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Abstract: The reverse phase protein array (RPPA) data platform provides expression data for 

a prespecified set of proteins, across a set of tissue or cell line samples. Being able to measure 

either total proteins or posttranslationally modified proteins, even ones present at lower abun-

dances, RPPA represents an excellent way to capture the state of key signaling transduction 

pathways in normal or diseased cells. RPPA data can be combined with those of other molecular 

profiling platforms, in order to obtain a more complete molecular picture of the cell. This review 

offers perspective on the use of RPPA as a component of integrative molecular analysis, using 

recent case examples from The Cancer Genome Altas consortium, showing how RPPA may 

provide additional insight into cancer besides what other data platforms may provide. There 

also exists a clear need for effective visualization approaches to RPPA-based proteomic results; 

this was highlighted by the recent challenge, put forth by the HPN-DREAM consortium, to 

develop visualization methods for a highly complex RPPA dataset involving many cancer cell 

lines, stimuli, and inhibitors applied over time course. In this review, we put forth a number of 

general guidelines for effective visualization of complex molecular datasets, namely, showing 

the data, ordering data elements deliberately, enabling generalization, focusing on relevant 

specifics, and putting things into context. We give examples of how these principles can be 

utilized in visualizing the intrinsic subtypes of breast cancer and in meaningfully displaying 

the entire HPN-DREAM RPPA dataset within a single page.

Keywords: RPPA, proteomics, molecular profiling, integrative analysis, breast cancer, 

TCGA

Introduction
Human diseases such as cancer can be incredibly complex at the molecular level, where 

a good understanding is needed for the signaling pathways involved. Cancer itself 

may initiate from DNA damage or aberrant DNA methylation affecting a key gene or 

set of genes, but the end result is cells showing widespread deregulation of signaling 

pathways and gene transcription. By incorporating multiple levels of molecular data 

on the diseased state of the cell, a more complete picture may emerge. With the advent 

of DNA microarray technologies,1 it became possible for us to profile the mRNA 

expression of thousands of genes in a single experiment.2 However, it quickly became 

apparent that gene transcriptional changes would represent just one level of the overall 

picture, as these are one step removed from signal transduction pathways.3 Proteomic 

profiling would therefore provide another important level. In particular, the reverse 

phase protein array (RPPA) data platform provides relative abundances for a set of 

key proteins (either total proteins or posttranslationally modified proteins),4 and this 

platform is establishing itself as a valuable research tool in human diseases.

The RPPA technology is a type of protein microarray which is the derivative of two 

technological advances: gene expression microarrays,1 which print DNA molecules on a  
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glass slide, and immunoassays,5,6 which enable the detection 

of protein expression through antibody and antigen interac-

tion. MacBeath and Schireiber7 were the first to develop 

protein microarray. They used a high-precision robot to print 

recombinant proteins on to glass slides, and used them for 

high-throughput detection of protein–protein interaction.  In 

2001, Brown and colleagues who invented the gene expres-

sion microarray,1 reported another protein array, an antibody 

microarray8 that contained hundreds of antibodies printed 

onto glass slides for measuring the abundance of many spe-

cific proteins in complex biological samples.

In 2001, Paweletz et al9 reported a new variation of protein 

microarray, in which tissue lysates, rather than recombinant 

proteins or antibodies, were spotted onto slides. They named 

this array “reverse phase protein microarray” in contrast to 

the “forward phase” antibody arrays which spot antibodies 

onto a slide. Other names in the literature include “lysate 

microarray”,10 “reverse-phase lysate microarray”,11 “reverse 

phase protein lysate microarrays”,4 and “reverse phase protein 

array”.12 Since 2011, annual RPPA workshops/conferences 

have been held to provide a platform for scientific communi-

cations and exchanging ideas about technical developments.13 

In its annual meeting in Paris, France, in October 2014, the 

standardized nomenclature “RPPA” was recognized. There-

fore, in this review, we will use the current term “RPPA”.

The purpose of this review is to shed light on the 

important role that RPPA data may play in integrative 

molecular analyses. Here, integrative analysis may involve 

effective combination of results from multiple data plat-

forms including RPPA, as well as incorporating our prior 

knowledge of biological systems into the interpretation of 

molecular-based results. For examples, we will focus here 

on recent cancer-related studies and datasets, in particular 

those initiated by The Cancer Genome Altas (TCGA).14–21 

In addition, overall approaches for more effectively visual-

izing RPPA results will be discussed.

Profiling of signaling pathway using 
the RPPA platform
The RPPA platform involves micro-blots of protein lysates 

from multiple samples of tissues, cell lines, or bodily fluids 

(such as serum, cerebrospinal fluid, urine, saliva) on a single 

array, with each sample represented by at least one spot.4,22 

Each array is then incubated with one specific antibody, in 

order to detect the relative expression of the corresponding 

protein across many samples simultaneously. Multiplexing 

using different antibodies on multiple arrays of the same set 

of lysates can be carried out to measure many proteins in 

a high-throughput manner. This platform has the capacity 

to allow hundreds and thousands of samples to be assayed. 

However, it requires highly specific antibodies (ie, a single 

specific band or predominant band to be observed by West-

ern blot analysis) and the corresponding RPPA validation 

(ie, RPPA expression level correlating with Western blot).12 

Due to the stringent validation process, currently, most RPPA 

datasets often include on the order of 150–300 antibodies for 

total or various modified proteins. For a specific study, the 

set of proteins profiled can be tailored to focus on particular 

pathways (eg, the PI3K pathway involving multiple signaling 

components) or cell functions (eg, apoptosis or invasion), but 

RPPA also allows for more exploratory analysis leading to 

unexpected pathway associations.

Developing antibodies and validating them for use with 

RPPA are laborious processes and are currently the bottleneck 

of this technology. Usually, the antibody validation workflow 

starts with obtaining a commercially available antibody that 

shows a specific band or bands, followed by Western blot 

performed in RPPA laboratories to confirm its specificity 

using proper positive and negative control lysates. Antibodies 

with multiple nonspecific bands are excluded from further 

testing, while antibodies showing specificity by Western blot 

will then be tested further by RPPA profiling of cell lines and 

other types of samples. Antibodies against phosphorylated 

proteins need to show specificity against samples stimulated 

(eg, using growth factors) or inhibited (eg, using targeted 

inhibition) to generate phosphorylated or non-phosphorylated 

forms of a protein.12 Antibodies for both Western blot and 

RPPA usually need titration for optimal results; one may 

typically start with the company’s recommended dilution 

for Western blot and adjust for better results if necessary. 

For RPPA, an antibody concentration four times higher than 

what would be required for Western blot is often used. For 

antibodies that require longer incubation or exposure times 

for Western blot, even higher concentrations would be needed 

for RPPA. We and others have found that ~50% of the com-

mercially available antibodies (those showing a single band 

by Western blot according to the company’s data sheets) can 

be validated to generate reliable RPPA data.4

Through DNA microarrays and (more recently) RNA 

sequencing, it has long been possible to comprehensively 

profile all mRNAs in a single experiment, where the number 

of data points in an mRNA expression profile (~20 K genes) 

would be far greater than that for an RPPA proteomic profile 

(usually fewer than 300 proteins). However, in terms of 

actual information, RPPA data and mRNA data would be 

highly complementary to each other. Multiple studies have 
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shown that mRNA levels do not necessarily correlate with 

their corresponding protein levels.23,24 In principle, pathways 

work by protein signaling transduction events that eventu-

ally lead to changes in gene transcription.3 Posttranslational 

modifications may not be reflected at the gene transcription 

level. Gene transcription data may therefore inform on 

the downstream effects of deregulated signaling, but the 

pathways occurring upstream of an observed transcriptional 

pattern may best be discerned using proteomics. There are 

analytical techniques for defining gene transcriptional sig-

natures of deregulated pathways, but the caveat with these 

analyses is that they can represent indirect targets of aberrant 

pathway signaling, where different pathways may converge 

on a similar set of transcriptional targets.25

The RPPA platform offers a number of unique benefits 

compared to other proteomics approaches.22 The use of a 

highly specific antibody in its optimal reaction condition 

ensures high specificity and sensitivity. Sample handling and 

preparations are straightforward and simple. Rapid protein 

extraction and denaturation prevent degradation and preserve 

proteins and phosphorylated proteins, which are often labile. 

Large numbers of samples spotted on the same slides allow 

for easier and more reliable normalization, comparison, and 

data analyses. In addition, RPPA allows for the identification 

and profiling of target proteins and signaling pathways in 

small amounts of samples, such as biopsy specimens, tissues 

from laser capture microdissection (LCM), and fluorescence-

activated cell sorting (FACS)-sorted minor cell populations, 

such as stem cells or cancer stem cells. For assaying 200–300 

proteins with different abundance levels, 4–35 µg total 

protein would be standard when using a volume range from 

20–35 µL at a concentration of 0.2–1.0 µg/µL. (The required 

volume needed is mostly due to evaporation rather than 

protein deposition on to slides, though even lower amounts 

of starting material may be accommodated in some cases.) 

The amount of protein needed per spot is very small, at the 

level of nanograms, where for specific proteins, the detection 

is at picograms to femtograms levels per spot.26

In contrast to RPPA (which profiles a smaller, predefined 

set of proteins), there are other proteomic technologies that 

are more global in nature, seeking to profile as many pro-

teins as possible.27 Mass spectrometry-based approaches 

can potentially profile larger numbers of proteins (up to 

thousands of proteins in practice), including those repre-

senting potentially unanticipated proteins that may not be 

represented in RPPA datasets. However, one main challenge 

with mass spectrometry is resolving all the proteins within 

one sample. In whole proteomic profiling, the most abundant 

proteins – often uninteresting from the standpoint of the 

biological questions at hand, eg, actins – will compete for 

detection with less abundant, but more interesting, proteins, 

such as signaling molecules.28 In addition, mass spectrometry 

can be resource-intensive from an informatics standpoint.29 

In contrast, the RPPA platform is higher throughput in terms 

of numbers of samples and can be analyzed with smaller 

sample aliquots.

RPPA requires only one primary antibody for each 

target protein or its modified form, in comparison to some 

other immunoassays such as sandwich enzyme-linked 

immunosorbent assay (ELISA), which requires two primary 

antibodies against the same proteins.9 Therefore, RPPA 

does not have an unusually high demand for specific anti-

bodies for a given protein or phosphorylated protein. Its 

quantitation, sensitivity, and multiplexing capacity also 

largely exceeds what can be typically achieved by Western 

blotting and immunohistochemistry.9 Initiatives such as the 

Human Protein Atlas provide lists of validated antibodies 

for screening studies.30

RPPA as a clinical proteomic 
platform
Conventional characterizations of cancer (including histology,  

tumor size, tumor grade, tumor differentiation, invasion, 

status of local and distant metastasis, cytogenetic analysis, 

and immunohistochemical staining of protein markers) do not 

usually detect the oncogenic signaling pathways that drive 

cancer growth and thus fail to identify the prime targets for 

intervention. The earlier-discussed benefits of RPPA, espe-

cially the ability to quantify multiple phosphorylated proteins 

and to probe pathway activity in very small amounts of tissue 

samples, make RPPA a suitable platform for patient-tailored 

therapy or precision medicine. For example, while standard 

clinical assays (immunohistochemistry and fluorescence in 

situ hybridization) can detect HER2 total proteins or their 

gene copy numbers in breast cancer, these assays do not 

measure HER2 protein activity and the activity of the HER2-

regulated signaling pathways, which are the better indicator 

of the likelihood that anti-HER2 therapeutics may be effec-

tive. In 2013, the first commercial RPPA assay – the Ther-

aLink HER Family Assay – was introduced by Theranostics 

Health31 to quantify not only the HER2 total protein and its 

two heterodimerizing partners and family members (EGFR 

and HER3), but also the specific autophorylation sites on 

these receptor tyrosine kinases that are indicators of activa-

tion levels. Importantly, this assay also monitors the levels 

of their key downstream pathways including the Akt/mTOR 
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pathway (p-AKT, p-mTOR, p-S6, and p-4E-BP1), the MAPK 

pathway (p-Mek1/2, and p-Erk1/2), and the Jak/Stat pathway 

(p-Jak2 and p-Stat3), against which there are also US Food 

and Drug Administration (FDA)-approved therapeutics. This 

assay is now allowed by some insurance companies. Using 

this assay, some of the triple-negative breast cancers, which 

are generally not treated with targeted therapy, have been 

found to show enhanced activity of EGFR and HER3 as well 

as the PI3K-Akt pathway,32 and to respond to combinatorial 

therapy targeting these three components in a preclinical 

setting. Therefore, an RPPA assay may provide actionable 

information for therapeutic selections.

RPPA, coupled with LCM,33 has the potential to survey 

oncogenic pathways in selected cell compartments of clinical 

samples.22 This is very important since cancer tissue is often 

an admixture of different and interacting cell sub populations 

(different subsets and subclones of tumor cells and the 

admixed stromal cells), and the cell subpopulation of thera-

peutic interest – such as cancer stem cells for some cancers –  

may constitute only a minor fraction of the cancer mass. 

For example, Wulfkuhle et al34 used LCM-coupled RPPA 

and found metastasis-specific changes that occurred within 

a new microenvironment, but this change was not detected 

when whole section lysates were assayed.35 Therefore, LCM-

RPPA may further advance personalized therapy.

Added value of RPPA to integrative, 
multi-platform analysis
In studying diseases such as cancer, the value of integrative 

molecular analysis, incorporating multiple levels of data, has 

been well established. One well-known example involving 

data integration included one of the first studies (by Perou 

et al)36 to profile breast cancers at the mRNA expression 

level, where mRNA data were integrated with data from 

immunohistochemical staining for key molecular markers of 

treatment response (namely, ER and HER2). This integrative 

analysis resulted in intrinsic molecular subtypes of human 

breast cancer being defined – these being eventually known 

as Luminal A, Luminal B, HER2-enriched, basal-like, and 

normal-like. Subsequent studies have defined a core set of 

50 mRNAs, also known as the “PAM50” gene set,37 which 

can be used to distinguish these intrinsic subtypes. Here, 

we represent these breast tumor subtypes and associated 

PAM50 genes in Figure 1, using data generated by TCGA, 

including data from RPPA and from RNA sequencing. As 

the RPPA dataset for TCGA includes on the order of 180 

protein features, not all of these would be represented in the 

original PAM50 gene set, though a number of key proteins 

are (including ER, PR, HER2, EGFR, Bcl-2, CCNE1, and 

CCNB1). As indicated in Figure 1, RPPA features may 

include phosphorylated as well as total forms of a given 

protein. In general, Figure 1 shows good correlations between 

Figure 1 Proteomic and transcriptomic patterns associated with the intrinsic molecular subtypes of human breast cancer. 
Notes: Data on 598 human breast tumors are from TCGA15 (RPPA data from The Cancer Proteome Atlas dataset).19 Using the PAM50 gene set,37 tumors were previously 
classified by intrinsic molecular subtype (Luminal A, Luminal B, HER2-enriched, basal-like, and normal-like).15 The mRNA heat map features the PAM50 genes (used to classify 
breast cancer subtype), while the RPPA heat map features protein equivalents of the PAM50 genes (where available). This analysis uses publicly available data but is original 
to this review article.
Abbreviations: TCGA, The Cancer Genome Altas; RPPA, reverse phase protein array; HER2-e, HER2-enriched; IHC, immunohistochemistry; pos, positive; ER, estrogen 
receptor; PR, progesterone receptor; EGFR, epidermal growth factor receptor; RNA-seq, RNA sequencing.
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these select proteins and the genes, where the proteins also 

appear differentially expressed among the tumor subtypes 

originally defined using mRNA data.

Over the last decade, the development of additional data 

platforms to globally profile the cell at various molecular 

levels – including DNA mutation, DNA copy, DNA methyla-

tion, microRNAs, and proteins – has offered us challenges 

and opportunities to integrate these various data types in 

meaningful ways. TCGA is an ambitious project currently 

ongoing to comprehensively profile more than 10,000 cancers 

of various histological subtypes, using all of the above 

platforms. In recent years, TCGA consortium members have 

carried out numerous comprehensive molecular analysis stud-

ies focusing on a specific disease,15–17,21,38 as well as numerous 

“pan-cancer” studies that make observations that cut across 

different diseases.14,18,19 TCGA datasets include an extensive 

RPPA dataset, the most recently published version being 

comprised of 3,467 patient samples from eleven tumor sub-

types, using 181 high-quality antibody features targeting 128 

total proteins and 53 post translationally modified proteins.19 

Additional RPPA data generation is ongoing, for additional 

cancer subtypes currently under study by TCGA.

In a number of these TCGA-initiated studies, the inclusion 

of RPPA data into multi-platform analyses has led to key 

insights, just a few examples of which are noted here (these 

examples involving analysis work by this review’s leading 

author). In breast cancer,15 a set of proteins with core roles 

in the PI3K pathway were examined by RPPA (including 

phospho-protein levels of Akt, mTOR, GSK3, S6K, and S6, 

and total levels of pathway inhibitors PTEN and INPP4B), 

and it was found that the pathway as a whole appeared 

more active in the basal-like subtype of breast cancer; this 

finding was corroborated in the corresponding mRNA data, 

by examining PI3K-associated transcriptional signatures. 

In clear cell renal cell carcinoma,16 molecular correlates of 

patient survival were defined for each of four different data 

platforms (RPPA, RNA-sequencing, microRNA-sequencing, 

and DNA methylation arrays). By RPPA, top survival cor-

relates included AMPK and ACC, which were oppositely 

correlated to each other, thereby suggesting a metabolic 

shift of the cell from oxidative phosphorylation to aerobic 

glycolysis. The RPPA-based observations led to a focused 

analysis of metabolism involving all platforms, which further 

supported a type of glycolytic shift being associated with 

more aggressive kidney cancer.

In TCGA’s recent lung adenocarcinoma study,17 lung 

tumors could be separated into three main groups on the 

basis of RPPA and mutation data: 1) those tumors with the 

PI3K-Akt branch of mTOR pathway appearing activated 

(either PIK3CA activating mutation or high p-Akt), 2) those 

tumors with LKB1-AMPK branch inactivated (either STK11 

mutation or low combined levels of LKB1/p-AMPK), and 3) 

those tumors unaligned with the above. The RPPA data were 

also used to define an mTOR pathway proteomic signature, 

which was the average of the phosphor-proteomic forms of 

4E-BP1, 70S6K, and S6. In principle, mTOR signaling may 

be activated, by either Akt (eg, via PI3K) or inactivation of 

AMPK (eg, via STK11/LKB1 loss), and in fact those tumors 

that showed alterations in either mTOR-associated pathway 

branches, as defined earlier, did show increased mTOR 

pathway activity by RPPA. This finding illustrates the need 

for incorporating prior biological knowledge into pathway 

analysis of RPPA data, where pathways may not always 

behave in a linear fashion. In addition, the analysis demon-

strated many cases that showed aberrant phospho-Akt or loss 

of LKB1 at the protein level, without an associated genetic 

driver, illustrating that RPPA data hold additional informa-

tion on pathway activities that may not be fully captured by 

mutation analysis alone or by our current understanding of 

potential driver alterations for these key pathways.

Need for effective visualization 
approaches to RPPA data
As molecular datasets become more rich and complex, a 

challenge that presents itself is that of making results from 

integrative analyses understandable to everyone, of which 

effective data visualization would be a key component. While 

statisticians and computer scientists may often express results 

in terms of statistical P-values, statistical significance may 

not necessarily translate into biological significance. Almost 

any pattern that is of biological significance could be shown 

as such by some visual presentation of the data, thereby 

allowing the results to be even more apparent and more 

readily accepted by others. With RPPA and other molecular 

data platforms, there is an obvious need for better software 

tools to allow researchers, who may not have the benefit of 

a strong computational background, to be able to access and 

visualize multidimensional molecular datasets (Oncomine39 

or CBioPortal40 being good examples of these types of tools). 

At the same time, we can also seek to better utilize the printed 

page, which represents a static view of the data but one that 

can also be readily digested and shared with others.

In our own analysis work, we have formulated for our-

selves some general guidelines for effective data visualiza-

tion of genomic datasets as follows: 1) Show the data: the 

visualization should strive to show the actual data underlying 
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a pattern of interest; the more people can “see” the associated 

patterns for themselves, the more the reported trends in the 

data may become more concrete in people’s minds and read-

ily accepted. 2) Order elements deliberately: the ordering of 

the data elements should be deliberate, to provide optimal 

viewing of the primary pattern meant to be visualized. 

3) Enable generalizations: the visualization should provide a 

global view of the data, allowing one to make generalizations 

about the system under study. 4) Focus on relevant specifics:  

as well as allowing one to follow the overall trends, the 

visualization should put emphasis on specific data features 

of particular relevance. 5) Put things in context: as much as 

possible, the data elements should be annotated, in order to 

put them into some meaningful context for the benefit of 

viewers having knowledge of the domain. In the following, 

we illustrate these guidelines, using concrete examples.

In the seminal paper by Perou et al36 who first identified 

the intrinsic molecular subtypes of breast cancer, a key fig-

ure presented the results of unsupervised clustering of gene 

expression profiling with associated heat map. These subtypes 

are represented in Figure 1, using heat maps of TCGA data 

from human breast tumors. While our above visualization 

guidelines were not explicitly stated in the Perou et al paper, 

these guidelines were in fact put to good use in Perou et al’s 

presentation of the unsupervised clustering heat map.

Show the data: while real data are never perfect and can 

even be somewhat “messy” (which could be considered the 

case for the earlier cDNA microarrays in particular), show-

ing a heat map of the differentially expressed genes further 

reinforces the notion of distinct subtypes of breast cancer (as 

is also the case for Figure 1).

Order elements deliberately: for the Perou et al paper, a 

computer algorithm grouped the samples and genes based 

on distinctive patterns, thereby defining the breast cancer 

subtypes and the genes that underlie these subtypes.

Enable generalizations: from all of the individual data 

points derived from all of the samples and the thousands of 

genes profiled, Perou et al arrive at four or five basic subtypes 

of breast cancer, which represents a powerful generalization 

for this disease.

Focus on relevant specifics: two proteins, ER and HER2 

(these genes being noted both in Perou et al’s figure and 

in our Figure 1), are of particular relevance to the intrinsic 

subtypes, as these represent known biomarkers of treatment 

response, thereby grounding these subtypes in reality.

Put things in context: ER and HER2 received particular 

focus in the Perou study, due to their previously established 

roles in the biology of breast cancer, thereby providing 

meaningful context as to the biology underlying the intrinsic 

subtypes.

Developing effective data visualization approaches for 

molecular profiling datasets continues to be an active area of 

research, one notable example being the recent visualization 

“sub-challenge” put forth by the HPN-DREAM consortium,41 

as part of its overarching challenge of network inference in 

breast cancer using RPPA data. The goal of HPN-DREAM’s 

visualization sub-challenge was for participants to devise 

novel approaches to represent a complex RPPA dataset, 

involving ~45 phosphoproteins being profiled for four differ-

ent breast cancer cell lines, grown under conditions of eight 

different ligand stimuli, which stimuli groups were further 

divided into treatments by either one of three inhibitors or 

dimethyl sulfoxide (DMSO) vehicle control, with profiles 

taken for each treatment over seven different time points. 

In all, this RPPA dataset represented over 48,000 data points 

over multiple cell lines, stimuli conditions, inhibitor treat-

ments and times, and the obvious challenge here was to find 

ways to meaningfully present all of these data.

Figure 2 provides a visualization of the above RPPA 

dataset, which was originally submitted by this review’s 

lead author, as part of the HPN-DREAM challenge. This 

visualization makes use of our above guidelines for present 

complex molecular datasets.

Show the data: using a heat map to display the protein 

expression patterns allows for compact presentation of all 

the individual data points.

Order elements deliberately: the ordering of protein 

features in the heat map is deliberately chosen, grouping them 

by biologically meaningful protein class (PI3K, apoptosis, 

cell cycle, MAPK, etc). The ordering of sample profiles in 

the heat map is likewise deliberate; this would represent a 

critical step in our defining what patterns might be readily 

viewed. The sample profiles are grouped first by cell line, 

then by stimulus, then by inhibitor, then by time; in this way, 

the viewer can readily look up how a particular stimulus and 

inhibitor treatment impacted protein expression.

Enable generalizations: the single page presentation 

provides a global view of all the data, allowing the viewer to 

observe overall trends and to make generalizations. Overall 

trends that are apparent in the figure include AKT inhibitors 

activating p-Akt in all cell lines, while suppressing PI(3)K  

activity (as measured by downstream effectors S6K, S6, 

and 4EBP1) in the UACC812 and BT549 cell lines. Other 

patterns are discernible here, such as HGF-induced MET, 

or EGF- induced EGFR/Her2, in both BT549 and BT20 

cell lines.
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Focus on relevant specifics: the visualization allows one 

to readily look up patterns for specific stimulus–inhibitor 

combinations. While all of the proteins represented in the 

dataset could be presented here, another dataset with a larger 

number of features might require one to focus on the features 

most relevant to the question at hand.

Put things in context: pathway knowledge provides the 

context that guides the ordering of the protein features, 

allowing the viewer to scan for a particular pathway or 

functional group.

The visualization guidelines described earlier are meant 

to be generalizable and not necessarily limited to heat maps. 

For example, many of the TCGA studies (eg, the clear cell 

kidney cancer study mentioned earlier, highlighting the role 

of glycolytic shift in more aggressive cancers) have made 

effective use of pathway diagrams. A pathway diagram, eg, 

one where the nodes may represent genes or proteins and 

would provide information on genomic alteration or differ-

ential expression, can also illustrate our general guidelines.

Show the data: all of the relevant components of the 

pathway should be considered (eg, not limiting ourselves to 

only components that would appear altered in a preconceived 

direction).

Order elements deliberately: the ordering of elements 

in the diagram is dictated by our prior knowledge of the 

pathway flow.

Enable generalizations: when considering the entire 

pathway, sub-pathways within the larger pathway may be 

shown to broadly change in a given direction.

Focus on relevant specifics: critically altered nodes in the 

pathway may also be identifiable.

Put things in context: our prior knowledge of the path-

way, a product of decades of cumulative research, provides 

a meaningful context and framework for the data. In addition 

to what would be represented with the examples discussed 

here, other visualization approaches could be explored as 

well. In fact, there were many other creative entries submit-

ted by others to the HPN-DREAM visualization challenge,42 

some of which may not be able to be fully captured on the 

static page and may require the development of new software 

tools, but which can help stimulate additional thinking in 

this important area.

Conclusion and future perspective
The recent explosion of molecular data, made possible by the 

wider availability of new technologies to comprehensively 

profile the cell, has enabled us to live in interesting times. 

Rather than being daunted by all these data, we should be 

excited at the potential for discovery. More and more, RPPA 

is establishing itself as a core data platform, which may be 

used in conjunction with other data platforms, for examining 

signaling pathways as they may change between diseased 

and healthy cells. Integration with other data platforms will 

be important in our maximizing the potential of RPPA as 

a research tool, along with the importance of having good 

knowledge of molecular biology and an effective grasp 

of effective visualization techniques. In addition, one area 

that holds great potential is the clinical use of RPPA, eg, 

for personalizing therapeutics, clinical diagnosis, and drug 

discovery,43,44 which can extend to human diseases beyond 

cancer.

Additional efforts are needed to facilitate more wide-

spread use of RPPA, in both areas of research and clinical 

practice. Technical improvements regarding the reagents 

used in RPPA data generation would be of great potential 

benefit, including improvements in labeling chemistry to 

allow for higher sensitivity, as well as an expansion of 

validated antibodies for use with the platform. Improved 

software tools for automated image analysis could save 

considerable technician time and thereby lower the costs of 

implementation. With regard to the clinical setting, automa-

tion of an analysis workflow to integrate genomics data and 

RPPA would greatly aid future applications in personalized 

medicine.
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