedi-

ately upstream of pbpB by transforming strain 4003 with a

DNA fragment amplified by PCR, spanning from yllA to the

end of ftsL (primers used yllA-F and ftsL-R), ligated to

pSG5601, digested with SphI and blunted by Klenow. Selec-

tion for kanamycin resistance in the presence of IPTG gave

rise to several transformant colonies that were then

screened for kanamycin and spectinomycin resistance as

well as dependence on IPTG for cell growth. A single clone

(strain 4004) was then taken and the location of the inser-

tion of the Pspac promoter, lacI and the kanamycin resist-

ance cassette between the stop codon of ftsL and the RBS

of pbpB confirmed by PCR and sequencing.

As it was found that strain 4004 was viable when grown

in the presence of xylose alone, indicating that PBP

2B(S309A) may function for cell division, site directed muta-

genesis (primers SDM B-F and-R) was then used to intro-

duce the S309A mutation into pSG5601, creating plasmid

pSG5662. Plasmid pSG5662 was then integrated into 168

and the location of the pbpB* (S309A) mutation determined

(either in the truncated copy of pbpB under the native pro-

moter or in the full length copy under the Pspac promoter).

A clone of 168 with pSG5662 integrated into the chromo-

some was then isolated, where the S309A mutation was

located in the functional copy of pbpB, as determined by

PCR and sequencing, and denoted strain 4000. Strain

4000 was then grown in the absence of IPTG to promote

the excision of the integrated plasmid. An isolate resulting

from this technique, strain 4001, was found to have the

pbpB* mutation without any of the plasmid sequences used

to introduce the mutation.
To determine the phenotype of a strain with catalytically

inactive PBP 2B and PBP 3, strain 4009 was constructed in

Table 3: Continued

Strain/plasmid Relevant genotype/features Source/construction

pDR111 bla amyE30 spc Pspank lacI amyE50 (Vavrov�a et al., 2010)
pKS4 bla amyE30spc Pspank pbpC lacI amyE50 This work
pKS5 bla amyE30 spc Pspank X pbpC* lacI amyE50 This work

Oligonucleotidesd

PBPB-F GATggatCCAAAAAAGAATAAATTTATGAATAGAGGAGC
PBPB-R ACTggtaccTTAATCAGGATTTTTAAACTTAACCTTG
SDM B-F GAACCCGGGGCCACGATGAAGATCTTTACACTCGC
SDM B-R CGTGGCCCCGGGTTCATACGCATATGAAATCAAATC
pbpB-1 GCAtctagaAGCGCATTATGGACATTG
pbpB-2 CAGTTTgcatgcAGCGACATTCGACGACCTTAG
pbpB-3 ATCggatccCCAAAAAAGAATAAATTTATGAATAGAGGAGCAGC
pbpB-4 ATCgtcgacTTTAATCAGGATTTTTAAACTTAACCTTGATTACGG
yllA-F AGAATTCAAAATAGCATTAAGCCGCTTCTTGCG
ftsL-R GCATTTGAATCATTCCTGTATGTTTTTCACTTTTTTATCTTTTAAATTCAAGCCG
pbpC-1 ATCggatccTCAGCTTCAAGAATACTGCTGTGCTG
pbpC-2 ATGctgcagTTTAATTCGATTGAAATTGCTTTTTCGCTTTCTC
SDM C-F GACATACGCGCCAGGTGCTACCATTAAACCGATTGCGGC
SDM C-R GGTTTAATGGTAGCACCTGGCGCGTATGTCTTATTGAAT
pbpC-3 GATgcatgcGAGGGGAAAGTCATGTTAAAAAAGTGTATTCTACTAG
pbpC-4 ATCgcatgcGCCCCCTTACTAGTTCATTCGGCCTCAGATCC

a. Numbers indicate the base coordinates of the gene cloned from http://genolist.pasteur.fr/SubtiList/.
b. Numerical values indicate the region of coding sequence present (starting from the initiation codon).
a *indicates that the active site of the PBP was mutated, in the case of pbpB this corresponds to S309A, where the codon corresponding to
residue S 309 of protein was mutated to A. For pbpC, serine 410 was mutated to alanine.
d. Lower case letters show where restriction sites were introduced into the oligonucleotide sequence.
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3 steps. Firstly, chromosomal DNA from strain 4002 (Pxyl

inducible gfp-pbpB) was transformed into strain 4001 (with

pbpB*) to give strain 4006 containing both pbpB* at the

chromosomal locus and a Pxyl inducible wild-type copy of

pbpB fused to GFP at amyE. Secondly, the C-terminal part

of pbpC was amplified by PCR (primers pbpC-1 and 22)

inserted into plasmid pUK19, to give plasmid pSG5665.

Site directed mutagenesis of pSG5665 using oligonuceloti-

des SDM C-F and –R was then used to change the codon

for the catalytic serine at position 410 to encode for alanine,

resulting in plasmid pSG5666. Finally, plasmid pSG5666

was transformed into strain 4006 selecting for kanamycin

resistance in the presence of xylose. The resulting trans-

formants were then screened for xylose dependence and

then PCR used to confirm that the genotype of the strain

was as expected, resulting in strain 4009.

Construction of conditional alleles of pbpC

To increase the cellular abundance of PBP 3, we cloned

the pbpC gene including the native ribosome binding site

(PCR amplified using oligos pbpC-3 and 24) was cloned

into pDR111 digested with SphI to give pKS4. This plasmid

was then used as a template for site directed mutagenesis

to produced pKS5 where the active site serine of PBP 3

was replaced by alanine (S410A) as described above.

These plasmids were then used to generate strains KS50

and KS53 by transformation and screening for loss of amy-

lase activity to confirm insertion of the IPTG inducible cop-

ies of pbpC into the amyE locus. Strains KS51 and KS54

were then constructed by the transformation of strain 4001

with pKS4 and pKS5 respectively. Then finally, strain KS52

was constructed by the introduction of the pbpC null muta-

tion from strains 4015 into KS50

Depletion of PBP 2B

Where lethal effects were predicted or identified, strains

were constructed with a complementing copy of the pbpB

gene under the control of an inducible promoter. To analyse

the phenotype of such strains, the culture conditions were

manipulated to remove one or both inducers as described

in (Daniel et al., 2000), and samples taken every 30 min for

the measuring of OD600, microscopy and Western blot anal-

ysis where required.

Cellular abundance of PBP 2B and GFP-PBP 2B(S309A)

To ensure that the normal growth of strain 4004 was not

due to residual expression of the wild type gene, the total

protein content of strain 4004 grown under the conditions

described above was analysed by Western blotting using

antiserum specific for PBP 2B (Fig. 1C). The results

showed that a small amount of wild-type PBP 2B was pres-

ent in the culture grown in the absence of IPTG after incu-

bation for 1.0 h, but cell division was clearly perturbed in

cultures lacking both xylose and IPTG by this time, and by

1.5 h cell lysis was evident.

Microscopy

For microscopy, cells from exponentially growing cultures

were mounted on a thin film of 1% agarose in SMM

medium (Anagnostopoulos and Spizizen, 1961), essentially

as described previously (Glaser et al., 1997). To stain cell

membranes, Nile red or FM5.94 was added to a sample of

the culture to a final concentration of 2mg ml21 prior to

mounting on an agarose slide.
For the subcellular localisation by immunofluorescence of

PBP 3 and PBP 2B, the strains were grown to mid expo-

nential phase of growth (OD600 � 0.5). For the localisation

of PBP 2B and PBP 3 in cells depleted of PBP 2B or FtsZ,

the strains 3941 and 1801 were used, respectively, follow-

ing the depletion protocol described in (Daniel et al., 2000).

Subsequently, samples were fixed by the addition of an

equal volume of ice cold fixation buffer (5% paraformalde-

hyde in PBS) and held on ice for at least 30 min. Cells

were washed 33 in PBS and suspended in GTE buffer

(50 mM Glucose, 25 mM Tris/HCl pH 8 and 10 mM EDTA

pH 8). The cell suspension was then spotted on a dry multi-

well slide and allowed to stand for 5 min. The solution was

aspirated off and the slide left to dry. Poly-lysine (0.01%)

was spotted onto the cells and left for 2 min, aspirated off

and allowed to air dry. Cell spots were then treated with

lysozyme (10 mg ml21 in GTE) �2 min, washed with PBS

and allowed to dry. Cells were re-hydrated with PBS for 2

min then blocked with PBS/2% BSA for 15 min. Primary

antibody was added to cells and incubated overnight at

48C. The cell spots were then washed 10 3 with PBS

before applying the secondary antibody (1/10,000 dilution in

PBS/2% BSA) to the slide and incubating at room tempera-

ture in the dark for 1.30 h. Spots were then washed 103

with PBS, DAPI (0.2 mg ml21 in antifade (ProLong Gold;

Invitrogen) was used as a mountant and a coverslip

applied.
Microscopic images were taken using Nikon TiE micro-

scope coupled to a Hamamatsu C9100 EMCCD or a Sony

CoolSnap HQ2 camera operated by Metamorph 7 imaging

software (Universal imaging). All images were analysed

with Metamorph 7 imaging software. Python27 software

was used to sort the fluorescence data and ImageJ soft-

ware was used to create the heat maps (Fig. 2), whereas

Adobe Photoshop version 7.0.1 was used to construct

figures.

PBP profile determination and b-lactam specificity

To provide sufficient protein for the analysis of the PBP pro-

files, cultures were grown to an OD600 of 0.2 in PAB (with

IPTG (1 mM where required) and then 0.5 lg ml21 bocillin-

FL added directly to the culture medium and incubation for

1 min at RT to allow binding of the penicillin. The cells were

then harvested and broken by sonication for 15 s on ice.

Total protein extracts were resolved by SDS-PAGE and the

resulting gels scanned using a Typhoon scanner (GE

healthcare).

To determine the specificity of other b-lactams compared

to bocillin-FL, the cultures were pre-treated with the b-

lactam (oxacillin, cephalexin, ceftriaxone or penicillin G) for

2 min prior to the addition of bocillin-FL. The cells were
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then treated as described above to allow the PBP profile to

be identified.
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