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Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are neurodegenerative diseases that overlap in 
their clinical presentation, pathology and genetics, and likely represent a spectrum of one underlying disease. In ALS/FTD 
patients, neuroinflammation characterized by innate immune responses of tissue-resident glial cells is uniformly present on 
end-stage pathology, and human imaging studies and rodent models support that neuroinflammation begins early in disease 
pathogenesis. Additionally, changes in circulating immune cell populations and cytokines are found in ALS/FTD patients, 
and there is evidence for an autoinflammatory state. However, despite the prominent role of neuro- and systemic inflamma-
tion in ALS/FTD, and experimental evidence in rodents that altering microglial function can mitigate pathology, therapeutic 
approaches to decrease inflammation have thus far failed to alter disease course in humans. Here, we review the character-
istics of inflammation in ALS/FTD in both the nervous and peripheral immune systems. We further discuss evidence for 
direct influence on immune cell function by mutations in ALS/FTD genes including C9orf72, TBK1 and OPTN, and how 
this could lead to the altered innate immune system “tone” observed in these patients.
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Introduction

Amyotrophic lateral sclerosis (ALS) is a late-onset neuro-
degenerative disorder that primarily affects motor neurons. 
Loss of these neurons causes paralysis and death usually 
3–5 years after symptom onset. The incidence of ALS in 
Europe and North America is reported to be between 1.5 
and 3 per 100,000 people per year, with no treatments avail-
able that significantly alter disease course [65, 101]. Most 
cases of ALS are “sporadic” as they occur without a known 
cause or a family history. However, about 5–10% are caused 
by genetic mutations, typically passed down with dominant 
inheritance [22]. Neuropathological features include degen-
eration of motor neurons in the anterior horns of the spinal 
cord, brainstem, and large pyramidal neurons in the primary 
motor cortex. The death of motor neurons is accompanied 

by significant glial reaction, and ubiquitinated protein inclu-
sions which typically contain the RNA-binding protein TDP-
43. During the last few decades, many genes have been dis-
covered that cause familial ALS or are over-represented in 
ALS patients compared to controls. These genes are involved 
in several cellular pathways, including RNA metabolism, 
protein homeostasis, and cytoskeletal dynamics, and provide 
researchers with tools to model ALS and study the molecular 
mechanisms underlying the disease. While all these genes 
are expressed in a variety of non-neuronal cells, including 
cells of the immune system, the majority of research has 
focused on their role in neurons, as they are the cells that 
ultimately degenerate in ALS.

ALS shares significant overlap with another fatal neu-
rodegenerative disease, frontotemporal dementia (FTD) 
[111]. FTD is characterized by degeneration of the frontal 
and temporal lobes, and is associated with behavioral and 
personality changes, and impairment in social interactions. 
Approximately, 15% of patients with FTD develop motor 
neuron dysfunction, and up to 50% of patients with ALS 
develop frontal lobe dysfunction [88]. Pathologically, ALS 
and FTD are thought to be at different ends of a spectrum, 
with the presence of ubiquitinated neuronal cytoplasmic 
inclusions positive for TDP-43 found in both diseases. The 
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two also share common genetic origins, with a mutation in 
C9orf72 being the most common cause [158]. Hexanucleo-
tide repeat expansions in C9orf72 have been identified in up 
to 40% of familial ALS patients, and 20% of familial FTD 
patients, in addition to around 6% of sporadic ALS and FTD 
patients [34, 128]. Multiple other genes, such as VCP, FUS 
and TARDBP have also been linked to both diseases, and 
in each case members of a family can manifest either ALS, 
FTD, or both [77, 78, 84, 142, 154]. However, while the 
clinical, genetic and pathologic overlaps are well defined, 
the reasons why individual patients manifest different parts 
of the ALS/FTD spectrum remains a mystery.

Neuroinflammation is a term that broadly describes the 
reaction of resident glial cells (astrocytes, microglia) and 
circulating immune cells (monocytes, neutrophils, lympho-
cytes) that enter and interact with cells of the CNS in the 
context of infection, injury or degeneration. Neuroinflam-
mation in ALS, as in other neurodegenerative diseases, is 
characterized primarily by an innate immune response rather 
than an adaptive immune response [126]. However, while 
astrocyte and microglial activation are the most prominent 
features on pathology, autopsy tissue from ALS patients 
also displays T cells [38, 79, 167], and non-resident innate 
immune cells (dendritic cells, macrophages, mast cells) [59, 
68, 70]. The role of these other immune cells in disease 
pathogenesis remains poorly understood.

In addition to neuroinflammation, there is also evidence 
for systemic inflammation in ALS, as altered circulating 
lymphocyte and monocyte populations have been reported 
[107, 166], as well as inflammatory cytokines and other 
immune markers [99]. However, while neuroinflammation 
and systemic inflammation are uniformly present in ALS 
patients, it is still debated whether these phenomena are sim-
ply a consequence of disease, or instead play a contributory 
or even causative role.

In this review, we focus on the role of immune cells in 
ALS pathogenesis, discuss how their dysfunction influences 
neuroinflammation and systemic inflammation, and could 
contribute to disease risk or progression. In particular, we 
focus on a group of ALS genes including C9orf72, TBK1, 
and OPTN that have well-characterized roles regulating 
innate immune cell function. We discuss how mutations 
in these genes could alter innate immune “tone” in ALS 
patients, through their effect on myeloid-derived innate 
immune cell populations in the brain and the periphery.

Diversity of myeloid populations that influence 
neuroinflammation

Myeloid cells are generally defined as those resulting from 
a myeloblast lineage, and include neutrophils, basophils, 
eosinophils, monocytes/macrophages and dendritic cells 
[48]. They originate from hematopoietic cells in the bone 

marrow and are constantly distributed throughout the body. 
They play a key role in the innate immune response, produc-
ing cytokines and chemokines to mitigate infection, activat-
ing the adaptive immune system through antigen presenta-
tion, and maintaining tissue homeostasis [48].

In the CNS parenchyma, microglia are the primary mye-
loid cell type, making up 5–15% of cells in the brain [91, 
119] and are responsible for development, immune surveil-
lance, and tissue homeostasis [83, 96, 134, 149]. During 
steady state, these cells are constantly surveying their envi-
ronment, and upon injury microglia migrate to the dam-
aged areas and produce cytokines and neurotrophic factors 
to mitigate damage [83]. Through phagocytosis, microglia 
engage in the clearance of pathogens and debris, as well 
as synaptic elements during development and likely dis-
ease [72]. As a stereotyped response to a pro-inflammatory 
environment, microglia also change their morphology and 
upregulate Iba1, CD11b and antigen presentation molecules 
(CD80/CD86) in response to pathogens or infection [89]. 
Microglia are unique among tissue macrophages in that they 
are a self-renewing population derived from early yolk-sac 
precursors, and are not replaced or expanded by circulating 
macrophages except in the case of tissue injury [2, 16, 55]. 
Under homeostatic conditions, there are few if any infiltrat-
ing myeloid cells in the CNS; however, breakdown of the 
blood–brain barrier in many disease states can lead to infil-
tration of monocyte-derived macrophages that are phenotyp-
ically different from resident microglia, but similarly work 
to alleviate damage caused by an insult [1, 62, 109, 123].

Microglia are extremely sensitive to changes in their envi-
ronment and are known to react to danger signals present 
both within the CNS and systemically (Fig. 1). Unregulated 
activation of microglia leads to the production of potentially 
harmful neurotoxins, such as reactive oxygen species (ROS), 
quinolinic acid and reactive nitrogen species (RNS), which 
can be detrimental to neighboring neurons [160, 170]. As 
noted above, microglia can take on either a damaging or 
protective phenotype depending on the context of their acti-
vation, and early studies suggested that microglia assume 
finite activation states that correlate with these two activities 
[127]. Due to recent advances in single-cell sequencing, the 
concept that microglia exist in only two different activation 
states has been demonstrated to be an over-simplification. 
As an example, using transcriptional single-cell sorting 
all immune cells in the brain of wild type and a transgenic 
mouse model of Alzheimer’s disease were mapped, iden-
tifying numerous states including a population called dis-
ease-associated microglia (DAM) [81]. Another study used 
single-cell RNAseq to examine multiple distinct reactive 
microglia populations in the hippocampus of AD mice [97]. 
This study looked specifically at progression of neurodegen-
eration at multiple time points, and interestingly they identi-
fied distinct reactive microglia phenotypes, characterized by 
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the production of type I and type II interferon genes [97]. 
These microglia were different from the previously identified 
DAM, in that they expressed interferon-related or prolifera-
tion molecules. Additional diversity of microglial responses 
was recently reported from whole-tissue RNA profiles from 
human neurodegenerative diseases [47]. These studies have 
just begun to clarify the underappreciated heterogeneity in 
how microglia respond to environments such as neurodegen-
eration, and alter the way researchers approach character-
izing and therapeutically targeting these cells.

Other CNS‑resident macrophages

In addition to microglia, there are several other CNS-resi-
dent macrophages present throughout the brain and spinal 
cord that could respond to and incite systemic inflammation, 
and influence brain function. They consist of perivascular 
macrophages (PVM), meningeal macrophages and choroid 

plexus macrophages [58, 82]. These cells produce copious 
amounts of ROS, alter the neurovasculature of the CNS, 
recruit circulating immune cells, and incite systemic inflam-
mation [40, 41, 66]. Studies suggest these other myeloid 
populations may play a role in neurodegenerative diseases 
such as Alzheimer’s, as well as experimental autoimmune 
encephalomyelitis (EAE) [118, 122]. For example, PVMs 
are believed to be involved in waste product clearance. In 
a model of AD, depleting PVMs had no effect on amyloid 
plaques in the brain parenchyma, but there was an increase 
of amyloid beta around the cerebral blood vessels [118]. In 
EAE, the number of PVM increases after onset of disease 
and depleting these cells ameliorated neurological symp-
toms [122]. While not fully understood, it could be that 
PVMs are acting as antigen-presenting cells that are able 
to reactivate T cells as they cross the blood–brain barrier 
[122]. Although not yet studied in animal models of ALS, 
these additional myeloid cells may play a role in neuro- and 

Fig. 1   Microglial responses in neuronal injury and ALS/FTD. a, b 
Immunofluorescence image of Iba1 stain in the region of the motor 
cortex and corpus callosum (highlighted with dotted white lines) in 
the normal mouse brain (a), or after experimental traumatic brain 
injury (b). After tissue injury, Iba1-positive microglia proliferate 
and become activated with altered morphology, function and tran-
scriptional profile to assist in clearing damage and maintaining tissue 
homeostasis. Scale bar 200 μm. c Microglial activation in motor cor-

tex from a human subject with sporadic ALS (IBA1—red; DAPI—
blue). Microglia appear similar on histology to tissue injury, with 
proliferation and activation characterized by enlarged ramifications. 
Scale bar 100 μm. d Iba1 (DAB stain) labeling of ventral horn of a 
mouse lacking the C9orf72 gene, showing the interaction between the 
ramifications of a microglial cell and a neighboring neuron, can either 
be supportive or detrimental in the context of ALS/FTD as discussed 
in the text. Scale bar 20 μm
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systemic inflammation in ALS pathogenesis, warranting 
further investigation.

Neuroinflammation in ALS/FTD—pathology, 
imaging and model systems

Most of the earliest observations regarding inflammatory 
changes in ALS come from the study of patient autopsy 
material. The key pathologic features of ALS include ubiq-
uitinated neuronal inclusions typically positive for the RNA-
binding protein TDP-43, and motor neuron and interneuron 
cell loss in the cortex and spinal cord, with adjacent enlarge-
ment and proliferation of microglia and astrocytes typically 
referred to as “activated” [79]. The activation of microglia 
and astrocytes in ALS occurs with minimal infiltration of 
peripheral immune cells, which is a characteristic of the 
pathology of most neurodegenerative diseases, supporting 
that innate immune sensing pathways are most prominent 
and activated earliest [126]. The activation state of astro-
cytes and microglia has been traditionally observed by 
immunostaining for glial fibrillary acidic protein (GFAP) for 
astrocytes, and IBA1 or CD68 for microglia, and the degree 
of microglial pathology correlates with rate of disease pro-
gression [21]. However, as described above recent studies of 
diversity in microglial and astrocyte responsiveness indicate 
that these markers do not adequately represent the range of 
molecular response to tissue injury generated by these cells 
[18]. Additionally, because autopsy tissue is obtained at dis-
ease end stage and after a period of post-mortem ischemia, it 
is difficult to determine if the changes observed only occur 
late in disease progression. While a variety of peripherally 
derived inflammatory cell types have also been observed 
in areas of cellular injury in ALS, including T cells, mast 
cells, monocyte-derived macrophages and dendritic cells, 
these remain a minor component of the lesions compared to 
their frequency in inflammatory or infectious brain diseases, 
leaving their relevance unclear [38, 59, 70, 132].

Although autopsy studies reflect events late in dis-
ease, data from human imaging studies support that glial 
activation begins early in disease pathogenesis. Studies 
using [11C](R)-PK11195 to label “peripheral benzodi-
azepine-binding site”, expressed by activated microglia, 
first showed that increased binding was present in affected 
areas of brain in ALS patients with a range of severity 
and disease duration, and motor cortex signal correlated 
with the degree of clinical upper motor neuron signs [150]. 
Subsequently, the use of PET ligands that bind to the 
18pkD translocator protein (TSPO) expressed in activated 
microglia and astrocytes demonstrated binding in affected 
brain regions as early as the time of diagnosis [33]. A 
recent study using another TSPO binding ligand PET 
integrated with MRI showed that areas of ligand bind-
ing correlated with cortical thinning, reduced fractional 

anisotropy, and increased diffusivity, in addition to the 
clinical upper motor neuron score [5]. Interestingly this 
study did not see a change in ligand binding in subjects 
undergoing repeat imaging over 6 months despite clinical 
progression, suggesting glial activation is present early 
and does not change at least in terms of TSPO imaging. 
Neuroinflammation is also a key component of FTD, sup-
ported by similar studies showing increased TPSO binding 
in several affected brain regions, including the cortical 
frontal, mesial temporal, subcortical regions, prefrontal 
cortex, hippocampus and parahippocampus in patients 
compared to controls [26]. Additionally, FTD patients 
have increased levels of cytokines in their CSF compared 
to healthy controls, supporting that there is activation of 
the intrathecal immune response as in ALS [139].

Rodent model systems have the advantage of allowing 
researchers to investigate tissue changes that occur before 
end stage of disease. In the case of ALS, studies of rodent 
models have supported the idea that neuroinflammation 
begins very early in disease course. In the widely studied 
SOD1 mouse model, activated microglia are present near 
motor neurons before the onset of weakness, and the degree 
of inflammatory response correlates with disease progres-
sion [76, 87, 132]. T cells are also found in the spinal cord, 
but this seems to occur later after microglial activation [4]. 
Microglia have been shown to increase their production of 
pro-inflammatory cytokines, TNFα and IL1β, as well as 
generate an excess of reactive oxygen species (ROS), which 
could potentially directly harm neighboring motor neurons 
suggesting this early glial reaction could actively be damag-
ing neurons [69]. Multiple lines of experimentation from the 
SOD1 model support that on the whole, microglial activity 
is detrimental when considered across the full duration of 
disease [12, 19, 87]. However, it is important to note that the 
visual presence of “activated” microglia on histology does 
not indicate they are damaging motor neurons, and there 
is evidence that they may instead be promoting neuronal 
health or recovery. For example, in the SOD1 mouse model, 
microglia have been demonstrated to shift from a neuropro-
tective to a neurotoxic phenotype over the course of disease 
[12, 87]. Recently, another group demonstrated in a TDP-43 
transgenic model that microglia initially showed minimal 
reaction to neuronal pathology, but after the transgene was 
suppressed, microglial “activation” occurred which corre-
lated with promotion of recovery instead of injury [141]. 
Animal models likewise support the occurrence of neuro-
inflammation and microglial activation in FTD. In particu-
lar, knockout models of progranulin (Grn) show increased 
astrogliosis and microgliosis in the hippocampus, cortex and 
thalamus [51, 164]. Interestingly, reducing Grn levels in only 
neurons or microglia does not result in neuroinflammation 
measured by Iba1 and GFAP staining, suggesting the inflam-
mation is driven non-cell autonomously [121].
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In summary, neuroinflammation in ALS/FTD is primar-
ily characterized by activation of innate immune sensing 
pathways in microglia and astrocytes resident to the CNS. 
The bulk of evidence from imaging studies in humans, and 
pathology studies in model organisms support that this 
process occurs early, long before neuronal cell death, via 
yet unknown signaling events between injured neurons and 
neighboring glial cells. The first cells to respond are likely 
microglia, as they are exquisitely sensitive to any perturba-
tion in their environment. However, the exact signaling mol-
ecules and cellular states that are induced by these molecules 
need to be more clearly defined, as the term “activation” 
is used in the literature to describe glia that appear similar 
on pathology, but can either promote a toxic or restorative 
environment for neurons. Therefore, more studies and better 
tools are needed to clearly define how neuronal-glial signal-
ing occur at different stages of disease, and where potential 
therapeutic interventions can be made to modulate inflam-
mation to slow disease progression.

Alterations in systemic immune markers in ALS/FTD 
patients

During a localized infection or injury, a systemic immune 
response frequently occurs leading to production of 
cytokines and mobilization/activation of circulating immune 
cells to help mitigate tissue damage and restore homeosta-
sis. For this process to be effective, checks and balances 
(anti-inflammatory cytokines and immune cells) need to 
be in place to dampen the systemic inflammatory response 
appropriately and maintain immune tolerance to self-anti-
gens. Because these processes are occurring simultaneously, 
studies profiling immune markers in peripheral blood are 
sometimes challenging to interpret, as they are dependent 
on a complex mixture of disease state, recent environmental 
exposures, and genetic background of the subject. Despite 
these challenges, a detailed understanding of the systemic 
immune response in the context of ALS and FTD is not only 
important to unravel disease mechanism, but potentially to 
serve as a biomarker of disease activity.

Blood from ALS patients have consistently shown 
changes in systemic inflammatory markers and immune 
cell populations compared to healthy controls, with ALS 
patients having differences in levels of neutrophils, CD4 
and CD8 lymphocytes and CD16 monocytes, with CD16 
monocyte levels correlating with disease severity [57, 
107, 166, 171]. Levels of circulating cytokines are also 
abnormal in ALS patients, with altered production of 
IFNγ, IL-2, IL-8, IL12p70, TNFα, IL-1b, CK, ferritin, 
IL-4, IL-5, IL-10 and IL-13 [90]. Having increased levels 
of ferritin and IL-2 correlated with poorer survival prob-
ability suggesting a role of the peripheral immune system 
in disease progression [90]. FTD patients have also been 

reported to have elevated levels of circulating cytokines; 
however, due to partially conflicting findings, further stud-
ies are warranted [20, 52].

In addition to cytokine production, and lymphocyte 
and monocyte populations, alterations in dendritic cells 
have been observed in ALS [70]. Dendritic cells (DCs) 
are innate immune cells adept at cytokine production and 
antigen presentation, and play a key role in regulating the 
adaptive immune system [159]. mRNA expression of DC 
surface markers in both sporadic ALS and familial ALS 
shows immature and activated/mature DC transcripts which 
are significantly upregulated in ALS tissues, and immuno-
histochemistry confirmed the presence of these cells in the 
ventral horn and corticospinal tracts [70]. In addition, the 
chemokine MCP-1, which recruits monocytes, memory 
T cells and DCs to sites of inflammation, was found to be 
expressed by glia and in the CSF from ALS patients, but 
not control subjects. Interestingly, patients who progressed 
rapidly had significantly more dendritic cell transcripts 
than patients who slowly progressed, implicating periph-
eral immune cell recruitment in disease pathogenesis [70].

Although a systemic immune response is essential to fight 
infection, it can be detrimental to the whole organism if it 
is not appropriately regulated. Regulatory T lymphocytes 
(Tregs) are a key cell type responsible for suppressing the 
immune response and maintaining immune tolerance [130]. 
Tregs maintain homeostasis by inhibiting effector T-cell pro-
liferation and cytokine production, shutting down an overac-
tive immune response. In accord with the pro-inflammatory 
state reported in peripheral blood from ALS patients, fewer 
Tregs have also been observed in patient and rodent models 
of ALS [13, 14, 93, 136]. Treg levels were found to correlate 
with disease progression rates in mutant SOD1 mice, and 
passive transfer of Tregs suppressed neuroinflammation and 
prolonged survival in these animals [169]. Likewise, rapidly 
progressing patients were found to have decreased numbers 
of Tregs and FOXP3 protein expression, a key transcription 
factor crucial for development and function of Tregs [68]. 
Given the correlation between Treg levels and disease pro-
gression, a phase 1 trial was recently performed to infuse 
ex vivo-expanded autologous Tregs into ALS patients, and 
it appeared overall safe and well tolerated [147].

In summary, a variety of systemic inflammatory responses 
(pro- and anti-inflammatory cytokine profiles, altered 
immune cell populations) have been consistently reported 
in ALS patients. This could be driven by several factors 
including: i) a response to tissue damage in the brain, ini-
tially sensed by resident glia then amplified and propagated 
by the peripheral immune cells; ii) an intrinsically altered 
peripheral immune system in ALS and FTD patients driven 
by genetic differences. The idea that the immune system is 
intrinsically altered in ALS and FTD patients is becoming of 
increasing interest given that mutations in several ALS/FTD 
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genes have been shown to have a significant direct effect on 
immune cell function (see below).

Associations with autoimmunity and cancer risk 
suggest altered innate immune system “tone” 
in ALS/FTD patients

Dating back to the 1980’s researchers noticed patients with 
ALS have a higher than expected incidence of autoantibody 
production, and monoclonal or polyclonal gammopathy 
[37, 116, 138]. The initial assumption was that these anti-
bodies may mediate an autoimmune attack on motor neu-
rons [35]; however, the lack of response of ALS patients 
to plasma exchange or other antibody-directed therapies 
or immunomodulatory therapies argued against this idea. 
Likewise, no individual autoantibody has thus far been dis-
covered which could explain disease pathophysiology, and 
instead ALS patients have been found to generate a wide 
variety of antibodies to autoantigens, most of which do not 
appear to have functional significance. These include anti-
bodies against ganglioside GM1 and GD1a [120], neurofila-
ment proteins and sulfoglucuronylparagloboside [15], FAS 
(CD95) [163], and voltage-gated Ca2+ channels (VGCC) 
[7, 152]. More recent studies support that ALS patients can 
be readily distinguished from controls by the presence of a 
large panel of autoreactive IgG antibodies [98]. While the 
lack of identification of a specific pathogenic autoantibody 
or response to antibody-targeted therapies initially lowered 
the enthusiasm for these findings, they strongly support the 
idea that ALS patients have an altered peripheral immune 
system, one that has the tendency to break tolerance and 
generate a variety of autoantibodies.

Recent epidemiological studies have further supported 
the idea that ALS and FTD patients have an intrinsically 
altered immune system, finding that significantly more cases 
than expected of ALS are associated with a prior diagnosis 
of an autoimmune disorder such as asthma, celiac disease, 
systemic lupus erythematosus, ulcerative colitis, myasthenia 
gravis and juvenile-onset diabetes [151]. A similar increased 
risk of autoimmune disorders was also observed in a cohort 
of FTD patients with TDP-43 pathology, and subsequently 
in a cohort of specifically C9orf72 gene mutation carriers, 
compared to normal controls or subjects with other neurode-
generative diseases [103, 104]. Further connecting C9orf72 
expansion carriers to autoimmune disease, in a small cohort 
of patients diagnosed with the rare combination of multiple 
sclerosis and ALS, a remarkable 80% carried the hexanucle-
otide repeat expansion in C9orf72 [73]. These data support 
that ALS/FTD patients have a tendency toward developing 
autoimmune disorders, which could be driven by specific 
gene variants in these patients, including C9orf72 repeat 
expansion.

Despite evidence supporting a connection between 
ALS/FTD and risk of autoimmunity, there is little evi-
dence that ALS is itself an autoimmune disease, as tradi-
tional medications to suppress the immune system failed 
to slow disease progression including corticosteroids, 
azathioprine and cyclophosphamide [8, 11, 23, 36, 105]. 
Plasmapheresis and intravenous immunoglobulins also 
failed to alter disease progression supporting that the 
autoantibodies observed in the disorder are not pathogenic 
[80, 105, 115]. The most likely reason behind the lack of 
response in these trials is that the interventions did not 
alter inflammatory events taking place in the nervous sys-
tem, and that the tendency toward autoimmunity and auto-
inflammation in ALS/FTD patients is driven by a shared 
cause, i.e. environmental or genetic lesions that promote 
a tendency to develop either ALS/FTD, autoimmunity, or 
sometimes both.

The idea that the immune system in ALS/FTD patients is 
shifted toward a pro-inflammatory tone raises several inter-
esting questions. It is becoming well established that cancer 
immunity and autoimmunity are two sides of the same coin, 
with checkpoint inhibitor therapy leading to both the pro-
motion of tumor immunity as well as autoimmunity [148]. 
Antigen-presenting cells, such as dendritic cells, play a key 
role in driving the innate immune system tone and balancing 
tumor immunity vs. autoimmunity by the adaptive immune 
system [32, 49]. Therefore, one would predict based on the 
tendency toward autoimmunity, that ALS/FTD patients may 
have a decreased incidence of cancer. Interestingly, a recent 
study did observe that overall risk of cancer at any site was 
found to be significantly reduced in ALS patients [53]. It 
is important, however, to note that earlier studies showed 
conflicting results as to the relationship between cancer and 
ALS [39, 45], so further studies are needed to determine the 
nature and degree of this effect.

How mutations in ALS/FTD‑associated genes could 
directly influence the innate immune system

Over the last 10 years, many ALS/FTD-associated genes 
have been discovered, nearly all of which are ubiquitously 
expressed [17]. Interestingly, some of these genes (PGRN, 
C9orf72) are more highly expressed in non-neuronal cells, 
including microglia, than they are in neurons. Others (TBK1, 
OPTN, SQSTM1) have been extensively studied regarding 
their role in regulating the function of innate immune cells. 
This raises the possibility that ALS and FTD mutations 
could directly influence the function of immune cells, and 
perhaps act in concert with the effect of these mutations on 
neurons to drive disease. We review below the ways in which 
several ALS/FTD genes have been shown to impact immune 
cell function directly.
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SOD1

Mutations in SOD1 were one of the first major ALS genes 
identified and make up for ~ 15% of familial ALS. Trans-
genic mice overexpressing human mutant SOD1 (mSOD1) 
are the most commonly used model to study disease patho-
genesis, as they reliably develop a mutation-dependent 
fatal motor neuron disease [24, 60, 157]. However, while 
the phenotype is driven by spinal motor neuron loss, the 
toxicity of mSOD1 is not cell autonomous to motor neu-
rons. Early studies showed that overexpressing mSOD1 in 
neurons alone for up to 1.5 years did not result in motor 
deficit [125, 162], supporting that non-neuronal cells con-
tributed to the motor neuron loss. Other studies showed that 
relative to wild-type microglia, mSOD1 microglia produced 
more superoxide, nitric oxide and TNFα when stimulated 
with LPS compared to wild-type microglia [156, 160, 170]. 
These mSOD1 microglia caused more injury to primary 
cultured motor neurons compared to wild-type microglia 
[168], and inhibiting production of NF-kB was found to 
suppress mSOD1 microglia toxicity when co-cultured with 
motor neurons [44]. Using mice with chimeric mosaicism 
to express mSOD1 in different cell populations, it was dem-
onstrated in vivo that wild-type motor neurons surrounded 
by mSOD1-expressing glial cells developed features of ALS 
pathology, while mSOD1-expressing neurons surrounded by 
healthy glia remained disease free [31]. Finally, Cre–lox-
driven removal of mSOD1 from microglia led to a longer 
lifespan despite the persistent expression of mSOD1 in 
motor neurons [19]. Together, these studies across in vitro 
and in vivo platforms show that intrinsic changes in micro-
glia from mSOD1 expression directly contribute to motor 
neuron degeneration in the mSOD1 mouse model.

As discussed earlier, the early onset of the microglial 
activation in mSOD1 mice support that mSOD1-expressing 
microglia could directly damage motor neurons and pro-
mote disease progression [4, 61]. As a potential demonstra-
tion of this, mSOD1 was shown to activate caspase-1 and 
IL1β in microglia (independent of their activation by envi-
ronmental cues) and preventing the production of IL-1β-
attenuated inflammation and enhanced survival in mSOD1 
animals [102]. These examples from SOD1, the longest 
established ALS-associated gene, provide strong evidence 
for a cell intrinsic effect of genetic mutations on microglia, 
and set the premise for considering whether more recently 
discovered ALS and FTD genes may also similarly alter 
myeloid cell function to impact neurodegeneration non-cell 
autonomously.

C9orf72

Expansions in a hexanucleotide repeat (GGG​GCC​) in a non-
coding region of the C9orf72 gene are the most common 

cause of familial and sporadic ALS and FTD to date, 
accounting for roughly 40% of familial ALS and 5–10% 
sporadic ALS [34, 128]. Healthy individuals contain 2–20 
repeats, while affected individuals typically have hundreds 
or thousands. Highlighting a potential role in the immune 
system, C9orf72 is highly expressed in many myeloid cell 
types, including microglia and circulating monocytes [67, 
108, 112, 129].

There are currently three main hypotheses as to how 
C9orf72 repeat expansion causes disease. First, as usage of 
the upstream 1a promoter leads to transcription of the repeat, 
RNA-mediated toxicity has been proposed due to the pres-
ence of sense and antisense RNA foci in cells and autopsy 
tissue from C9orf72 patients. These foci could sequester 
RNA-binding proteins and alter RNA metabolism in patients 
[34, 50, 85]. Second, simple poly-dipeptides produced by 
repeat-associated non-AUG (RAN) translation of the repeat 
containing RNA have been found to accumulate in the brain 
and spinal cord of C9orf72 mutation carriers, which have a 
variety of toxic properties [9, 50, 92]. Third, loss of func-
tion of the C9orf72 gene product could contribute, as the 
presence of the repeat expansion leads to downregulation 
of C9orf72 expression (particularly from the 1b promoter) 
[133]. Decreased transcript levels have consistently been 
demonstrated from C9orf72 patient brain tissue [34, 54]. 
Further supporting this idea, studies looking at C. elegans 
and zebrafish have shown that complete loss of C9orf72 
leads to motor neuron degeneration [30, 146]; however, 
similar findings have not been observed in mammals as dis-
cussed below. Studies thus far examining the molecular and 
cellular biology of C9orf72 indicate that it regulates endo-
somal trafficking, including autophagy [42, 135, 144] and 
lysosomal function [6, 112].

Human genetic studies strongly support that ALS/FTD 
cannot be haploinsufficient of C9orf72 alone, as patients 
with premature stop codons would almost certainly have 
been identified through existing sequencing projects for 
ALS and FTD [63]. However, there is strong data sup-
porting that loss of function could contribute to disease. 
A recent case study reported a 90-year-old C9orf72 carrier 
who passed away from unrelated causes, and his ALS-
affected child. Both individuals harbored the pathogenic 
repeat, but the father was a mosaic with a small expansion 
in blood (~ 70) and large expansions in CNS tissues. On 
pathology, the unaffected father and affected daughter both 
had equivalent RNA foci and dipeptide repeat pathology. 
However, the C9orf72 expression levels were significantly 
higher in the father compared to his daughter, presum-
ably because of the mosaicism of his repeat [100]. This 
suggested the presence of RNA foci and DPR pathology 
was insufficient to promote neurodegeneration, and that 
decreased levels of C9orf72 needed to also be present. In 
accord with this, a recent study of iPSC-derived motor 
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neurons from C9orf72 patients supported that haploinsuf-
ficiency of the protein was the primary driver of the sur-
vival phenotype in these cells, rather than toxic dipeptide 
repeats or RNA foci production [137].

Several groups developed knockout mice to study how 
loss of C9orf72 could play a role in neurodegeneration. Ani-
mals lacking one or both copies of C9orf72 never developed 
signs of neurodegeneration or motor system dysfunction. 
Instead, these animals developed progressive splenomegaly 
and lymphadenopathy, increased production of pro-inflam-
matory cytokines, altered immune cell populations, auto-
inflammation with autoantibody production, and in some 
colonies autoimmune-like disease [10, 25, 112, 143]. While 
the core features of systemic inflammation and lymphoid 
tissue hyperplasia were consistent across all studies, there 
were environment-dependent differences in whether ani-
mals developed spontaneous and fatal autoimmune disease 
[25], autoantibody production with a lupus nephritis-like 
syndrome [10], or normal survival with late-onset milder 
systemic and neuroinflammation [112]. Presumably, this 
relates to the different housing conditions in the different 
mouse facilities (pathogens, microbiome, etc.) but the exact 
drivers remain unknown. Importantly, the groups observed 
partial phenotypes in mice lacking one copy of C9orf72 in 
both cultured macrophages [112], and in immunoprofiling 
and survival [25]. These findings suggest that haploinsuffi-
ciency of C9orf72 is enough to drive an altered myeloid cell 
function and systemic immune response, which has impor-
tant implications with C9orf72-associated ALS, as patients 
carry only one expansion allele and, therefore, show only 
partial loss of C9orf72 expression.

While it remains to be defined exactly which peripheral 
immune cells contribute to the systemic inflammation phe-
notype, it is clear that myeloid cells express relatively high 
levels of C9orf72, and show defects in lysosomal morphol-
ogy and hyperactive responses to immune stimuli [112]. 
Brain microglia from C9orf72-deficient mice also showed 
lysosomal accumulations and increased production of pro-
inflammatory cytokines, supporting that they could func-
tion abnormally in C9orf72 patients. Interestingly, transcrip-
tional profiling of C9orf72-deficient spinal cords revealed 
age-related upregulation of inflammatory pathways, which 
overlapped with C9-associated FTD patient tissue more than 
sporadic FTD tissue, suggesting that altered or enhanced 
neuroinflammation may also exist in C9orf72-carrier brain 
tissue [21, 112].

While the finding of an immunologic phenotype and 
altered myeloid cell function from the loss of C9orf72 may 
have initially been surprising, it is interesting to note that 
similar phenotypes have been observed due to loss of func-
tion of other ALS/FTD-associated genes, suggesting that 
there may be a subgroup of these genes which similarly 
influence immune function.

TBK1

Mutations in the gene tumor necrosis factor receptor-asso-
ciated factor NF-kB activator (TANK)-binding kinase 1 
(TBK1) were recently identified as another genetic cause 
of ALS and FTD [29]. The large number of premature stop 
codons is most consistent with a loss of function and haplo-
insufficiency mechanism [46, 113, 124]. TBK1 is a ubiqui-
tously expressed serine–threonine kinase, and was already 
widely studied for its role in regulating type 1 interferon 
(IFN) production [43]. Interestingly, loss of function muta-
tions were previously reported in humans as causing suscep-
tibility for childhood herpes simplex encephalitis, presum-
ably because they led to a deficiency in type 1 IFN response 
[71]. TBK1 regulates numerous cellular pathways including 
IRF3 phosphorylation and IFN induction following infec-
tion, and autophagy through phosphorylation of OPTN, p62/
SQSTM1 and SMCR8 (a C9orf72-binding partner), as well 
as influencing cell proliferation and growth [43, 94]. Loss 
of function mutations in TBK1 have subsequently been con-
firmed in studies of both familial and sporadic ALS and 
FTD, and are responsible for 1–2% of familial ALS [17, 
29, 46, 124, 153]. The role for this protein in cell types of 
the CNS are only beginning to be discovered; however, 
there are some striking similarities in the effects of loss of 
TBK1 function in myeloid cells to those described for loss 
of C9orf72 above.

A recent study reported the conditional deletion of TBK1 
in dendritic cells using CD11c-Cre mice [161]. Interestingly, 
knocking out TBK1 in this myeloid cell population led to 
progressive splenomegaly and lymphadenopathy similar to 
that seen in C9orf72-deficient mice. Dendritic cells lacking 
TBK1 also showed co-stimulatory molecule upregulation, 
and promoted an increased activation of CD4 and CD8 T 
cells. This heightened inflammatory state led to the ani-
mals having enhanced susceptibility to EAE, which is not 
surprising considering the role of dendritic cells in regu-
lating the immune system and autoimmunity. This altered 
innate immune system tone also led to enhanced antitumor 
immunity, demonstrated by the increased survival rate and 
decreased tumor volume observed after inoculation with a 
melanoma cell line.

Interestingly, while type 1 IFN production by dendritic 
cells themselves was attenuated, the broader interferon 
response was hyperactive in these animals and appeared to 
drive much of the phenotype, as crossing CD11c-Cre TBK1 
mice to interferon alpha receptor 1 (IFNAR1)-KO mice 
essentially reversed the splenomegaly, lymphadenopathy and 
T-cell activation states [161]. This apparent paradox may 
be explained by the fact they observed that TBK1 mediates 
phosphorylation of STAT3 serine which negatively regulates 
STAT1 activation, subsequently shutting down type 1 IFN 
production in a feedback loop [75, 155]. STAT3 is essential 
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for the tolerant function of dendritic cells, and when ablated 
causes an increase in T-cell activation as well as suscepti-
bility to autoimmunity [27]. This study highlighted a key 
role for the dendritic cell-specific function of TBK1 in the 
maintenance of immune homeostasis and tolerance, provid-
ing evidence of an immunoregulatory function as well as the 
previously known role in antiviral innate immunity.

Another study showed that lack of TBK1 in T cells led 
to an increase in the number of activated CD4 and CD8 T 
cells in the spleen. Interestingly, when challenged with the 
EAE model, ablating TBK1 in T cells led to retention of 
effector T cells in the draining lymph nodes, resulting in 
decreased numbers of T cells infiltrating into the brain, and a 
less severe disease phenotype [165]. This study suggests that 
in addition to the role TBK1 plays in innate immune cells, 
it may also function in lymphocytes, widening the scope 
of how this gene could contribute to inflammation in ALS. 
While further studies are needed, it is likely that alterations 
in systemic immunity and microglial function will be pre-
sent in ALS/FTD patients with loss of TBK1 function, and 
raises the possibility that like for other ALS/FTD genes, 
altered function of immune cells will contribute to disease 
pathogenesis.

OPTN

Another ALS/FTD gene with previously identified roles 
in regulating immune cell function is optineurin (OPTN). 
Currently, more than 20 ALS-linked missense OPTN vari-
ants have been reported; however, most of them are still 
lacking in vitro/in vivo models [95]. Several studies have 
shown this gene plays a key role in mediating inflammation, 
and interestingly OPTN is a binding partner of TBK1 [56]. 
In both sporadic and familial ALS patients harboring the 
OPTN mutations, NK-kB immunoreactivity in microglia is 
increased compared to controls [131]. Other studies have 
shown that OPTN deficiency contributes to neuronal cell 
death via increased NF-kB activity. In addition, overexpres-
sion of wild-type OPTN was able to rescue induced cell 
death, while ALS mutant OPTN was not [3].

In addition to NF-kB regulation, OPTN has been impli-
cated in necroptosis, a programmed form of necrosis linked 
to inflammation. Unlike apoptosis, necroptosis is caspase 
independent and can be triggered via TNFα. A recent study 
found that a key role of OPTN is RIPK-1-mediated-necrop-
tosis [74]. In OPTN-deficient mice, they found that RIPK-1, 
RIPK-3 and MLK levels were increased in the spinal cord, 
and enhanced cell death and swelling of motor axons upon 
TNF treatment [74]. Conditional removal of OPTN in differ-
ent cell types led to axonal pathology and myelin abnormali-
ties; however, only when it was removed from oligodendro-
cyte or microglia, with no phenotype observed following 
motor neuron or astrocyte depletion [74]. Furthermore, 

OPTN depletion in microglia only led to axonopathy, sug-
gesting a myeloid cell loss of the gene can drive neuronal 
pathology.

Like TBK1 and C9orf72, OPTN has also been shown to 
be involved in antiviral and antibacterial responses outside 
of the CNS. Overexpression of OPTN inhibits IL-1β and 
lipopolysaccharide (LPS)-induced NF-kB activation, while 
depleting OPTN resulted in increased LPS-induced NF-kB 
activation [106, 114, 145]. Other studies implicate OPTN 
in mediating the immune response to Salmonella infection 
[28, 140]. These findings indicate that the normal function 
of optineurin is essential to mediate the peripheral innate 
immune response, and support the idea that ALS-associated 
mutations may lead to changes in systemic and neuroin-
flammatory responses that could influence disease onset or 
progression.

TDP‑43

One of the hallmarks of ALS and FTD is the presence of 
ubiquitinated inclusions in surviving neurons [86]. Trans-
active response DNA-binding protein-43 (TDP-43) is a 
multifunctional nucleic acid-binding protein that was first 
identified as the key component of these inclusions in ALS 
and FTD [110]. Subsequently, mutations in the glycine-rich 
C-terminal domain of TARDBP in sporadic and familial 
ALS cases were identified and established a causal link 
between TDP-43 and disease through as yet unclear mecha-
nisms [64].

While the focus has primarily been on the role of TDP-43 
aggregation in neurons, several studies support that non-cell 
autonomous neuronal-glia signaling could also contribute to 
neurodegeneration resulting from TDP-43 mutations. The 
most definitive example of this was provided recently when 
TDP-43 was conditionally deleted from microglia [117]. 
While the animals did not have a significant phenotype at 
baseline, microglia showed improved clearance of amyloid-β 
injected into the cortex, and there was enhanced engagement 
of microglia surrounding the injected particles. Likewise 
when mice lacking TDP-43 in microglia were crossed to 
an AD genetic model, they observed a significant decrease 
in the Aβ levels and aggregation, indicating that the loss of 
TDP-43 had driven a pro-inflammatory phenotype in the 
cells that improved their ability to clear plaques. Of note, 
while microglia depleted of TDP-43 showed an improved 
ability to clear plaques, they also had loss of synapses, 
which could potentially have a detrimental effect on dis-
ease progression [117]. These data support that as with 
other ALS/FTD disease genes, mutations in TDP-43 could 
have a direct and profound effect on microglial function and 
peripheral immune function, although the latter remains to 
be investigated.
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Conclusion

Amyotrophic lateral sclerosis is a lethal neurodegenerative 
disease without any current treatment. Developing effective 
therapeutics will require improved understanding of the 
mechanisms underlying disease onset and progression. ALS/
FTD-associated genes discovered in recent years suggest 
that in addition to inducing neuronal dysfunction, altered 
function of inflammatory cells in the brain and periphery 
could contribute directly to disease pathogenesis. However, 
despite extensive research on immune cells in the context 
of ALS, we are just beginning to decipher the exact nature 
of microglial activation states and heterogeneity, commu-
nication between different cell types at different stages of 
disease, and how combined microglial and neuronal dys-
function could drive neurodegeneration (Fig. 2).

It is notable that C9orf72, TBK1, OPTN, TARDBP 
and other ALS/FTD genes are highly expressed in innate 
immune cells, and several already have evidence linking 
their dysfunction to altered immunity. It will be interesting 
to determine if alterations in function of these genes lead to 
a consistently altered pattern of responses to pathogens and 
immune tolerance, which could potentially explain epide-
miological associations with autoimmunity and cancer risk 

in ALS and FTD. Further research is needed to understand 
exactly which immune cells are driving this altered innate 
immune tone, and whether carriers of these genetic variants 
have definable altered peripheral immune responses, but this 
may open the door to novel therapeutic strategies and addi-
tional disease biomarkers.

Another key point is that an abnormal immune system is 
not itself presumably sufficient to cause motor neuron death, 
and that additional factors are clearly necessary to initiate 
disease. From this perspective, it is interesting to note that 
innate immune cells both in the brain and periphery are 
uniquely positioned to sense changes in environment (gut 
microbiome, infection, and traumatic injury) and communi-
cate this to surrounding cells and, therefore, represent a key 
cell type where genetic variants could influence response to 
environmental factors to contribute to disease pathogenesis.
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Fig. 2   Schematic of potential interactions between environment, 
genetics and inflammation in ALS/FTD pathogenesis. Mutations in 
several ALS/FTD genes can directly disrupt the function of myeloid 
cells in different compartments and their response to environmental 
exposures. Altered function of peripheral myeloid-derived antigen-
presenting cells (APCs) can promote activation of T cells and B cells, 
and generate an autoinflammatory state including the production of 
pro-inflammatory cytokines and autoantibodies, findings that have 

been observed in patients with ALS. The same genetic mutations 
can also cause microglial dysfunction, interacting with environmen-
tal exposures to drive the pathogenesis of degenerative brain diseases 
such as ALS/FTD. Finally changes in systemic inflammation can 
influence the function of microglia and neurons indirectly, and con-
tribute to neurodegeneration. The photomicrograph in the bottom 
right shows microglia (purple, stained for IBA1) surrounding an amy-
loid plaque (green, stained for ThioS)
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