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Abstract

Splicing event identification is one of the most important issues in the comprehensive analysis of transcription profile.
Recent development of next-generation sequencing technology has generated an extensive profile of alternative splicing.
However, while many of these splicing events are between exons that are relatively close on genome sequences, reads
generated by RNA-Seq are not limited to alternative splicing between close exons but occur in virtually all splicing events. In
this work, a novel method, SAW, was proposed for the identification of all splicing events based on short reads from RNA-
Seq. It was observed that short reads not in known gene models are actually absent words from known gene sequences. An
efficient method to filter and cluster these short reads by fingerprint fragments of splicing events without aligning short
reads to genome sequences was developed. Additionally, the possible splicing sites were also determined without
alignment against genome sequences. A consensus sequence was then generated for each short read cluster, which was
then aligned to the genome sequences. Results demonstrated that this method could identify more than 90% of the known
splicing events with a very low false discovery rate, as well as accurately identify, a number of novel splicing events between
distant exons.
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Received April 26, 2010; Accepted July 9, 2010; Published August 10, 2010

Copyright: � 2010 Ning, Fermin. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The authors have no support or funding to report.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: albertnk@gmail.com

Introduction

Alternative splicing is a process by which exons of genes are

differentially recombined at the messenger RNA level to produce

various transcripts, enabling the a single gene to encode for

multiple protein products. There are numerous modes of

alternative splicing, and they have greatly increased the range of

proteins that can be encoded [1]. It is predicted that in humans,

over 80% of genes are alternatively spliced [2]. Recent work has

shown that splicing events are much more prevalent than

previously thought [3,4,5]. Splicing event identification is crucial

for transcription analysis [6]. Traditionally, identifications were

made by aligning gene sequences against EST sequences [6,7,8] or

by microarray [2,6,9]. Recently, RNA-Seq has emerged as the

next revolution in sequencing technology enabling comprehensive

transcription profiling with unprecedented precision and a low

error rate [3,5,10,11]. Leveraging this technology will allow for a

far more comprehensive analysis of splicing events.

The most commonly used method for identifying novel splicing

events using RNA-Seq is to compile a junction library. This library

is constructed based on either exon models and contains all known

and predicted splice junctions. RNA-Seq reads are then mapped

to the library [3]. Short reads from RNA-Seq that map to

sequences in a junction library are evidence for a splice junction.

These libraries are of limited use, however, since they constructed

from exons that are relatively close to each other on the genome.

Such libraries can only be used to identify alternative splicing

within genes or splicing events between exons which are in close

proximity [10] [12].

Identifying novel splicing events involving distant exons is very

challenging [3]. Constructing junction libraries to encompass all

potential splicing events are impractical since the search space

explodes with the increasing number of potential splicing partners.

Since the splice site is not known in advance, the laborious spliced

alignments of short sequence reads against gene sequences further

complicates the process and makes splicing event identification

highly error prone.

In this work, we propose a novel method we call splicing even

identification by absent words (SAW). This approach has the

potential to efficiently identify novel splice junctions including

those involving distant exons. Our approach begins by extracting

unique sequences that define a splice junction (termed splicing

fingerprints), and clusters short reads to these fingerprints. Short

reads for splicing events are then clustered based on the minimal

absents words [13] from gene sequences that we demonstrate to be

fingerprints of these splicing events, which. Thus we have

proposed a novel method, SAW, which is able to cluster short

reads and identify candidate splicing sites based on minimal

absents words before the alignment of short reads to genome

sequences. Since both short read clusters and candidate splicing

sites were predicted before alignment, there was no need to

construct the junction library. As discussed earlier, not having to

assemble an unwieldy junction library that must capture known

and predicted junction sequences is an enormous step forward in

productivity. The SAW method improves efficiency to an extent

that addresses the huge obstacles previously mentioned and makes

the comprehensive identification of splicing events between two

distant exons possible.
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Methods

Given the complex jargon associated with this work a brief

describing summary is presented here.

Splicing event identification by absent words (SAW) is

distinguished from traditional splicing event identification methods

based on searching junction libraries. The first stage in the SAW

pipeline is to collect short unique sequences (termed fingerprints)

that represent all possible splice events between exons. After this

acquisition, short reads are mapped to the fingerprints and

clustered. From these clusters a consensus sequence is derived that

maximally covers the fingerprint sequence. Candidate splice

junctions can then be identified from these clusters. The final

step is to align the consensus sequences against the reference

genome for the identification of splicing events.

Definitions and Theorems
This section defines absent words and minimal absent words.

Following this, a theoretical analysis demonstrates that finger-

prints that might represent splicing events are minimal absent

words (MAWs) from the reference sequences. In the context of

this work, our reference sequence is the genome of the organism

of interest.

Absent words: Broadly speaking, absent words are strings that

are not present in a given body of text. In the context of biology,

our text could be any type of biological sequence data. Absent

words from gene models have been a recent focus of research since

these absent words may correspond to lethal mutations [13]. In

this study, we looked at absent words from a different angle: absent

words that cannot be mapped to the genome may correspond to

sequences only arrived at through splicing events.

A subclass of absent words are minimal absent words (MAWs)

[13]. These are absent words for which the removal of a single

letter from either end of the word produces a new word that can

be aligned to the reference genome. As an example consider this

sequence S (Example 1):

S~ACTTCGAG

MAWs~fACG,AGA,CTC,GAC,TCT ,TG,TTTg

In the above example, S represents our sequence, and the set

called MAWs represents all of the MAWs for S. None of the words

in MAWs are substrings of the genome S. However, by dropping a

single letter from any of end of the words in MAWs you arrive at a

new set of words all of which can be aligned to S. For example,

dropping the first or last letter from word GAC would result in GA

and AC, both of which are substrings of S.

Lemma 1: An absent word is itself an MAW or a superstring of

at least one other MAW.

Proof: Suppose the absent word is aSb, where S is a string of

some arbitrary length, and a and b are single characters from the

same alphabet. Assume further that aSb is not an MAW and not

a superstring of any MAW. Then according to the definition of

MAW, either aS or Sb is also an absent word. If aS (or Sb) is an

absent word, then there is no substring of aS (or Sb) that is a

MAW. This fragmentation can continue until aSb = xCy, for

which x and y represent nil or substring of aSb, and C is a single

character. According to the assumption, C represents absent

words but is not a MAW. However, this cannot be true given

previous logic. Therefore, the assumption that aSb is not a

superstring of any MAW is not true: either aSb is a MAW itself,

or there is at least one MAW which is the substring of absent

word aSb.

Based on Lemma 1, it is possible to see that every absent word

corresponds to at least one MAW as itself or its substring. It is

also probable that an absent word is a superstring of multiple

MAWs.

Lemma 2: If the reverse compliment is considered for finding

MAWs, then the reverse complement of a MAW is also a MAW.

Proof: Consider the same construct of aSb described above. Its

reverse compliment is b9S9a9, where a9, b9 are the complimentary

base pairs of a and b, respectively, and S9 is the corresponding

reverse compliment of S. If aSb is an MAW, then both aS and Sb

are present in reference sequences, therefore, b9S9 and S9a9 are

also present in reference sequences in a reverse compliment form.

Therefore, b9S9a9 could either be present in reference sequences,

or it is a MAW. If b9S9a9 is also present in forward or reverse

compliment form, then aSb is also present, which contradict to

the assumption that aSb is a MAW. Therefore, b9S9a9 is also a

MAW.

Take the previous example (Example 1), when reverse

compliment is considered for finding MAWs, then

S~ACTTCGAG

MAWs~fACG,AGA,CA,CGT ,CTC,

GAC,GCT ,TCT ,TG,TTTg

In which the reverse compliments of MAWs ‘‘ACG’’ and ‘‘CAG’’

are also MAWs for sequence S.

Lemma 2 shows the dual existence property of MAW: when

reverse compliment is considered, which is a common scenario in

analyzing genomic sequences, either a word and its reverse

compliment are both MAWs or they are simultaneously not

present in the reference sequences.

MAWs that are not present in gene models may correspond to

sequences for splice events that are unknown. Therefore, they are

the possible finger prints for novel splicing events.

Short reads for alternative splicing: Using next gener-

ation sequencing techniques, a comprehensive profile of alterna-

tive splicing events has been compiled based on short reads. Most

of the short reads align within one complete exon. A smaller set of

the short reads map to known exon-exon junctions. However,

there are many short reads that are not aligned to any known

gene models. These short reads might well be annotation errors,

but there are still many of them which may correspond to (a)

novel exons, (b) novel splicing events or (c) sequences that

represent mutations in genes that are not present in known gene

models.

Our focus here is on those short reads that cannot be mapped to

the genome. These may correspond to novel splicing events

between distant exons. It is easy to see that short reads that do not

map perfectly (i.e.: without mismatches) to any known regions of

the genome are by definition absent words in the context of the

genome sequence. According to Lemma 1 each of these short

reads corresponded to at least one MAW from a gene model.

Theorem 1 (Fingerprint theorem): Consider a short read

with the following properties:

– It does not align to any part of the genome

– It does align to a splice junction site

– It contains at least one MAW within its sequence

Given these properties of a short read, at least one of its MAWs

must straddle the splice junction.

Here we give an example (Example 2) to illustrate Theorem 1.

Suppose there are only two exons in the reference genome of

Splicing Fingerprints
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interest. The reference genome G, exon sequences E1 and E2, and

the MAWs for G are

G~ACTTCGAG

E1~ACTT

E2~GAG

MAWs~fACG,AGA,CA,CGT ,

CTC,GAC,GCT ,TCT ,TG,TTTg

Suppose the short reads are of length 4, then all of the possible

unmapped short reads that correspond to the splicing event

between E1 and E2 are in the set of {CTTG, TTGA, TGAG,

CAAG, TCAA, CTCA} in both forward and reverse compliment

form. All of these short reads contain the MAW ‘‘CA’’ or ‘‘TG’’,

both of which straddle the splicing junction.

Theorem 1 indicates that for identifying splicing events using

short reads, the MAWs play an important role in identifying the

splicing event. On the basis of Theorem 1 a large number of short

reads that do not have any MAW as their substrings can be filtered

out even without trying to align them to genome sequences.

The sites between any of the two characters in a sequence are

referred to as ‘‘boundary sites’’. For example, two boundary sites

for the sequence ‘‘GAC’’ are between G|AC and between GA|C.

In this work it is assumed that splicing events can only occur at the

boundary sites of the exons, as is generally case for most of splicing

events.

Lemma 3: If a short read contains only one MAW, and that short

read straddles a single splice junction, then the splice junction must be

fully contained within the boundaries of the MAW.

Proof: Consider a short read that straddles a single splice

junction and encompasses a single MAW. If the junction site lies

outside of the MAW’s boundaries, then the MAW must be fully

contained within one of the two splice site exons.

In Example 2 above, the only splicing site between exon E1 and

E2 is between T-G (or C-A in reverse compliment form), which are

inside of the ‘‘boundary sites’’ of MAW ‘‘TG’’ and ‘‘CA’’.

Based on Lemma 3, all possible candidate splice sites identified

by short reads, should be straddled by at least one MAW.

Lemma 4: If a short read contains two MAWs that are not

overlapping, then this short read can not correspond to just one

single splicing event.

Lemma 4 is derived from Lemma 3. If a short read contains two

MAWs that are not overlapping, then either this short read does

not correspond to any splicing event, or it correspond to two

splicing events. However, if two MAWs overlap on a short read,

then this short read may still correspond to a single splicing event.

Lemma 5: If a short read corresponding to a splicing event

contains multiple overlapping MAWs, then the splice site must be

located within the consensus portion of the overlapping MAWs.

Lemma 5 is derived from Lemma 3 and Lemma 4.

Theorem 2 (Splice site theorem): Consider a short read

with the following properties:

– It does not align to any part of the genome

– It does align to a splice junction site

– It contains at least one MAW within its sequence

the corresponding splice junction can only reside on a MAW for

this short read that does not overlap with other MAWs, or the

overlapping part of the MAWs for this short read.

This Theorem is derived from lemma 4 and 5. For example,

suppose the short read is ACCGGCACT, and the MAWs are

{ACC, GCA, CAC}, then there are only 3 possible splicing site,

which aer indicated at vertical bars in ‘‘A|C|CGGC|ACT’’.

Theorem 2 explicitly gives all possible splicing sites on MAWs, if

this MAW corresponds to a splicing event. Figure 1 illustrates the

process of clustering short reads and determination of candidate

splice site by MAW.

Computational Methods
Filtration of short reads. After MAWs were generated from

genome sequences, a filter was applied on both short reads and

MAWs. Short reads that are present or with their isoforms (with

up to 2 mismatches from original short read) present in genome

sequences (may correspond to novel exons) are filtered out. We

emphasize that only short reads that are unique reads (or multi-

reads which are not aligned to genome sequences or known gene

models) would be retained after filtration. Filtration of multi-reads

might lead to some mis-identification of splicing events that

aligned to multi-reads, but since multi-reads have much higher

false positive identification rates, we believe that this would not

affect the sensitivity of splicing event identification.

Clustering short reads according to MAWs. Different

types of MAW correspond to different splicing events. Short reads

that are not present in known exons might represent any kind of

splicing events. Those that are also absent from known gene

models might represent novel splicing events not in known gene

model (Figure 2). In this work, we have focused on short reads for

novel splicing events not present in known gene models.

Since each of the candidate splicing events correspond to a

MAW (splicing event fingerprint), a set of short reads could be

clustered together based on the corresponding MAW. Based on

Lemma 2, it is easy to see that extracting MAWs only from the

forward strand is enough to generate short read clusters. If a

MAW is aligned (including reverse compliment) to a minimal

number unique short reads (set to be 5 in this study), then the short

reads for this MAW could form a short read cluster.

A consensus sequences was then generated from these short

reads, which might correspond to splicing event. A consensus

sequence of all short read in the cluster may not be accurate at the

two ends. Therefore, we only take substring of consensus

sequences in which each of the characters could be aligned to at

least 5 short reads in the cluster (5-fold). Each of the short reads in

the cluster should be aligned to the consensus sequence with at

most 1 mismatch, otherwise it is removed from the cluster.

Additionally, short read clusters could be merged if significant

proportions of their consensus sequences are overlapping. Again,

the merging criteria is that each of the characters in the consensus

sequence after merging is aligned by least 5 short reads in the

cluster (5-fold).

By mapping MAWs onto short reads and then clustering short

reads, two objectives have been achieved before search of the

genome is undertaken: (a) a relatively long consensus sequence for

possible splicing junction has been obtained that is supported by

multiple short reads; and (b) the candidate splicing sites on this

consensus sequence. The most significant advantage of SAW is its

ability to identify splicing events between distant exons without the

cost of compiling junction library. This is not only the advantage

in efficiency, but more importantly in reliable identification of

splicing event without introducing an overwhelming amount of

noise.

Identification of splicing events. Consensus sequences

from short read clusters could be used for the identification of all

splicing events, including known splicing events and novel splicing

events between distant exons. Given a consensus sequence and the

corresponding candidate splicing sites, a candidate splice site

Splicing Fingerprints
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would separate into prefix and suffix sequences. If the prefix of

consensus sequence matches with the exon boundary of one exon,

and the suffix of consensus sequence matches with the exon

boundary of another exon, then this consensus sequence may

correspond to a splicing event. For reliable splicing event

identification, the prefix or suffix of consensus sequence that

Figure 1. Clustering short reads and determination of candidate splice site by MAWs. (a) Extraction of MAWs from gene sequences
database. (b) Mapping MAW onto short read. (c) Clustering of short reads based on MAW to form consensus sequences. (d) Aligning consensus
sequence to exon boundaries according to candidate splice site. Only consensus sequence (in color) is used to align against exon boundaries.
Annotation: shadowed area indicates consensus sequence.
doi:10.1371/journal.pone.0012047.g001

Figure 2. Different types of MAWs, the corresponding short reads and the splicing events that these short reads could identify. Note
that these types have the inclusive relationship: MAWs from known exons include those from known gene model; the same for short reads and
splicing event. Short reads that are not present in known gene models are likely to correspond to splicing events between distant exons.
doi:10.1371/journal.pone.0012047.g002

Splicing Fingerprints
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matches with exon boundaries (with up to 1 mismatch at either

boundary) should be at least as long as 5 nucleic acids. This is

illustrated in Figure 2.

Statistical analysis of splicing events identification.
Since SAW is able to identify thousands of splicing events, it is

critical to statistically analyze the probability that the splicing event

is a true positive rather than a random match of exon boundaries.

To this end, negative exon models (decoy exon models) were

constructed by cutting each of the exons in half, exchanging the

prefix and suffix. The original exon is replaced with this modified

sequence (Figure S1). A splicing event identified from negative

exon models is a false identification. The overall false discovery

rate (FDR) is computed as the ratio of the number of splicing

events identifications from negative exon models, over the number

of those from original exon models.

Moreover, to evaluate the accuracy of splicing event identifi-

cation, the junction sequences for splicing events are aligned to

EST sequences by BLAT, and E-values are then computed. Small

E-values of these methods would indicate high quality hit to EST

sequences. These E-values are also compared with those from

searching randomly generated junction sequences.

The overall splicing event identification scheme is shown in

Figure 3.

Results

Datasets
In this work, the mouse genome sequences from UCSC (mm9)

have been used for splicing event identification. The MAWs were

extracted from mm9 genome sequences. There were 873,257 MAWs

generated from mm9 genome sequences. The distribution of these

MAWs by length was illustrated in Figure S2. The short reads were

obtained from recent RNA-Seq analysis of transcriptome of mouse

brainstem tissues [11]. There were 47,781,892 short reads of length

25 (25-mers) for brainstem tissue. Decoy exon models were generated

based on mouse mRNA sequences from mm9.

Identification Results
Alternative splicing on known gene models. First we

have compared the splicing events identified by SAW with known

splicing events in mm9 gene models. Here we have shown that

based on short read clusters, SAW was able to filter out a large

proportion of short reads while still retain high sensitivity.

Among 368,389 known splicing events, 226,583 were matched to

at least 1 short reads, and 63,090 were matched by at least 5 short

reads. After applying filtrations on short reads by comparing genome

sequences, only 28,806,232 (60%) short reads left. After collecting the

short reads to clusters of at least 5 short reads each, there were only

16,292,230 (34%) short reads left. More than 65% of the short reads

were filtered out after short read clustering. For splicing event

identification, when no mismatch was allowed between MAW and

splice junction, based on short read clusters with at least 5 short reads,

70.6% (44,565/63,090) splicing events could be identified. However,

there is no significant correlation of the MAW length and the

proportion of the corresponding short read clusters that match to

splicing junctions (Person correlation R,0.1).

Additional analysis has shown that as the number of short reads

per splicing event increased, the proportion of splicing events

identified by SAW also increased (Figure 4). For splicing events

with more than 200 short reads, over 90% could be identified by

SAW. To further investigate the relation of minimum size of short

read cluster and the proportion of known splicing events identified,

we have set the smallest size of short read cluster to 10 (instead of

the default 5). Based on this setting, only 14,403,116 short reads

remain after clustering, and over 70% of the short reads were

filtered out. In such a setting, the proportions of known splicing

events identified by SAW were 10% less than those based on short

read cluster of size $5 (Figure 4). Furthermore, no matter what

setting of the minimum size of the short read cluster, the sensitivity

of SAW increased significantly with the increase of allowed

mismatches between consensus sequences and splicing junctions

(Table 1). Among known splicing events that were not identified

(323,824), around 45% were unidentified from short reads

(allowing 1 mismatch), 50% did not have more than 5 short read

alignments, around 3% corresponded to multi-reads, and the

others 2,3% were splicing events that were failed to be matched

by consensus sequences.

We have then compared MAWs with ERANGE [11] on the

same datasets. If no mismatch was allowed, then 51.4% (105,532/

205,151) of splicing events by ERANGE corresponded to at least

Figure 3. General scheme for splicing event identification by SAWs. Note that filtration against known gene models is only necessary for
identification of novel splicing events.
doi:10.1371/journal.pone.0012047.g003
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one MAW. When two mismatches were allowed, all of 205,151

splicing events by ERANGE correspond to at least one MAW.

Additionally, ERANGE have identified less than 60% of known

splicing events, while almost all could be identified by MAWs with

2 mismatches (Table 1).

The false discovery rate (FDR) was also analyzed based on both

forward (known) and decoy exon models, and it was discovered

that 74 decoy splicing events would be identified by at least 5 short

reads. However, base on short read clusters with at least 5 short

reads, only 38 decoy splicing events would be identified. This

corresponded to a FDR far below 1%.

Predictions of novel splicing events. The power of SAW

was not only on high sensitivity of identification of known splicing

events, but more importantly the identification of novel splicing

events between distant exons. We only focused on 7,000 splicing

junctions identified by SAW between distant exons in the same

genes and not present in known gene models. We considered these

to be the candidate novel splicing events.

To assess the quality of these predicted splicing events between

distant exons, we have searched them against the mouse EST

database from GenBank (downloaded as of 03/12/2010) using

BLAT [14]. To compare the results, we have also searched the EST

database for known junctions and decoy junctions. The known

junctions included all junctions from mm9 gene models, and decoy

junctions are composed of all junctions in decoy gene models. All of

the sequences in these three groups were of length 48, which was the

concatenation of 24 nucleic acids on from both of the exons involved

in the junction. Figure 5 showed the distribution of E-values for these

three groups. The majority of known junctions had high quality hits

to EST sequences, while the majority of unknown junctions had low

quality hits to EST sequences. For unknown junctions predicted by

SAW, nearly 30% of these junctions had high quality hits to EST

sequences (Figure 5).

Several putative splicing events based on distant exons, whose

presence was supported by extensive read coverage, were

identified. Analysis of the gene expression profile based on RPKM

[11] showed that for these novel splicing events, the corresponding

exons also had high expression level. Examples of such splicing

events were illustrated in Figure 6, Figure S3 and Figure S4.

Efficiency of splicing event identification
All of the experiments were performed on a Linux server with

eight 2.2 GHz Opteron cores and 16.0GB RAM. Generation of

MAWs was based on linear time suffix tree search [13], and it took

Figure 4. The increase of the proportion of splicing events identified by SAW with increasing number of short reads per splicing
event. Results are based on short read clusters with minimum size of 5 and 10.
doi:10.1371/journal.pone.0012047.g004

Table 1. Sensitivities of short read clusters for identification
of splicing events based on splicing events identified by
ERANGE.

Mismatches
allowed

Clusters by
MAW with
number of
reads$1

Clusters by
MAW with
number of
reads$5

Clusters by
MAW with
number of
reads$10

0 51.4% 21.7% 11.1%

1 100% 91.6% 55.2%

2 100% 99.0% 80.6%

‘‘Mismatches allowed’’ is referred to the maximum allowed
mismatches between consensus sequences from short read clusters
and splicing junction sequences.
doi:10.1371/journal.pone.0012047.t001

Splicing Fingerprints
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less than 10 minutes on mm9 mouse genome sequences. Filtration

of MAW and of short reads was also very fast and were completed

within an hour. The clustering and generation of consensus

sequences by heuristic methods were also completed within an

hour. Alignment of prefix and suffix of consensus sequences to

exon boundaries with mismatches was the most time consuming

part, but based on transforming exon sequences into Burrows-

Wheeler indexing structure [10,15], this was completed in less

than 8 hours. Therefore, the whole process of identification of

novel splicing events from short reads was within 10 hours on

mm9 mouse genome sequences, which was quite efficient.

Discussion

In this work, we have proposed a novel method, SAW, for

efficient and accurate identification of novel splicing events. This

method clusters short reads into splicing fingerprints (MAWs),

generates a consensus sequence for each cluster, selects candidate

splicing sites, and then aligns consensus sequences to gene models

in search of splicing events. For alternative splicing events

identified on known gene models, it was discovered that most of

the known splicing events could be identified by SAW. We have

also shown in our work that there are only a small proportion of

splicing events correspond to multi-reads. There was no limitation

on the vicinity of exons for the alignment of consensus sequences

to exon boundaries by SAW. This implies that the method is

especially useful for identification of novel splicing events between

distant exons. In our experiments on mouse genome sequences,

thousands of splicing events between distant exons, which were not

in known gene models, were identified. Among these novel splicing

events between distant exons, 30% of were of high quality.

We emphasis that SAW is designed for identification of splicing

events, with special focus on splicing events between distant exons.

Hence it is different from other splicing event identification

methods. Another splicing event identification method, Tophat, is

focused on the identification of all possible splicing events based on

the known or predicted gene models. Since Tophat directly maps

short reads to all putative splicing junctions for prediction, its

results would have high sensitivity of splicing junctions between

known or predicted exons. However, there is a limitation of the

distance between two exons by this method based on all putative

splicing junctions. By clustering short reads before mapping

consensus sequences, the SAW method does not have such a

limitation. On the dataset we have examined, 99% of known

splicing events could be identified by MAWs with 2 mismatches

(Table 1), indicating that SAW also has a very high sensitivity for

splicing event identification. Furthermore, we have analyzed the

effect of intron length to the number of splicing events identified

by Tophat (data from [10]) and SAW. Results showed that while

the number of splicing junctions by Tophat was decreasing with

the increasing distance between exons, the results of SAW were

not affected by the intron length. Additionally, from more than

10,000 short reads that were discarded by Tophat (unmappable to

genome sequences or splicing junctions), many splicing junctions

between distant exons were identified by SAW.

Because of its ability to identify novel splicing events, it is critical

to generate accurate and error-tolerate consensus sequences for

short read clusters, especially in cases where clusters might be

Figure 5. The BLAT E-value distribution of 48mers that spanning known junctions, random junctions and junctions identified by
SAW.
doi:10.1371/journal.pone.0012047.g005

Splicing Fingerprints
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merged. We have already shown that that allowing 1,2 mismatch

when comparing consensus sequences to junction sequences would

leverage the genome errors fairly well on the dataset examined.

However, sequencing errors, reference genome isoforms (e.g.,

SNP) and reference genome errors might introduce a large

number of error when matching consensus sequences to splicing

junctions. In this perspective, SAW could be further improved by a

more sophisticated consensus sequence generation method, or by

generating more than one consensus sequence per short read

cluster. Another possible improvement of SAW might be the

inclusion of multi-reads after short read clustering for additional

splicing event identification.

In this study, the short reads from mouse brainstem tissue are

used for identification of splicing events in mouse brainstem tissue.

It is apparent that the splicing profiles are not the same in mouse

brainstem and in other tissues such as mouse liver or skeletal

muscle tissues. Investigating the different sets of short read clusters

for these different tissues might provide additional information

about the different splicing profiles in different tissues. The analysis

of the differences in MAW sets generated from mouse genome

sequences and other genome sequences such as for human might

also provide interesting information about their different splicing

profiles.

SAW is not only a standalone method for splicing event

identification, but could also be embedded into other splicing

event identification method as a short read filter to increase the

speed and accuracy of splicing event identification. Since SAW

is not limited by the distance between exons, another interesting

application of SAW is probably the identification of fusion

genes.

As fingerprints for splicing events, MAW could be combined

with other next-generation sequencing techniques for efficient and

accurate splicing event identification. For long reads (.500 bp)

generated from other next-generation sequencing platforms (e.g.

454 sequencing technique), there is a problem of matching reads

to multiple exons. In these situations, identification of splice site

becomes a hard problem, which is extremely difficult for

conventional splice junction library method. However, based on

MAW, the candidate splice sites could be selected accurately

without the information of gene models. Additionally, for pair-end

reads alignment, MAW can be used to quickly check the splicing

junctions before alignment, which could potentially improve the

efficiency of splicing event identification.

Another avenue of research is the combination of genomic and

proteomic data for the identification of novel splicing events. A

splicing event may correspond to protein products if the

corresponding transcripts are translated [16] and annotated in

the database. On the other hand, there are many high quality

mass spectra that do not correspond to any peptides in known

protein sequences database. Therefore, searching high quality

unassigned mass spectra against translated novel junction

sequences would be beneficial on both sides: increasing the novel

junction identifications, and increasing the number of spectra

assignments. This approach based on combination of genomic and

Figure 6. Example of novel splicing event identified by SAW from multiple reads in gene Ttll7s. The splicing events (annotated by black
reads) are not identified by [11] based on UCSC mm9 gene models.
doi:10.1371/journal.pone.0012047.g006
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proteomic data would be further extended in applications such as

fusion gene identification [17,18].

Supporting Information

Figure S1 The construction of decoy splicing events by

exchange the prefix and suffix of the corresponding exons in real

exon models (i). MAW matched to sequences in decoy exon

models (ii) would equal to MAWs matched to a very rare, if at least

possible, splicing event in real exon models (iii).

Found at: doi:10.1371/journal.pone.0012047.s001 (0.40 MB TIF)

Figure S2 The number of minimal absent words from genome

sequence of different length. Results were based on mm9 genome

sequences.

Found at: doi:10.1371/journal.pone.0012047.s002 (0.78 MB TIF)

Figure S3 UCSC snapshot of splicing events identified by SAW

from multiple reads in gene Gpbp1L1. The splicing events

(annotated by black reads) were not identified by ERANGE based

on UCSC mm9 gene models. There are 12 short reads supporting

this splicing event.

Found at: doi:10.1371/journal.pone.0012047.s003 (0.92 MB TIF)

Figure S4 UCSC snapshot of splicing events identified by SAW

from multiple reads in gene Mtap4. The splicing events (annotated

by black reads) are not identified by ERANGE based on UCSC

mm9 gene models. There are 16 short reads supporting this

splicing event.

Found at: doi:10.1371/journal.pone.0012047.s004 (0.84 MB TIF)
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