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Drug co-prescription (or drug combination) is a therapeutic strategy widely used as it may improve efficacy
and reduce side-effect (SE). Since it is impractical to screen all possible drug combinations for every
indication, computational methods have been developed to predict new combinations. In this study, we
describe a novel approach that utilizes clinical SEs from post-marketing surveillance and the drug label to
predict 1,508 novel drug-drug combinations. It outperforms other prediction methods, achieving an AUC
of 0.92 compared to an AUC of 0.69 in a previous method, on a much larger drug combination set (245 drug
combinations in our dataset compared to 75 in previous work.). We further found from the feature selection
that three FDA black-box warned serious SEs, namely pneumonia, haemorrhage rectum, and retinal
bleeding, contributed mostly to the predictions and a model only using these three SEs can achieve an
average area under curve (AUC) at 0.80 and accuracy at 0.91, potentially with its simplicity being recognized
as a practical rule-of-three in drug co-prescription or making fixed-dose drug combination. We also
demonstrate this performance is less likely to be influenced by confounding factors such as biased disease
indications or chemical structures.

T
he use of multiple drugs with different mechanisms or modes of action may treat the disease more effec-
tively1–3. The traditional ‘‘one drug – one target – one disease’’ approach has been successfully used to
develop drugs. However such ‘‘magic bullet’’ sometimes shows limited efficacy, especially for complex

diseases4, which is often due to factors such as network robustness5, redundancy6, compensatory and neutralizing
actions7. Polypharmacology, which focuses on multi-target drugs, has the potential to address those limitations8.
High-throughput screening has been previously used to identify possible drug combinations9; however, it is
impractical to screen all possible drug combinations for every indication. Therefore, computational methods10–13

have been developed to predict new drug combinations. For example, network biology was introduced to
investigate drug combinations by studying the molecular networks or pathways affected by the drugs14, yet the
incompleteness of molecular networks limits the practical use of such approaches for prediction of novel drug
combinations.

Clinical phenotypic information has not been adequately investigated for its power in predicting drug combi-
nations. The advantages of leveraging clinical phenotypic information includes better translational power when
comparing with animal models15 since it mimics a phenotypic screening of the drug effects, both therapeutic
effect16,17 and toxic effect18–20, on humans. In this paper we leverage observed side-effects (SEs) reported in clinical
findings to predict novel safe and efficacious drug co-prescriptions. The outline of this study is demonstrated in
Figure 1.

Results
Construction of the drug combinations and side-effects data set. We constructed a comprehensive drug
combination database (Figure 2) which contains 349 approved pairwise drug-drug co-prescriptions/
combinations (DDC) from three different sources: drug combination database DCDB21, FDA approved drug
combinations compiled by a recent paper13 and manual literature curation of the FDA approved or registered
DDCs. The database is much larger than the DDC database in a previous publication (Figure 2). To resolve
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different naming issues in different data sources, DDCs were
represented by their two components whose names were mapped
to STITCH ID22 for comparison.

To annotate drugs with their SE features, we extracted SE informa-
tion from drug labels using SIDER23 and OFFSIDES18. SIDER derives
SEs from drug labels and OFFSIDES mines SEs from post-marketing
surveillance system FAERS (i.e. FDA Adverse Event Reporting System).
Of the 349 approved DDCs, 239 DDCs can be annotated with SEs for
both components, which correspond to 245 individual drugs and 7,888
SEs. The drug frequency and SE frequency distribution are shown in
Supplementary Fig. S1 and Fig. S2. As a comparison, previous work13

used 181 pairwise DDCs, out of which only 75 contains both SEs and
indication annotation due to the limited data sources for DDCs, SEs and
indications. Therefore the coverage of our database, available in the
Supplementary Materials, is much more comprehensive.

We also constructed a negative training set consisting of unsafe
drug pairs for training our DDC prediction model. We defined the
unsafe co-prescriptions as those causing unexpected SEs as tracked
in TWOSIDES18, a database of reported SEs only caused by the
combination of marketed drugs rather than by any single drugs from
FAERS. We generated all the possible pairs of the drugs that over-
lapped with those pairs in TWOSIDES. A resultant set of 2291 unsafe
drug pairs (8% of all the possible drug combinations for the 245
drugs) were identified and used as the negative training set for train-
ing the DDC prediction model.

Evaluation of the power of predicting DDCs based on the side
effects features. We used 239 marketed DDCs as positive set along
with 2291 unsafe drug pairs as negative set, in total 2530 drug pairs and

245 distinct drugs. Each SE of a drug is called a feature and a drug pair
can be represented as a vector of SE features with value of 0, 1 and 2
depending whether zero, one or both drugs have such SE. We applied
logistic regression model with 10-fold cross validation to evaluate the
performance. We measured the model performance with both AUC
(area under the ROC curve) and AUPRC (area under the precision-
recall curve). We repeated the cross-validation experiment 100 times
with random seeds, and computed the mean and the standard
deviation of AUC and AUPRC over the 100 repetitions. In the
experiment, logistic regression model achieved an AUC of 0.92 6

0.01 and AUPRC of 0.86 6 0.01 (Figure 3), outperforming existing
DDC prediction model13 (AUC of 0.69). To test the impact of
structural similarity on prediction results, we mimicked the method
in Gottlieb’s work24 by removing the drug pairs with Tanimoto
similarity coefficient larger than 0.50. We re-run the logistic
regression 10-fold cross-validation experiment 100 times and still
achieved an AUC of 0.92 6 0.01 (Supplementary Fig.S3) and
AUPRC of 0.86 6 0.01 (Supplementary Fig.S3), which is similar to
previous results to two decimal places. Since the number of unsafe drug
pairs (i.e. 2291) is larger than that of safe DDCs (i.e. 239), we randomly
selected 239 unsafe drugs pairs so that the positive set and negative set
were balanced and then ran the logistic regression model. The process
was repeated 100 times and the reported AUC was 0.91 6 0.01. This
result shows that our model is less likely biased by the unbalanced
positive set and negative set. The Supplementary Resultalso shows
our model is less likely biased by the indication confounders.

Since the datasets are made of drug pairs, it is possible that some
drugs occur in both the training and test data set. To further char-
acterize their effect on our predictive model, we performed a hold-
drug-out validation. Of the 245 drugs, we randomly chose 60 drugs
for the test data set (i.e., about 25%) and 185 drugs for the training set
(i.e., about 75%). From the 2530 drug pairs, we only picked the drug
pairs with both drugs present in the training set to train the model.
We only picked the drug pairs with both drugs present in the test data
sets to test the model performance. The hold-drug-out validation
experiment was carried out 100 times using random partitions,
and computing the mean and the standard deviation of AUC and
AUPRC over these 100 repetitions. The final model achieved an
AUC of 0.87 6 0.03 (Supplementary Fig.S4) and AUPRC of 0.76
6 0.07 (Supplementary Fig.S4).

Develop a ‘Rule of Three’ criterion with feature selections. After
evaluation of the power of predicting DDCs based on the SEs
features, we next aimed at constructing a simple and effective rule

Figure 1 | The outline of this study. Firstly, we built an integrated drug

combination database by manually curating 349 fix-dose combinations

approved by FDA, based on which a machine learning model has been

constructed using side-effects as the feature. During the feature selection

step, we found that three features contributed mostly to the model, we

therefore developed a simple classification criterion called ‘‘Rule of Three’’,

with the aim of helping clinicians co-prescribe drugs.

Figure 2 | The Venn diagram of the three data sources for our drug
combination dataset. Besides the data sets from two previous studies (PB:

Peer Bork, et al. Ref. 13 and DCDB in Ref. 21), we collected another 151

drug combinations via manual curation.
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that can help doctors co-prescribe drugs. We choose to use the
decision tree model25 to build the classifier since it is
straightforward and easy to be visualized and explained. Here
Figure 4 shows how AUC would change with using the top N SE
features ranked by the information gain in the decision tree model.
We found that the AUC increases significantly when N increases
from 1 to 3 while the AUC only increases marginally when N
increases from 3 to 10. Using the top three SEs as features strikes a
balance between the model performance and the complexity of the
model. The top three SEs are, Pneumonia, haemorrhage rectum, and
retinal bleeding, which happen to be the ‘‘black-box’’ warned adverse
events featured in FDA approved different drug labels. With these
three SEs features, the decision tree model (Figure 5) could achieve

an AUC of 0.80 and an accuracy of 0.91. We examined the effects of
different machine learning methods on the prediction performance.
For the prediction performance evaluation with the three SEs as
features, decision tree model gives an AUC of 0.80, Naive Bayes
with an AUC of 0.84 and Logistic Regression with an AUC of 0.84.
The robust performance across different machine learning methods
confirms our conclusion is not biased towards a particular method.

To predict the novel drug combinations, we used all the possible
pair-wise drug combinations of 239 marketed DDCs, excluding both
positive and negative set. In total 27,360 drug pairs were used as
prediction set. Based on the trained decision tree model with the
above three SEs features, we made the prediction of the novel
DDCs by only choosing pairs with predicted probability above

Figure 3 | Evaluation of logistic regression (LR) models based on the dataset of 239 marketed DDCs and 2291 control drug pairs. ROC curve (a) and the

Precision-Recall curve (b) for the performance generated from LR model.

Figure 4 | The change of AUCs using top N side effect features ranked by information gain with a decision tree model. Here, N is represented in X-axis

and the AUCs of the prediction performance of using top N features has represented in Y-axis.

www.nature.com/scientificreports
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0.99 and co-occurred in at least 10 publications of clinical trial pub-
lications in PubMed. As a result, 1508 drug pairs were identified
compared to a much higher number of 6,616 if one would apply
literature co-occurrence to propose any drug combination. These
1508 drug pairs formed a well-connected network and the degree
distribution is approximately a Power-law Distribution26 (Figure
6A). We further identified a condensed sub-network, highly inter-
connected regions in the network (Figure 6B) with Cytoscape27 and
its plugin MCODE28 The connections between the hub drugs include
familiar drug combinations with similar mechanism of actions like
hydrocortisone and dexamethasone (immunosuppressants)29, mor-
phine and tramadol (pain relievers)30 and could be a good starting
point for further experimental validation of these novel drug combi-
nations. Among these 1508 predicted candidate DDCs, 31 pairs con-
tain at least one clinical trial record cording to clinicaltrial.gov as
pairs, including 6 pairs in phase I, 7 in phase II, 12 in phase III, and 4
in phase IV (Supplementary Fig.S5). In contrast, for the 615 drug
pairs with probability less than 0.01, only 11 are supported by at least
10 publications and the network looks sparse (Figure 6C) compared
to the network formed by drug pairs with predicted probability above
0.99 (p-value of 4.19 3 1027 of Fisher’s exact test). When searching
the 615 drug pairs against clinicaltrial.gov, only 2 of them have clin-
ical trial records. The different degree distributions (Supplementary
Fig.S6) between network of predicted DDCs with high confidence
level and predicted DDCs with low confidence show the totally dif-
ferent network behaviors. The predicted DDCs network with high
confidence level fits the distribution of the scale-free network, similar
to commonly observed biological networks31. The DDCs network
with low confidence level is similar to random networks.

Case study. Below we selected one of the top predicted combinations
as the case study.

Formoterol/Fluticasone. Formoterol, a long-acting beta-adrenoceptor
agonist, exerts bronchodilatation effect and is used in the management
of asthma and chronic obstructive pulmonary disease (COPD). It’s
already been tested and used in combination with corticosteroids, such
as budesonide, to treat or prevent asthma attack and/or respiratory

tract inflammation. Fluticasone, another potent glucocorticoid,
has been shown to have superior or similar efficacy in improving
pulmonary functions in asthma patients32,33. The predicted
Formoterol/Fluticasone combination can be adopted as a new and
alternative option in the management of asthma or COPD along
the same combination strategy as Formoterol/Budesonide.

Discussion
In this study, we tried to address the DDC issue mainly through
evaluating the safety aspect, which is critical for co-prescribing drugs
or developing fix-dose combinations34,35. Several methods have been
developed to predict drug-drug interactions (DDIs) based on text
mining36,37, network modeling38, high-throughput screening9, and
other data integrative approaches13. Our approach explored the pos-
sibility of predicting new drug pairs by representing drug combina-
tions with their clinical SEs. It is based on the hypothesis that the
drugs that can be co-prescribed usually do not have or share the
serious adverse drug reactions. We tested this hypothesis in different
machine learning models and identified three FDA blacklisted SEs,
Pneumonia, haemorrhage rectum, and retinal bleeding, as the top
features contributing to the model performance. A ‘‘Rule of Three’’
criterion was thus developed: a drug combination with any of these
three SEs has significantly high likelihood to be unsafe. We further
demonstrated the robustness of such classification power based on
the conclusion that the accuracy of our model is less likely to be
introduced by confounding factors such as biased disease indications
or chemical structures. This method provides an approach to identify
novel drug combinations from clinical SEs, which should be less of a
translational issue compared to animal model.

We applied this approach to identify 1,508 candidate drug com-
binations. Instead of testing all 27,360 combinations, a researcher
looking to find novel DDCs will only test 1,508 combinations, saving
an enormous amount of resources. If a researcher applies pure lit-
erature co-occurrence based filtering using ‘‘more than 10 PubMed
co-occurrence’’ criterion, he/she still needs to test 6,616 combina-
tions instead. On the other hand, using co-occurrence number in
literature only may not be a good filter. For example, in our negative

Figure 5 | The details of the decision tree model using the top three features to decide the candidate drug combination. 0, 1, and 2 indicates the number

of drugs in the drug pair with such side effect. Pie charts indicate the percentage of correctly classified (green) and in-correctly classified (red)

instances at each leaf. Safe represents the approved drug combinations while unsafe represents drug pairs from negative set.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 4 : 7160 | DOI: 10.1038/srep07160 4



training set (unsafe drug combinations), 308 of them could have
passed the ‘‘10 or more times’’ filter, generating unsafe predictions
(false positives).

We tend to believe that our method could achieve a much better
performance than a previous DDC prediction study13. To test if this
improvement is only due to the better coverage of the known DDC,
we re-ran our model using the dataset from their study13. The model
achieved an AUC of 0.86 6 0.01, which is much better than their best
results (AUC: 0.69). However, this AUC is lower than the AUC (0.92
6 0.01) we achieved based on the larger DDC dataset, which means
the coverage of the dataset may also contribute to the model per-
formance. We discussed the differences between our methods and
previous work13 in more details in the supplemental materials
(Supplementary Result 2).

To better understand the rational of using the SEs to predict DDC,
we classify the SEs into two categories: efficacy-related SEs (blue) and
undesired (green) as shown in Figure 7. Certain SEs contribute to the
therapeutic effects of drug12, and are therefore called ‘‘efficacy-related
SEs’’. For example, most anti-diabetic drugs cause hypoglycemia, and
a decrease in blood glucose is one of the desired therapeutic effects of
such drugs. An ideal drug pair is to combine drugs that can share the

same SEs for the desired therapeutic effect but at the same time
minimizing the number of undesirable SEs shared between them
as possible. For example, if we take half dose of each drug component
to make a DDC, the ideal situation would be is to reduce the potency
of the undesired SEs by half while keeping the potency of the desired
SEs at the current levels. In reality SEs may not combine linearly and
thus this ideal situation needs to be further thoroughly tested. From
the approved drug combinations, we could find many cases that
come close to this ideal DDC model. For instance, the FDA approved
hypertension drug Minizide is the fix-dose combination of the pra-
zosin and polythiazide. The SEs they share, such as hypotension and
impotence, are found to be associated with the therapeutic effect of
the hypertension drugs12. None of the black-box warned SEs are
shared and the other SEs they share are mostly like the dizziness,
headache, nausea, vomiting etc., which are less likely to be associated
with the serious adverse drug reaction.

We describe in this study the use of SEs data to predict new drug-
drug combinations. Developing such combinations will be beneficial
in three areas: (i) improving the safety profiles of drug co-prescriptions
in clinic; (ii) assessing potentially hazardous drug combinations in
early stage of the fix-dose combination discovery in pharmaceutical

Figure 6 | Network analysis of the predicted DDCs. (a) the power-law degree distribution of the predicted drug combination network. (b) The sub-

network cluster with prediction probability above 0.99 and support from at least 10 clinical type publications. (c) A network view of the 11 drug pairs with

prediction probability less than 0.01 and support from at least 10 clinical type publications.

www.nature.com/scientificreports
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industry; and (iii) potentially reducing pill burden or bringing eco-
nomics of combining the right drug pairs, e.g., one expensive drug
along with a cheaper one. While our predictions were validated in-
silico, they should be further tested experimentally to establish their
clinical implications.

Methods
Side effect datasets. SIDER is a SE database containing information on marketed
medicines and their recorded adverse drug reactions. The information is extracted
from public documents and package inserts23. In this study, we downloaded the entire
database from http://sideeffects.embl.de/. Besides relying on drug label as sources for
drug SEs, we also checked FAERS, a database that contains information on adverse
event submitted to FDA and is designed to support the FDA’s post-marketing safety
surveillance program for drug and therapeutic biologic products. OFFSIDES is such a
SE database by mining FAERS system while controlling those confounding factors
such as concomitant medications, patient demographics, and patient medical
histories and so on. OFFSIDES contains 1332 drugs and 10097 SEs. 438 drugs and
2322 SEs are shared between SIDER and OFFSIDE. In our final integrated SE
database, drugs are represented with STITCH ID while SEs represented with
MedDRA terms so that they could be integrated across databases. We tested the
model performance with SEs from SIDER alone, OFFSIDES alone or OFFISDES and
SIDER combined. The most predictive model was the one that included information
from both OFFSIDES and SIDER(AUC:0.92), followed by OFFSIDES
alone(AUC:0.77), then SIDER alone(AUC:0.69), which is consistent with previous
findings18.

The TWOSIDES database identifies 59,220 pairs of drugs with 1,301 adverse events
by carefully matching groups of patients in the post-marketing surveillance system
FAERS. It provides a reliable and comprehensive database of SEs for drug pairs. It is
thus used to identify the features enriched in approved DDCs compared to random
drug pairs. In contrast, when doing the DDC prediction, we only used the SE for single
drugs from drug label and OFFSIDES since it is logical to only have single drugs’ SE
data before such pair has come into being.

Drug combination datasets. The Drug Combination Database (DCDB) is a database
collecting and organizing known examples of drug combinations. The current version
contains 145 drug combinations. Zhao et al (2011)13 also lists 178 drug combinations,
mainly collected from FDA orange book. We also curate 236 FDA approved or
registered drugs from literature. After mapping them to STITCH ID and annotating
them with SEs, we get a comprehensive list of 239 drug combinations to build the
prediction model (Supplementary Table S1). We used eulerAPE (http://www.
eulerdiagrams.org/eulerAPE/) to draw the area-proportional Venn diagrams for
these three data sources.

Drug target, SMILES string and ATC code. DrugBank (http://www.drugbank.ca) is
a unique bioinformatics and chemoinformatics resource that combines detailed drug
data with comprehensive drug target information. Current version contains 6711

drugs and 4081 targets. We downloaded the full database in xml format and parsed
out the drug target pairs, drug SMILES string and drug ATC pairs.

Making safe drug combination or co-prescriptions. First, we made sure what drugs
can be safely put together. We hypothesize that the drugs that can be put together
usually do not have overlap in some serious adverse drug reactions (ADR), but might
share some SEs that contribute to the therapeutic effect16,17. Here we came up with a
practical black list consisting of three SEs for clinicians to decide the safe drug pairs
with high accuracy.

Machine learning models. We used logistic regression model to evaluate the power
of predicting DDCs based on the SEs features. Our implementation was by Python 2.7
and the codes of logistic regression classifier are available in the Scikit-Learn
package39. We considered both penalty and inverse of regularization strength (i.e.,
parameter C - the smaller values specify stronger regularization) parameters for the
logistic regression model. The penalty can be L1 or L2 regularization, and parameter
C can be chosen from 0.001, 0.01, 0.1, 1, 10, 100, or 1000. In our experiment, we tuned
the model parameters based on 10-fold cross validation. Finally, the logistic
regression model we used in the experiments was L1-regularized logistic regression
with C510.We used decision tree for feature selection and the development of the
‘Rule of Three’ criterion. The implementation was by J48 decision tree learner in
Weka (http://www.cs.waikato.ac.nz/ml/weka/) with all the default settings.

PubMed and clinical trial validation. To validate whether the predicted drug pairs
have clinical literature supports, we used the search API provided by NCBI to count
the co-occurrence of the drug components for each proposed DDCs. The query term
we used are ‘drug name1 AND drug name2 AND (Clinical Trial[ptyp] OR Clinical
Trial, Phase I[ptyp] OR Clinical Trial, Phase II[ptyp] OR Clinical Trial, Phase
III[ptyp] OR Clinical Trial, Phase IV[ptyp])’. We also checked clinicaltrial.gov to see
whether predicted drug pairs are co-mentioned in the same registered clinical trials.

Structure similarity measurement. We used ChemmineR to calculate the Tanimoto
similarity coefficient between drug pairs based on their SMILES string. The drug pairs
with Tanimoto similarity coefficient larger than 0.5 were treated as structure similar
drugs. They were removed before we re-ran the prediction model to check whether
the model performance was biased by drugs’ chemical similarities.

Chemical fingerprints. We used rcdk, an R interface for CDK, to calculate two
different fingerprints, the 1024 hashed fingerprints from CDK and 166 MACCS keys
described by MDL, for each of the drug in the drug combination.
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