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Aims: In pulmonary arterial hypertension (PAH), increases in endothelin-1 (ET-1) contribute to elevated pulmo-
nary vascular resistance which ultimately causes death by right ventricular (RV) heart failure. ET antagonists are
effective in treating PAH but lack efficacy in treating left ventricular (LV) heart failure, where ETA receptors are
significantly increased. The aim was to quantify the density of ETA and ETB receptors in cardiopulmonary tissue
from PAH patients and the monocrotaline (MCT) rat, which recapitulates some of the pathophysiological
features, including increased RV pressure.
Main methods: Radioligand binding assays were used to quantify affinity, density and ratio of ET receptors.
Key findings: In RV from human PAH hearts, there was a significant increase in the ratio of ETA to ETB receptors
compared with normal hearts. In the RV of the MCT rat, the ratio also changed but was reversed. In both
human and rat, there was no change in LV. In human PAH lungs, ETA receptors were significantly increased in
the medial layer of small pulmonary arteries with no change detectable in MCT rat vessels.

Significance: Current treatments for PAH focusmainly on pulmonary vasodilatation. The increase in ETA receptors
in arteries provides amechanism for the beneficial vasodilator actions of ET antagonists. The increase in the ratio
of ETA in RV also implicates changes to ET signalling although it is unclear if ET antagonism is beneficial but the
results emphasise the unexploited potential for therapies that target the RV, to improve survival in patients with
PAH.
© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/ .0/).3
Introduction

In pulmonary arterial hypertension (PAH), increases in endothelin-1
(ET-1) contribute to elevated pulmonary vascular resistance which
ultimately causes death by right ventricular heart failure. PAH involves
injury to the pulmonary vasculature producing elevations in pulmonary
arterial pressure. As PAH progresses, chronic pressure and volume over-
load cause alteration of the structure of the right ventricle (RV) includ-
ing hypertrophy and dilatation. As a result, the space taken up by the RV
in the pericardium increases, impeding left ventricular (LV) diastolic
filling, reducing LV end-diastolic volume and altering the LV contractile
function (Bogaard et al., 2009). Right heart failure is the major cause
of death in PAH patients. ET antagonists are effective in treating PAH
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(Liu et al., 2013) but in marked contrast, lack efficacy in treating left
ventricular heart failure (Kelland and Webb, 2007; Kohan et al., 2012).
This is surprising as the density of ETA receptors in the LV of patients
with ischaemic heart disease is significantly increased by 50%, compared
with non-failing hearts (Peter and Davenport, 1996a). However mea-
surement of receptor density in the RV from patients with PAH using
radioligand binding assays has not been studied.

ETA receptors are the principal sub-type in the medial or smooth
muscle layer of human blood vessels, including large epicardial and
small resistance coronary arteries within the heart where ETA receptors
mediate vasoconstriction (Maguire and Davenport, 1995; Pierre and
Davenport, 1998). We have previously shown that in human large
conduit vessels these are altered in cardiovascular disease including
PAH (Kuc and Davenport, 2000). Davie et al. (2002) found no change
in ratio of ETA:ETB but increased overall receptor density in smooth
muscle cells from human pulmonary small resistance arteries in PAH.

ETB receptors localise to the endothelium and cause beneficial vaso-
dilatation by the release of endothelium derived relaxing factors,
the CC BY license (http://creativecommons.org/licenses/by/ .0/).3
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opposing constrictor tone. In addition, in organs such as the lungs that
are rich in ETB receptors (Bagnall et al., 2006), this sub-type functions
to clear ET-1 from the plasma (Johnström et al., 2005). Two classes of
ET antagonist are used clinically, mixed antagonists that block both
sub-types and ETA selective drugs. The precise molecular mechanism
whereby these antagonists produce benefit in PAH is not established.
In particular, the contribution of ETB receptors to the development of
this condition and the need to block this sub-type as well as the ETA is
still unclear (Vachiery and Davenport, 2009). Our aim was to compare
the density of both ET receptor sub-types in surgical samples from the
right and LV of hearts and lungs removed from PAH patients at the
time of transplantation, in comparison with normal tissues. Secondly
to measure receptor density in a widely use animal model of PAH,
which recapitulates a majority of the features of the human condition
including right ventricular failure (Ryan et al., 2011).
Materials and methods

Human heart

Surgical samples of LV and RV were obtained from PAH patients
(idiopathic pulmonary artery hypertension) undergoing heart–lung
transplantation and from normal controls that were not suitable for
transplantation. Samples of PAH lung were obtained from patients
undergoing lung transplantation and histologically normal control tissue
was from patients undergoing lung lobectomy procedures. All tissues
were collected with informed consent and ethical approval.
MCT-rat tissue collection

The procedures used in this studywere approved by the local animal
ethical committee and were performed under UK Home Office Project
Licence authority; the study conformed to the National Institutes of
Health Guidelines for the Care and Use of Laboratory Animals. Male
Sprague–Dawley rats (approximately 250 g) received a single subcuta-
neous injection of monocrotaline (60 mg/kg) at day 0 to induce PAH
(Long et al., 2013). The rats were maintained for three weeks following
injection to develop muscularization of small pulmonary arteries in the
lungs and right ventricular hypertrophy but without developing dilated
heart failure (Long et al., 2013). Ratswere euthanized by CO2 inhalation.
Organs were removed and snap-frozen in liquid nitrogen and stored at
−70 °C until further use.
Competition assays

Cryostat-cut tissue sections (10 μm) were mounted onto gelatine
coated microscope slides.

Competition binding assayswere performed as previously described
(Maguire et al., 2012a), to determine the affinities (KD) and maximum
densities (BMAX) of ETA and ETB receptors.

Sections were incubated with 0.1 nM [125I]-ET-1 (Perkin Elmer) and
increasing concentrations (20 pM–10 μM) of the ETA selective agonist
FR139317 for 2 h at 23 °C. Non-specific binding (NSB) was determined
using 1 μM of unlabelled ET-1. Following incubation and washing (3 ×
5 min) in ice-cold Tris–HCl buffer to break the equilibrium, sections
were counted in a gamma counter.

Competition curves were obtained by plotting specific binding as a
percentage of total binding (binding in the absence of competitor)
against the log concentration of the competing ligand. The data were
analysed (see Maguire et al., 2012b) using non-linear iterative curve
fitting programmes (KELL, containing EBDA and LIGAND programmes,
Biosoft, Cambridge UK) to calculate KD (affinity constant) and BMAX

(maximum density of receptors).
Autoradiography

For autoradiographical analysis, binding was carried as previously
described (Ling et al., 2012) using assay conditions outlined above in a
set of adjacent sections, to determine total [125I]-ET-1 (0.1 nM) binding,
non-specific binding (1 μMunlabelled ET-1) and with selective antago-
nists, either 0.1 μM BQ3020 or 0.1 μM FR139317 to determine ETA and
ETB receptor distribution respectively. Adjacent sections were stained
to facilitate histological identification of pulmonary vasculature.
Sections were washed to break the equilibrium and apposed, together
with calibrated radioactive standards, to radiation-sensitive film
(Kodak BioMax MR-1, Perkin Elmer). Resulting autoradiograms were
analysed by measuring diffuse integrated optical density using the
Quantimet 970 image analysis system. ET-1 receptor density was mea-
sured by digitizing each autoradiographical image and regions of inter-
est on tissue sectionswere delineated. Optical densities were converted
to specifically bound radioligand by interpolation from standard curves
and subtraction of non-specific binding in an adjacent section.

Results

Pharmacodynamic parameters in human and rat heart

In human normal hearts, competition binding revealed the expected
ratio of ETA to ETB receptors (Fig. 1A, Peter and Davenport, 1996a).
FR139317 competed biphasically for the binding of [125I]-ET-1, with a
two-sitefit preferred over a one-sitemodelwith no significant difference
in affinity constants (Table 1, KD) between patient groups (Fig. 1).Whilst
therewas no significant change in receptor sub-type ratio in LV, there is a
significant increase in ETA with a concomitant decrease in ETB receptors
in the failing RV (Fig. 1B, C).

In the rat model (Fig. 1D) the expected ratio of receptor sub-types
was observed in both chambers of the hearts of control rats (Peter and
Davenport, 1996b). In the MCT rat, receptor density was significantly
different in the RV compared with vehicle control but with ETA down-
regulation and ETB upregulation (Fig. 1E, F). These changes led to a sig-
nificant shift in relative ETA:ETB receptor density ratio from 73:27 in
control rat RV to 51:49 inMCT-rat RV. In the LV, no significant difference
in ETA and ETB receptor density in MCT-rat heart compared to controls
was observed (Table 2).

Pharmacodynamic parameters in human PAH and MCT lung

Competition studies using whole cryostat sections in the lungs from
patients with PAH compared to normal control tissues did not detect a
significant difference in binding affinities (KD) for ETA or ETB and no
change in receptor densities (BMAX) or ratio of sub-types in human
PAH lungs compared with control (Fig. 2B, Table 3). In agreement,
there were no changes in these parameters in MCT lungs compared
with control. However, following apposition of labelled sections to
radiation sensitive film, image analysis permitted the measurement of
densities in discrete cell types. In the medial layer of small pulmonary
arteries identified by comparison with adjacent stained sections, there
was a significant increase in vascular ETA receptors in PAH compared
with control small vessels (Fig. 3A, Table 3). No equivalent changes
were detected in the medial layer of MCT rat lungs compared with
control (Fig. 3B, Table 3).

Discussion

Human heart with PAH

We have previously shown that ETA receptors in the failing LV of
patients with ischaemic heart disease are significantly increased by
50% (Peter and Davenport, 1996a,b). In agreement, in the failing RV of
patients with PAH, there was a significant increase in the ratio of ETA



Fig. 1. A–C Competition of FR139317 for [125I]-ET-1 binding in human left (LV) and right (RV) ventricles from (A) normal controls and (B) patients transplanted for PAH. A biphasic curve
was obtained as expected in each case corresponding to a high affinity ETA and low affinity ETB site, allowing the affinities (KD), densities (BMAX) and ratio of the two sub-types to bemea-
sured. (C) Comparison of ET sub-type ratio in LV andRV in hearts fromnormal controls andpatientswith PAH showing a significant increase in ETA but decrease in ETB in the right ventricle
(n = 12 PAH and 9 control individuals, mean ± s.e.mean; Student's t-test, *p b 0.05 t-test).D–F. Competition of FR139317 for [125I]-ET-1 binding in rat left and right ventricles
from (D) normal controls and (E)MCT rats. A biphasic curvewas also obtained as expected in each case corresponding to a high affinity ETA and low affinity ETB site. (F) Comparison of ET
sub-type ratio in LV and RV in hearts from controls andMCT rats showing a significant decrease in ETA but increase in ETB, in the right ventricle (n= 6MCT and 6 control rats ± s.e.mean,
*p b 0.05 Student's t-test).
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receptors in ETB density. In agreement, Nagendran et al. (2013) using
semi-quantitative immunocytochemistry also found an increase in ETA
expression in RV of patients with PAH. It is well established that levels
of ET-1 are higher in PAH patients (Stewart et al., 1991). In addition,
in animalmodels, clearance and internalization of ET-1 by ETB receptors
are critical in preventing circulating ET-1 from binding to ETA receptors
in the heart (Johnström et al., 2005) and the reduction that we observed
in the RV in ETB could contribute further to tissue levels. Taken together,
these results suggest the potential for increased inotropic action via the
ETA sub-type. The RV of PAH patients is subjected to both pressure
Table 1
KD (affinity constant) and BMAX (maximumdensity of receptors) values for ETA and ETB recepto
for PAH.

Human heart ETA KD (nM) ETA BMAX (fmol/mg)

Normal (n = 12) LV 0.60 ± 0.01 66.1 ± 4.2
RV 0.41 ± 0.11 69.2 ± 5.1

PAH (n = 9) LV 0.76 ± 0.25 85.3 ± 11.4
RV 0.45 ± 0.08 80.8 ± 7.8

n = 12/9 individuals, mean ± s.e.mean.
⁎ p b 0.05 t-test.
overload and autocrine/paracrine mediators such as ET-1, whereas the
LV is only subjected to the latter. The RV and LV also have different em-
bryological origins (Farha et al., 2013) and may respond differently to
stressors and to therapies.

In PAH, the main benefit of ET antagonists may block deleterious
vascular effects rather than improve cardiac function. In support of
this hypothesis, in this study we have been able to determine, using
autoradiography, the ET receptor densities within the smaller vessels
of the tertiary structures of the lung demonstrating, in agreement
with Davie et al. 2002, a ratio 50:50 for ETA to ETB receptors with a
r subtypes human left and right ventricles from normal controls and patients transplanted

ETB KD (μM) ETB BMAX (fmol/mg) Ratio % ETA:ETB

44.9 ± 3.2 44.6 ± 8.5 64:36
28.7 ± 1.9 75.7 ± 18.1 52:48
36.2 ± 4.9 38.3 ± 6.4 69:31
36.5 ± 2.9 37.0 ± 5.5 ⁎69:⁎31



Table 2
Comparison of ET sub-type ratio in LV and RV in hearts from normal control rats and MCT rats with PAH.

Rat heart ETA KD (nM) ETA BMAX (fmol/mg) ETB KD (μM) ETB BMAX (fmol/mg) Ratio % ETA:ETB

Control (n = 6) LV 1.10 ± 0.29 194.0 ± 24.9 49.4 ± 8.99 80.3 ± 13.2 70.3:29.7
RV 0.77 ± 0.18 346.7 ± 42.8 28.7 ± 7.53 89.0 ± 16.3 73.4:26.6

MCT (n = 6) LV 0.66 ± 0.11 167.9 ± 22.7 56.7 ± 2.02 94.1 ± 9.30 63.1:36.9
RV 0.79 ± 0.07 147.4 ± 20.0 47.3 ± 7.85 139.7 ± 14.8 ⁎51.1:⁎48.9

n = 5 individuals ± s.e.mean.
⁎ p b 0.05 t-test.
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significant increase in the ETA subtype in PAH vessels compared to con-
trol lung vessels. There was no change in ETB receptors, consistent with
results in other human diseased vessels (Maguire and Davenport,
2000).

Modulation of ET receptors in the RV of PAH patients suggests an
adaptive response to both the pressure overload and changes in auto-
crine/paracrine mediators, such as ET-1, experienced by these patients.
In heart failure, increased receptor densitymay be an adaptive response
to increase beneficial cardiac contractility. ET receptor antagonists may
Fig. 2. Competition of FR139317 for [125I]-ET-1 binding to human lung from (A) normal controls
corresponding to a high affinity ETA and low affinity ETB site (B) Comparison of ET sub-type ratio
the ratio of either sub-type (n=8PAHand 7 control individuals,mean± s.e.mean). (C) Compe
was also obtained as expected in each case corresponding to a high affinity ETA and low affinity
control and patients MCT arts with PAH showing no significant change in the ratio of either su
therefore decrease RV function. In a clinical trial comparing bosentan, a
mixed ET antagonist with sidenafil, both decreased pulmonary arterial
pressure to the same extent but unlike sildenafil, bosentan failed to im-
prove RV ejection (Wilkins et al., 2005).

Rat model of PAH

In agreement with human PAH, there was no change in ET receptor
density in the LV but ET receptor density was changed in the RV in the
and patients transplanted for PAH. A biphasic curvewas obtained as expected in each case
in the lungs fromnormal controls and patientswith PAH showing no significant change in

tition of FR139317 for [125I]-ET-1binding in rat lung controls andMCT rats. A biphasic curve
ETB site. (D) Comparison of ET sub-type ratio in the lungs of control andMCT treated rats,
b-type (n = 5 MCT and 3 control rats ± s.e.mean).

image of Fig.�2


Table 3
KD (affinity constant) and BMAX (maximumdensity of receptors) values for ETA andETB receptor subtypes inhuman lung fromnormal controls andpatients transplanted for PAH (n= 12
and 8 individuals) and rat lungs from control andmonocrotaline treated animals (n=3 and 5 animals), data aremean± s.e.mean, No significant difference from control values (Student's
t-test) at p b 0.05 was detected.

ETA KD (nM) ETA BMAX (fmol/mg) ETB KD (μM) ETB BMAX (fmol/mg) Ratio % ETA:ETB

Human Normal (n = 7) 2.05 ± 1.09 128.5 ± 19.0 13.4 ± 0.81 257.5 ± 48.0 34:66
PAH (n = 8) 1.67 ± 2.49 137.0 ± 38.6 13.8 ± 1.11 181.0 ± 30.3 36:64

Rat Control (n = 3) 5.24 ± 7.40 63.4 ± 25.8 55.9 ± 9.45 125.8 ± 34.6 31:69
MCT (n = 5) 0.58 ± 0.45 134.6 ± 57.0 63.5 ± 4.89 210.1 ± 50.1 36:64
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MCT rat, albeit the ratio was reversed compared with human. In addi-
tion, we did not detect an equivalent increase in receptor density in
themedial layer of small arteries in MCT rat lungs. This may be because
although MCT-treated rats develop PAH with marked RV hypertrophy,
MCT causes these changeswithin three weeks, whereas patients under-
going transplantation of heart and lungs are in the later stages of thedis-
ease. There is a consensus in the rat model of pulmonary hypertension
that neither RV systolic pressure nor function is improved in this model
by the mixed receptor antagonist, bosentan (see for example, Hill
et al., 1997; Jiang et al., 2011). Interestingly, selective ETA antagonists
have demonstrated efficacy in this model (Schroll et al., 2008;
Kosanovic et al., 2011).
Conclusion

Themain finding in this study is that there was a significant increase
in the ratio of ETA to ETB in the RV from human PAH hearts compared
with control, implying that this could translate into an increase in ino-
tropic action by ET, particularly as levels of the peptide also elevated
in PAH. Currently, ETA and mixed ETA/ETB receptor antagonists are
both effective in the treatment of PAH. Both would be expected to
block any increased inotropic action mediated by ET, suggesting that
the inotropic effect is not a major benefit in the RV of PAH patients
where the RV is characterised by hypertrophy. ETA receptors also in-
crease in the LV of patients with heart failure but in marked contrast
to PAH, ET receptor antagonists have not fulfilled their expected prom-
ise in clinical trials; beneficial positive inotropic actions of ET may be
more important in cardiomyopathy. Thus whilst ET antagonists in left
Fig. 3.Autoradiographical analysis of the density (amol/mm2) in the binding of [125I]-ET-1 to ET
to normal control lung tissues showing. There was a significant increase in ETA comparedwith n
*p b 0.05 t-test). In the lungs of MCT rats (B), there was no change (n = 6 MCT and 6 control
ventricular heart failure produce the desired vasodilatation, this is offset
by fluid retention and activation of the renin hypertension system. In
PAH, ET antagonists effectively cause the desired pulmonary vasodilata-
tion whereas blocking cardiac ET receptors has little impact on clinical
worsening.

PAH is characterized by high pulmonary vascular resistance and
vascular remodelling, which results in RV afterload and subsequent fail-
ure. Current treatments for PAH including ET antagonists have tended to
focus on pulmonary vasodilatation. This study has confirmed the upreg-
ulation of ETA receptors in the pulmonary vasculature of PAH patients
where the known vasodilator properties of ET antagonists are of benefit.
Crucially, the study has also provided evidence for an increase in the
ratio of ETA receptors in the RV, implying changes to the ET signalling
pathway but it is unclear whether ET antagonism is beneficial. These
results emphasise the still unexploited potential for therapies that
target the RV,with the aim of supporting the RV of the heart, to improve
survival in patients with PAH (Sitbon and Morrell, 2012).
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