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A B S T R A C T   

Breath pattern analysis based on an electronic nose (e-nose), which is a noninvasive, fast, and low-cost method, 
has been continuously used for detecting human diseases, including the coronavirus disease 2019 (COVID-19). 
Nevertheless, having big data with several available features is not always beneficial because only a few of them 
will be relevant and useful to distinguish different breath samples (i.e., positive and negative COVID-19 samples). 
In this study, we develop a hybrid machine learning-based algorithm combining hierarchical agglomerative 
clustering analysis and permutation feature importance method to improve the data analysis of a portable e-nose 
for COVID-19 detection (GeNose C19). Utilizing this learning approach, we can obtain an effective and optimum 
feature combination, enabling the reduction by half of the number of employed sensors without downgrading the 
classification model performance. Based on the cross-validation test results on the training data, the hybrid al-
gorithm can result in accuracy, sensitivity, and specificity values of (86 ± 3)%, (88 ± 6)%, and (84 ± 6)%, 
respectively. Meanwhile, for the testing data, a value of 87% is obtained for all the three metrics. These results 
exhibit the feasibility of using this hybrid filter-wrapper feature-selection method to pave the way for optimizing 
the GeNose C19 performance.   

1. Introduction 

Over the last few years, diagnostic and monitoring methods for 
human diseases in clinical medicine have been extended from invasive 
blood analysis to noninvasive breath pattern analysis [1–4]. Human 
exhaled breath has a complex composition of gases with various 
chemical compounds, which include small inorganic compounds (e.g., 
oxygen (O2), carbon dioxide (CO2), and nitric oxide (NO)), non-volatile 
organic compounds (VOCs) (e.g., isoprostanes, leukotrienes, cytosines, 
and hydrogen peroxide), and VOCs (e.g., hydrocarbons, ketones, alco-
hols, aldehydes, and esters) [5]. Due to their low solubility in blood, 
mixed VOCs resulting from cellular metabolism are easily exhaled and 

can be used for breath analysis. They have been employed as diagnostic 
and prognostic response biomarkers for different respiratory diseases, 
including tuberculosis [6], pneumonia [7], asthma [8], lung cancer 
[9–12], and chronic obstructive pulmonary disease [13]. This great 
clinical potential has also led to a growing research area of breathomics, 
which generally refers to multidimensional analyses of VOCs in exhaled 
breath [14,15]. 

Because the severe acute respiratory syndrome coronavirus 2 (SARS- 
CoV-2) has emerged in late 2019 causing a pandemic of coronavirus 
disease 2019 (COVID-19) [16–19], the use of breathomics has been 
extended by researchers and clinicians to provide a fast and noninvasive 
COVID-19 test [20,21]. This is due to the fact that even though reverse 
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transcription-quantitative polymerase chain reaction (RT-qPCR) has 
become the most recommended laboratory method and gold standard to 
diagnose COVID-19 with a high accuracy and high specificity, it has 
several drawbacks (i.e., needs of special equipment, invasive approach, 
well-trained staffs, and long result delivery) that limit its usage [22]. 
Thus, simple noninvasive tests with high accuracy are highly demanded 
to be alternative for RT-qPCR. In terms of the human breath analysis for 
COVID-19 detection, mass spectrometry (MS), which is versatilely 
coupled with various chromatographic separation methods, can be 
employed to better understand the clinical and biochemical processes of 
COVID-19 [20]. Among the available variants, the selected-ion flow- 
tube MS (SIFT-MS) [23], proton-transfer reaction MS (PTR-MS) [24,25], 
and gas chromatography–MS (GC–MS) [26] with thermal desorption or 
solid-phase microextraction have been attempted to be utilized for 
COVID-19 diagnosis, in which MS-detected exhaled breath biomarkers 
can identify RT-qPCR-confirmed positive COVID-19 patients with high 
sensitivity. 

Although the MS approach has already been noninvasive, it is still 
considered expensive and time-consuming. Thus, an electronic nose (e- 
nose) can be selected as a rapid COVID-19 detector alternative. It is a 
device combining broad-spectrum chemical sensor array with a gas 
sampling chamber and machine learning to mimic human olfactory 
perception and provide a digital breathprint of the VOCs. Among other 
various gas sensor types (e.g., gravimetric microelectromechanical sys-
tem (MEMS) and optical, capacitive, and photoacoustic gas sensors 
[27–40]), chemoresistive gas sensors based on the metal-oxide semi-
conductor (MOS) have been widely used as the main components of the 
e-nose considering their advantageous properties (i.e., high sensitivity, 
mature material synthesis technology, high robustness, low fabrication 
cost, short response time, and simple sensing method) [41]. 

Recently, several proof-of-concept studies for the real-time detection 
of the SARS-CoV-2 infection with the e-nose have been reported in 
several countries. First, in Tel Aviv, Israel, a compact PEN3 e-nose 
(AIRSENSE Analytics GmbH, Schwerin, Germany) had been successfully 
tested at a drive-through testing station using a one-way disposable 
sampling valve method to protect tested participants [42]. Second, in 
the Netherlands, another commercial e-nose so-called aeoNose (The 
eNose Company, Zutphen, the Netherlands) integrating three types of 
micro-hotplate MOS sensors (i.e., VOC, carbon monoxide, and nitrogen 
dioxide sensors) had been used for pre-operative SARS-CoV-2 screening 
at the Maastricht University Medical Center (MUMC+) [43]. The aeo-
Nose could distinguish positive from negative COVID-19 participants 
based on VOC patterns in exhaled breath [43]. Third, a cloud-connected 
e-nose consisting of seven different cross-reactive MOS sensors (Spi-
roNose® – Breathomix, Leiden, The Netherlands) was also implemented 
as a SARS-CoV-2 diagnostic test in a public health setting (i.e., at 
different Amsterdam public test facilities) [44]. Fourth, using multi-
plexed nanomaterial-integrated sensor array, an exploratory clinical 
study cohort of the nanosensor-based e-nose concept for COVID-19 
detection was conducted in Wuhan, China, in which the test dataset 
can reach an accuracy of up to 95% in differentiating between patients 
with COVID-19 and patients with other lung infections [45]. 

Despite these success stories, in the materials science community, 
MOS sensors also possess a cross-sensitivity drawback in detecting 
different types of VOCs and other gases. Basically, two optimization 
strategies can be opted, focusing on either the sensing active materials 
(e.g., employing hybrid organic–inorganic functional nanomaterials or 
molecular imprinting technique to increase the sensor selectivity 
[46,47]) or post-processing of MOS sensor output signals by machine 
learning [48–50]. The latter approach has been favorable for commer-
cial e-nose developers because no modification is needed in the hard-
ware assembly and setup, which consequently lowers the product 
development cost. Furthermore, because a large number of sensors in-
tegrated in the system does not necessarily result in a good e-nose per-
formance, an effective method is required to determine and 
subsequently eliminate the less contributing sensors in certain 

applications. In a chemometric study on an electronic tongue consisting 
of 16 sensors for dairy product discrimination, utilizing a linear 
discriminant analysis combined with a simulated annealing (SA) 
feature-selection algorithm could possibly produce an accurate model 
based on signals from only four sensors [51]. For breath analysis using 
an e-nose, combining the sparse group lasso (SGL) feature selection with 
a support vector machine (SVM) improves the classification perfor-
mance in differentiating patients with lung cancer from healthy subjects 
and patients with benign pulmonary diseases [52]. However, despite its 
ability to enhance the classification of up to 12%, this SGL feature se-
lection approach performs dimensionality reduction by eliminating 
several data rather than grouping and scoring for the whole data, 
leading to a poor discriminatory predictive performance [52,53]. 
Moreover, the maintenance of the e-nose performance using few sensors 
had not been demonstrated in that study. 

Therefore, herein, we propose a hybrid machine learning-based al-
gorithm integrating hierarchical agglomerative clustering (HAC) anal-
ysis with the permutation feature importance method to not only 
improve the classification performance of a portable e-nose for COVID- 
19 detection (GeNose C19) but also to reduce the number of contrib-
uting sensors in the system. HAC that belongs to a family of unsuper-
vised statistical approaches can classify a set of breath sample data into a 
hierarchy of groups or clusters according to their characteristic simi-
larities. Meanwhile, the permutation feature importance approach is 
utilized to discover the characteristic uniqueness of each feature in the 
dataset and provide importance scoring for prediction. The developed 
algorithm has been implemented in an exploratory study of COVID-19 
tests using GeNose C19 at a public hospital in Sleman, Indonesia, 
resulting in a promising performance enhancement and lowering the 
sensor number. 

2. Results and discussion 

2.1. GeNose C19 configuration for COVID-19 tests 

In the portable e-nose for a rapid COVID-19 test (GeNose C19), main 
sensing and breath sampling units were developed and integrated into a 
system, enabling real device implementation at the hospital setting 
(Figs. 1 and S1). For the sensing module, 10 chemoresistive MOS sensors 
(S1–S10) with internal heaters and different gas selectivities were 
employed and arranged as an array inside a sealed chamber of GeNose 
C19 (Table 1). In the presence of target gases, their conductivity will 
change as induced by redox reactions between the active MOS materials 
and adsorbed gas molecules, as illustrated in Fig. 1a. Several other 
studies have described the sensing principle of MOS gas sensors in detail, 
which is based on an equilibrium shift of the surface chemisorbed oxy-
gen reaction [54–56]. The output signals then underwent preprocessing 
steps (i.e., labeling, normalization, and area under the curve (AUC) 
determination) prior to machine learning-based data assessment 
(Fig. 1b). Moreover, the sensing unit was equipped with a micropump 
and three-way solenoid valve to enable and control the alternating flows 
of reference (ambient) air and exhaled breath to the chamber. 

For the breath sampling unit, a high-efficiency particulate air (HEPA) 
filter and a disposable air sampling bag made of medical-grade polyvinyl 
chloride (PVC) were employed to filter out virus-containing droplets and 
store breath samples from patients, respectively. The breath sampling 
procedure was carefully conducted to ensure human safety and obtain 
reliable results. In this machine-learning algorithm development for 
GeNose C19, we used 460 exhaled breath samples from the COVID-19 
tests of patients at a public hospital in Sleman, Daerah Istimewa 
Yogyakarta, Indonesia, from February to March 2021. Among them, nP 
= 230 and nN = 230 samples were confirmed by the gold-standard 
method of RT-qPCR as positive (P) and negative (N) COVID-19 (see 
Methods). Table 2 shows the clinical characteristics of the tested pa-
tients, including age, sex, and comorbid condition. Most participants are 
at the age of 6–78 without pre-existing comorbidities. Among the 

S.N. Hidayat et al.                                                                                                                                                                                                                              



Artificial Intelligence In Medicine 129 (2022) 102323

3

positive COVID-19 patients, 64 of them were symptomatic. Moreover, 
the highest and lowest numbers of comorbidities found from the patients 
were respiratory (38) and gastroenteritis (11) problems, respectively. 

2.2. Preprocessing of sensor responses 

The typical responses of the GeNose C19 sensor array (S1–S10) 
during exposure to exhaled breath, which was randomly selected from 
the data distribution, are depicted in Fig. 2a. The sensor signals signif-
icantly increased for a few seconds after the sensing chamber was 
exposed to the breath sample. The signal then started to achieve a 
steady-state value, in which the maximum sensor response value was 
defined at a time of 42 s. The various signal shapes and shifts indicate 
that each sensor provides different and unique characteristics when 
exposed to breath samples depending on the employed active materials 

and target gases (Fig. 2b). The gray area represents the AUC employed as 
an input feature for the sensors. Different baseline signal levels were also 
noticeable among sensors even when the same breath sample was used 
during the test (Fig. 2a). Moreover, depending on the ambient or envi-
ronmental condition, a sensor might yield altered baseline values during 
the continuous measurement of different breath samples. 

To fully understand the sensor behavior, we calculated the baseline 

Fig. 1. Configuration of a portable e-nose for COVID-19 detection (GeNose C19). a Output signal characteristics of chemoresistive metal-oxide-semiconductor 
(MOS) gas sensors. The sensor conductivity changes because of redox reactions between the active MOS material and adsorbed gas molecules. The real-time signal 
monitoring regarding VOC exposure to the sensor surface is performed using data logging software (DAQ software). b Procedure to collect the breath samples and 
process the data utilizing an extra-tress classifier. A hybrid learning algorithm combining hierarchical agglomerative clustering (HAC) analysis and permutation 
feature importance method enhances the GeNose C19 performance and simultaneously reduces the required sensor number. 

Table 1 
Selective target gases for all chemoresistive sensors used in GeNose C19. 
Cross-sensitivity toward different gases has been a typical characteristic for such 
inorganic MOS gas sensors. In terms of selectivity, each sensor sensitively reacts 
to more than two target gases.  

Gas 
sensor 

Selective target gases 

S1 Carbon monoxide, ethanol, hydrogen, isobutane, and methane 
S2 Ammonia, ethanol, hydrogen, hydrogen sulfide, and toluene 
S3 Ethanol, hydrogen, isobutane, and methane 
S4 Carbon monoxide, ethanol, hydrogen, isobutane, and methane 
S5 Carbon monoxide, ethanol, hydrogen, isobutane, methane, and propane 
S6 Carbon monoxide, ethanol, hydrogen, isobutane, methane, and propane 
S7 Carbon monoxide, ethanol, hydrogen, and methane 
S8 Acetone, benzene, carbon monoxide, ethanol, isobutane, methane, and 

n-hexane 
S9 Ammonia, ethanol, hydrogen, and isobutane 
S10 Chlorofluorocarbons, ethanol, and hydrofluorocarbons  

Table 2 
Clinical characteristics of tested patients, including age, sex, and comorbid 
condition. The numbers of the RT-qPCR-confirmed positive and negative 
COVID-19 patients are nP = 230 and nN = 230, respectively.  

Characteristics RT-qPCR-confirmed 
positive COVID-19 
(nP = 230) 

RT-qPCR-confirmed 
negative COVID-19 
(nN = 230) 

Total 
number 

Age distribution (years old) 
0–20 43 52 95 
21–40 69 118 187 
41–60 85 43 128 
61–80 33 17 50 
Sex distribution 
Male 127 161 288 
Female 103 69 172     

Patients with 
symptoms 64   

Comorbidities 
Respiratory 

problems 
38   

Thermoregulation 
problems 

26   

Anosmia and 
hypogeusia 16   

Gastroenteritis 
problems 

11   

Systematic problems 14    
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levels of 10 sensors from all the collected 460 breath data (Fig. 2c). 
Evidently, each sensor has different baseline values during measure-
ments. Indicated by the significant amount of data outliers, the most and 
least stable baseline signals were achieved by S7 and S2, respectively. 
The large baseline signal variation is affected by different ambient 
conditions. In Fig. 2d, the average temperature and relative humidity 
values during the measurements were (35 ± 4) ◦C and (44 ± 7)%, 
respectively. This characterization was made feasible using a tempera-
ture and humidity sensor integrated inside the sensing chamber. 

Generally, MOS sensors were highly influenced by the temperature and 
relative humidity [57–62]. This behavior has become one of the stron-
gest limitations of the sensor array technology based on MOS sensors. 
This unstable signal baseline, combined with the mixture complexity of 
VOCs contained in a human breath sample, results in high challenges 
when developing chemometric model selection to differentiate between 
positive (P) and negative (N) COVID-19 patterns [52,63–66]. However, 
to suppress this effect at the minimum level, GeNose C19 can be pre-
conditioned and placed in a location where the environmental condition 

Fig. 2. Raw and preprocessed data of sensor output signals recorded by GeNose C19 from breath measurements. a Typical raw and b normalized sensor 
signals in the breath measurements recorded by the GeNose C19 DAQ software (2 s baseline time, 40 s sampling time, and 3 s purging time). The distributions of the c 
baseline and d temperature and relative humidity values calculated from all 460 training data. e Calculated feature values of all sensors (S1–S10) based on their area 
under the curve (AUC) after signal preprocessing steps. f PC1 and PC2 plot showing the distributions of all P and N training data. 
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is relatively stable (e.g., indoor). 
The feature value variabilities for P and N samples are displayed as a 

boxplot in Fig. 2e. A higher distribution of the N classes was observed as 
compared to the P classes for the S1, S3, S4, S7, and S8 features. How-
ever, these results were still insufficient to determine the importance of 
the sensors for performing the discrimination of P and N samples. Thus, 
we used principal component analysis (PCA) to thoroughly determine 
the variability distribution. Fig. 2f shows that PC1 and PC2 represent 
72.9% data variability. This finding confirms a significant amount of 
data overlapping between the P and N samples, especially in the regions 
where PC1 is higher than 0 (PC1 > 0), and PC2 approaches 0 (PC2 ➔ 0). 
Nonetheless, the PCA result indicates that to some degree, the clustering 
of P and N data exists for the training data. The PC1 < 0 region shows a 
higher trend of N compared to the P sample, which indicates the pos-
sibility of developing a classification model that can clearly differentiate 
between P and N data. Thus, from this point onward, we utilized an 
extra-tree classifier as the classification method. 

2.3. Hybrid learning method for the classification and performance 
optimization 

For the feature selection in machine learning, two different ap-
proaches are basically available to be implemented (i.e., filter and 
wrapper methods). Each of them can be either separately used or jointly 
combined. The filter method is developed using statistical filter algo-
rithms (e.g., Pearson's correlation, information gain, mutual informa-
tion, ANOVA, chi-squared test, and fast-correlation-based filter). 
Meanwhile, the wrapper approach utilizes learning algorithms to find 
the best combination of features that produce high performance (e.g., 
genetic algorithm (GA) feature selection, simulated annealing (SA) 
feature selection, recursive feature elimination (RFE), least absolute 
shrinkage and selection operator (LASSO) algorithm, and ridge regres-
sion). Filter-based feature selection has the advantages of low compu-
tational complexity, robustness against overfitting, fast processing, and 
good generalization. However, this method can obtain a classification 
model performance that is not optimum because it is independent of the 
used learning algorithm. By contrast, the wrapper method depends on 
the employed learning algorithm. Hence, it can more likely result in the 
best combination feature as compared with the filter-based method. 
However, the use of inappropriate wrapper methods may cause over-
fitting in the resulting model when the character of the test data 
changes. In addition, the wrapper approach typically requires a high 
computational cost and long processing time because of its complexity. 
This method also depends on the used learning model parameters. To 
overcome these drawbacks, a hyperparameter tuning procedure needs to 
be conducted to determine the best parameters of the employed learning 
algorithm. Nonetheless, altering parameters excessively may lead to 
excessive different results and their consequent combinations. This 
method definitely increases the complexity in the process of finding the 
optimum sensor combination [67,68]. Therefore, in this study, a hybrid 
learning technique was developed for optimally selecting the features by 
combining filter and wrapper methods [69]. 

In e-nose applications, using multiple MOS gas sensors does not al-
ways necessarily improve the system performance. Instead, it can result 
in a high cross-sensitivity of the sensor characteristics [67,68,70]. Thus, 
we applied a sensor array optimization method to determine the best 
sensor combination that can distinguish the optimum P and N labels and 
subsequently eliminate redundant sensors (i.e., sensors with less 
importance and contribution to the discrimination and classification of 
the distributed P and N data). Here, a combination of HAC and per-
mutation feature importance was selected and used in the quick and 
efficient optimization procedure. The HAC was used to find correlations 
between features in all training data, and permutation feature impor-
tance was employed to discover the importance level of each sensor and 
subsequently distinguish different classes. In this case, we selected the 
Ward’s linkage and extra-tree classifier as HAC distance linkage and 

importance feature permutation estimator, respectively, which were 
iterated over 200 simulation times. The accuracy value was used as a 
metric in this process. The permutation feature importance method 
measured the increase in the model prediction error when it randomly 
changed the value or order of features. It will have an impact on 
deciding the correlation between the features and actual results. 

The extra-tree classifier uses a meta estimator that fits a number of 
randomized decision trees (i.e., extra trees) on various subsamples of the 
dataset and employs averaging to improve the predictive accuracy and 
control overfitting [71]. This classifier has several parameters, e.g., 
criterion, maximum of features (max_features), minimum of the sample 
leaf (min_sample_leaf), and minimum of the sample split (min_sample_s-
plit). First, a hyperparameter tuning procedure was needed to determine 
the best basic extra-tree classifier model parameters. For this, the data 
were divided into two parts, i.e., training data (80% randomly) and 
testing data (20% randomly). The training and testing data were used to 
perform training procedures and validate training results, respectively. 
The combined parameters that needed to be identified are criterion, 
max_features, min_sample_leaf, and min_sample_split. The grid-search 
method combined with the 10-fold cross-validation was applied to 
internally validate the selection of the best combination of parameters. 
In our case, the results show that the optimum basic extra-tree classifier 
model to distinguish P and N classes possessed criterion = entropy, 
max_features = 1.0, min_sample_leaf = 2, and min_sample_split = 3. 
Implementing the extra-tree classifier model on testing data produced by 
all 10 sensors (S1–S10) could yield an accuracy of (86 ± 3)% based on 
the 5-fold cross-validation repeated 10 times (Table 3 and Fig. 3). 

Figs. 3a and b display the HAC dendrogram and boxplot permutation 
importance of all data, respectively. The procedure for selecting the 
combination and number of sensors was gradually conducted by 
observing the selected features from the HAC (Fig. 3a) and then selecting 
the feature with the highest importance in one branch (Fig. 3b). The first 
combination of two sensors selected S4 and S9. S9 was chosen because it 
possessed its own branch, whereas the other features were in the same 
branch. Therefore, based on the boxplot results, S4 was then opted 
because it had the highest importance factor among the other features in 
the same branch. Through the same procedure, if the distance values 
were 0.8, 0.6, and 0.4, then the total sensor numbers of 3 (i.e., S4, S9, 
and S10), 4 (i.e., S4, S9, S10, and S2), and 5 (i.e., S4, S9, S10, S2, and 
S8), respectively, could be obtained. These results were supported by the 
GC–MS outcomes on the breath characteristics of four subjects, in which 
each subject had been tested three times (Table S1). Subjects A and B 
were RT-qPCR-confirmed with positive COVID-19, whereas subjects C 
and D were healthy individuals (RT-qPCR-tested negative COVID-19). 

The selection criteria of the employed sensors in GeNose C19 listed in 
Table 1 were based on their abilities to possibly detect the potential 
compound-based biomarkers in COVID-19 and their compatibilities to 
be integrated with other controlling electronic components in the 

Table 3 
Performance of the hybrid learning-based classification model for 
different numbers of selected sensors evaluated using a 5-fold cross- 
validation and repeated 10 times. Similar performances in terms of accu-
racy, sensitivity, and specificity can be achieved by the models with 5 and 10 
sensors, demonstrating the possibility of reducing the used sensor number in 
GeNose C19.  

Number of 
sensors 

Selected sensors Accuracy 
(%) 

Sensitivity 
(%) 

Specificity 
(%) 

2 S4, S9 78 ± 3 78 ± 6 78 ± 7 
3 S4, S9, S10 83 ± 3 86 ± 4 80 ± 6 
4 S4, S9, S10, S2 85 ± 3 89 ± 5 82 ± 6 

5 
S4, S9, S10, S2, 
S8 86 ± 3 88 ± 6 84 ± 6 

6 
S4, S9, S10, S2, 
S8, S3 85 ± 3 87 ± 6 83 ± 6 

10 S1–S10 86 ± 3 87 ± 6 84 ± 6  
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system. According to several reports associated with the studies of MS 
techniques for analyzing breath-borne COVID-19 biomarkers 
[21,24–26,64,72–76], the discriminant and important compounds for 
identifying COVID-19 possessed a large variation. Therefore, although 
the used techniques were quite similar to one another, several factors (e. 
g., place, setup, and types of breath samples) played important roles to 
affect the measurement results in these different research works. 

One of the most frequently observed COVID-19 symptoms is 
anosmia, which is basically an indicator of neurodegenerative diseases 
(i.e., the olfactory system cannot accurately detect or correctly identify 
odors and is indicated by a loss of smell) [72,77]. Carbon monoxide has 
been linked with this issue because it is the diffusible intracellular and 
intercellular biomarker of cyclic nucleotide-gated channel activities in 
olfactory receptor neurons [78]. In other words, carbon monoxide is an 
olfactory transduction byproduct related to the reduction of cyclic 
nucleotide-gated channel activity, in which a loss of olfactory receptor 
neurons arises for minutes [72]. In our GC–MS results, carbon monoxide 
was detected by six sensors in GeNose C19 (i.e., S1, S3, S4, S5, S6, and 
S8). Aside from carbon monoxide, the multivariate analysis of data 
obtained from parallel COVID-19 breath studies using GC–ion mobility 
spectrometry (GC–IMS) in Dortmund, Germany and Edinburgh, United 
Kingdom had indicated that ketones (acetone and butanone), aldehydes 
(ethanol and octanal), and methanol could discriminate COVID-19 from 

other conditions [21]. In Garches, France, by utilizing the proton- 
transfer reaction quadrupole time-of-flight MS, researchers had discov-
ered four types of VOCs (i.e., methylpent-2-enal, 2,4-octadiene, 1- 
chloroheptane, and nonanal) that discriminated between COVID-19 and 
non-COVID-19 acute respiratory distress syndrome [24]. The results are 
different with those reported from a study conducted in two cities in the 
USA (Janesville, Wisconsin and Detroit, Michigan), despite the similar 
characterization technique based on the PTR time-of-flight MS [25]. In 
that study, Liangou et al. found another set of eight compounds (i.e., 
nitrogen oxide, butene, methanethiol, acetaldehyde, heptanal, ethanol, 
methanol water cluster, and propionic acid) as important biomarkers for 
the identification of COVID-19 in human breath. Meanwhile, a study 
conducted in Leicester, United Kingdom, employing the thermal 
desorption coupled GC–MS identified seven exhaled breath features (i. 
e., benzaldehyde, 1-propanol, 3,6-methylundecane, camphene, beta- 
cubebene, iodobenzene, and an unidentified compound) that could be 
used for separating PCR-positive COVID-19 patients from healthy ones 
[26]. In our case, camphene was also detected only in the negative 
COVID-19 breath sample by S10. 

Moreover, in Beijing, China, Chen et al. reported two sequential 
research studies that yielded totally different breath-borne biomarkers 
despite using the same measurement approach (GC–IMS) [64,73]. Their 
first experiment reported in 2020 indicated that the differentiation 

Fig. 3. Processing results of the positive (P) and negative COVID-19 data using hybrid learning method. a Dendrogram of the hierarchical agglomerative 
clustering (HAC) on the training data employing Ward's linkage. b Boxplot analysis of the permutation feature importance using the extra-tree classifier to obtain the 
importance value of each sensor for classifying the class labels of positive (P) and negative (N) COVID-19. Confusion matrix results and receiver operating char-
acteristic (ROC) curves demonstrating learning model performances from the testing data when c all (10) and d 5-selected sensor models are utilized. 
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between COVID-19 and non-COVID-19 patients could be conducted by 
solely monitoring three compounds (i.e., ethyl butanoate, butyralde-
hyde, and isopropanol) [64]. However, based on their second report in 
2021, among many VOC species, acetone was the biomarker because its 
levels were substantially lower for COVID-19 patients than those of 
other conditions [73]. In our GeNose C19 sensor array, S8 can detect 
acetone. Furthermore, in children with SARS-CoV-2 infection in Phila-
delphia, Pennsylvania, USA, six compound biomarkers (i.e., three al-
dehydes (octanal, nonanal, and heptanal), decane, tridecane, and 2- 
penthyl furan) were significantly distinguished in the breath analysis 
using two-dimensional GC and time-of-flight MS [74]. Another proposed 
biomarker for COVID-19 was ammonia, whose presence within the body 
has long been associated to complications stemming from the liver and 
kidneys affected by SARS-CoV-2 infection [75]. 

From all the already mentioned examples of MS studies, the identi-
fication of specific COVID-19 biomarkers in breath is clearly still chal-
lenging and can result in different discriminant compounds depending 
on several parameters (e.g., measurement technique, filtering approach, 
location, and breath sample type). Nonetheless, we still performed a 
GC–MS measurement to gain more insights on the compounds contained 
in the positive and negative COVID-19 breath samples (Table S1). Here, 
several hydrocarbons (e.g., ethylene, isoborneol thiocyanatoacetate, 
and farnesyl acetate) were dominantly sensed in the positive COVID-19 
breath samples by S10. Meanwhile, for the negative COVID-19 breath 
samples, other hydrocarbons (i.e., camphene and octamethylcyclote-
trasiloxane) were detected by S10. Moreover, specific esters (i.e., oxalic 
acid, bis(isobutyl) ester and acetic acid, dimethoxy-, methyl ester) were 
measured by S2 and S9 in the negative COVID-19 samples. In general, 
the appearances of the three sensors (S2, S9, and S10) were dominant as 
compared to those of the others. For instance, S10 was more sensitive 
toward hydrocarbons, whereas S2 and S9 were more likely to be reactive 
toward esters and aldehyde. In the case of two alcohols (i.e., ethanol and 
1-nonadecanol; TMS derivatives that are detected in the positive and 
negative samples), all 10 sensors (S1–S10) sensed them. However, 
regardless of the successful extraction of the compounds, our GC–MS 
characterization was only performed in a low number of samples (i.e., 
two positive and two negative COVID-19 patients). Thus, a further 
investigation with a larger number of breath samples still needs to be 
carried out in the near future to correlate the measurement results of 
GeNose C19 and GC–MS methods. However, again, this study has 
focused more on the development of the hybrid learning method to 
improve the performance of the portable e-nose (GeNose C19) that can 
analyze the sensing signal patterns resulting from complex reactions 
between different MOS sensors and linked VOCs, without the need to 
analyze single VOC biomarkers in detail. 

Based on the clustering results of the sample data, the dendrogram 
shows that the HAC method can calculate the distance and properly 
determine the cluster of all sensors. After performing the analysis, the 
yielded cluster correlates with the characteristics of the used sensors 
(Table 1). The resulting distance and cluster have a relationship with the 
sensor similarity. In Fig. 3a, using the HAC technique, S1 and S4 are 
combined into one cluster where they own a close distance because they 
have similarities in determining the breath samples from the patients 
with RT-qPCR-confirmed positive and negative COVID-19. Regarding 
their selective target gases (i.e., methane, carbon monoxide, isobutane, 
ethanol, and hydrogen), the two sensors possess a high similarity, 
despite their slightly different package designs (i.e., S1 and S4 used a 6- 
pinhole filter and mesh filter in their sensor packages, respectively). 

The same phenomenon was also found in the clustering between S5 
and S6, where the HAC algorithm makes them in one cluster, even 
though their distance is not as close as the one between S1 and S4. This is 
because the two sensors (S5 and S6) possess slightly different patterns in 
determining the positive and negative conditions of the patient. In the 
physical inspection, although they can characteristically detect the same 
target gases (i.e., carbon monoxide, methane, ethanol, propane, isobu-
tane, and hydrogen), they are physically different in terms of sensor 

package shapes and sizes. S6 has a dome-like mesh filter with a large 
cross-sectional area, whereas S5 has a circular-shaped filter with a small 
area. These different package configurations can consequently lead to 
different responses; i.e., S6 demonstrates a higher output signal than S5 
(Fig. 2a). 

The calculated results of the distance and clustering on S2, S8, and S9 
demonstrate that the HAC method can estimate a high distance value at 
the sensors due to the uniqueness in identifying positive and negative 
models from the database. S9 was specifically designed to be more 
sensitive toward ammonia than other gases. Therefore, it was not 
correlated with other sensors. Nonetheless, its dendrogram was indeed 
closer to that of S2, which could also detect ammonia. Hence, the 
clustering process using this method can correlate among the breath 
sample data. 

Based on the results of the feature importance permutation method, 
S4 has the highest feature value as compared to the other sensors. 
Although S1 and S4 aim at detecting the same target gases (Table 1), 
they possess different sensitivities and usage applications. While S1 can 
detect gas with a concentration range of 1–100 ppm, S4 can measure the 
gas concentration ranging from 60 to 1500 ppm. Moreover, S1 has 
approximately 10 times higher sensor resistance (i.e., 10–90 kΩ in air) 
than S4 (i.e., 1–5 kΩ in 300 ppm ethanol gas). Therefore, S1 is generally 
used to determine the environmental air quality, whereas S4 is applied 
for breath detection (i.e., alcohol-based VOC detection). Normalization 
has been applied in the analysis of this study. Accordingly, S1 can be 
balanced with S4 (multicollinear). Fig. 2e and Fig. 4 show that S1 and S4 
have similar class label distributions and a correlation value of 0.97. 
Despite their close distances and correlations on the dendrogram 
(Fig. 3a) because of the normalization process, they can still be differ-
entiated using the proposed feature selection method. Thus, based on 
the breath test data, S4 demonstrates a fairly higher importance value 
than S1, as depicted in Fig. 3b. 

Furthermore, because of their similarity on the selective target gases 
and active materials, S5 and S6 have a high correlation value of 0.82. 
When they are associated with the closest, more important feature (i.e., 
S10), the proximity values of S10–S5 and S10–S6 can be searched using 
the K-means algorithm, in which they are measured by the metrics of 
silhouette and inertia scores. If the silhouette score is close to 1 and the 
inertia score exhibits a high value, then the data have been well clus-
tered. In other words, the clusters are well apart from one another and 
clearly distinguished. In the result analysis, the silhouette scores of 
S10–S5 and S10–S6 are 0.25 and 0.29, respectively. Meanwhile, their 
inertia scores are 843,265.18 and 1,032,526.17, respectively. These 
results indicate that S10 is closer to S5 than S6. Based on the proximity 
analysis, S5 and S6 can be chosen. Therefore, we used a partial depen-
dence analysis method to identify the performances of S5 and S6 to 
differentiate P and N class labels. 

The partial dependence analysis can also be applied to find the 
feature characteristics. This method attempts to connect or find the 
relationship between features with the class label given to the selected 
classification model. In this case, the correlation factor of each feature is 
ignored. Fig. S2 shows the partial dependence analysis results of all 
features (S1–S10) on the P and N class labels using the training data and 
extra-tree classifier model. The results demonstrate that S5 possesses a 
higher importance factor than S6 because it has an average relationship. 
Although there are some differences between the P and N patterns in the 
S5 data distribution, the S6 counterpart cannot obviously distinguish the 
P and N patterns (i.e., indicated by the flat horizontal line at a value of 
~0.5). The class labels of P and N data are represented by the values of 
0 and 1, respectively. S5 possesses an average distribution of <90 (AUC) 
indicating a class label of N. In other words, S5 can better identify model 
differences between P and N in the distribution of data than S6. 
Therefore, S5 has a higher importance value of the feature as compared 
to S6. 

Table 3 lists the performances of six different combinations of the 
selected sensors using a 5-fold cross-validation repeated 10 times. As a 
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standard or basic model, all the 10 sensors (S1–S10) yielded an average 
accuracy, a sensitivity, and a specificity of (86 ± 3)%, (87 ± 6)%, and 
(84 ± 6)%, respectively. In terms of the reduced number of sensors, the 
five selected sensors showed the most optimum results with the accu-
racy, sensitivity, and specificity of (86 ± 3)%, (88 ± 6)%, and (84 ±
6)%, respectively. Here, the metric values of the reduced sensor number 
model are clearly similar to those of the basic model. This result proves 
the ability of the hybrid learning method (i.e., HAC combined with 
permutation feature importance) to not only keep the system perfor-
mance stable but also reduce the redundant sensors. The results were 
also confirmed by the confusion matrix and receiver operating charac-
teristic (ROC) curves shown in Figs. 3c and d. Again, here, the 5- 
selected-sensor model produces a slightly better performance than that 
of all ten sensors. The basic model produced ROC-AUC, accuracy, 
sensitivity, specificity, PPV and NPV of 0.95, 86%, 89%, 83%, 84%, and 
88%, respectively. Meanwhile, the 5-selected-sensor model resulted in 
ROC-AUC, accuracy, sensitivity, specificity, PPV and NPV of 0.95, 87%, 
87%, 87%, 87%, and 87%, respectively. Compared to the other models 
(i.e., 2, 3, 4, and 6-selected-sensor models) shown in Fig. S3, the 5- 
selected-sensor model exhibits the most stable and optimum 
performances. 

All in all, the results may improve the efficiency as only sensors with 
a significant role will be recommended by our system. Eliminating 
sensors that play a less important role in target gas detection will reduce 
redundancy from data models. This can subsequently maintain accuracy 
when the data quantity increases. Furthermore, our hybrid algorithm 
has been able to suggest the optimum number and type of the sensors, 

which have an interconnection between the digital feature from the 
database and the physical feature of the sensors. 

After demonstrating the hybrid learning method to reduce the 
required number of sensors without downgrading the system quality, we 
evaluated the GeNose C19 in terms of its performances in comparison to 
other commercial and developed e-nose devices (e.g., PEN3 e-nose, 
aeoNose, SpiroNose, and nanomaterial-based e-nose [42–45]), which 
have been routinely tested for COVID-19 detection (Table 4). Here, 
several key parameters are compared (i.e., sensor type, sensor number, 
breath sample number, positive rate of samples, measurement time, and 
results during assessment in exhaled breath). As expected, because of 
their superior characteristics among other sensor techniques and their 
suitability for developing low-cost portable systems, the MOS sensors 
have been employed in all the commercial e-nose devices despite their 
different numbers. The aeoNose possesses the lowest sensor number (i. 
e., 3 sensors [43,79]). In case of the number and positive rate of tested 
breath samples, our system is superior compared to aeoNose and 
nanomaterial-based sensors. Only SpiroNose has been tested with more 
than 4500 samples [44]. Moreover, the MOS sensors used in GeNose C19 
deliver the fastest sensing response (45 s) in comparison to those in other 
commercial e-nose devices. 

It is well known that nanotechnology can support the advancement 
of sensor performance. Thus, the chemoresistive nanosensor array based 
on stabilized spherical gold nanoparticles with eight different organic 
functionalities (i.e., dodecanethiol, 2-ethylhexanethiol, 4-tert-methyl-
benzenethiol, decanethiol, 4-chlorobenzenemethanethiol, 3-ethox-
ythiophenol, tert-dodecanethiol, and hexanethiol) could react to the gas 

Fig. 4. Correlation plot among features on the training data using Ward's linkage method. S1 and S4 have a correlation value of 0.97, indicating their strong 
positive correlation. The high response of S4 results in a high S1 output signal. In addition, S7 possesses a high positive correlation with S1 and S4. S7 is also 
negatively correlated with S2, where an increase in the response of one sensor is followed by a decrease in the response of the other sensor. S5 and S6 are positively 
correlated with a value of 0.82, and both are positively correlated with S10 having correlation values of 0.72 and 0.74, respectively. All in all, some sensors possess a 
high multicollinearity with one another, which leads to a feasibility to optimize feature selection. 
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molecules only within 3 s becoming the fastest sensors in this compar-
ison. Nonetheless, the robustness and repeatability of such organic 
materials are still questionable. Therefore, despite their good sensitivity 
and selectivity, the organic ligands used for gas sensors can quickly 
degrade resulting in low long-term device stability [80–82]. For the 
results toward COVID-19 assessments, the obtained sensitivity value of 
GeNose C19 is comparable with that of aeoNose. Meanwhile, a direct 
result comparison to the other three devices (PEN3 e-nose, SpiroNose, 
and nanomaterial-based e-nose) is difficult to be created because 
different analyses were applied in those reported studies. Based on all 
these evaluations, regardless of the promising device performances in 
hospital setting, larger and more complex studies are still required to test 
the long-term reliability and stability of GeNose C19 for rapid identifi-
cation of COVID-19 in public health setting. 

3. Conclusions 

A portable e-nose (GeNose C19) integrated with a hybrid machine 
learning method has been developed to be able to differentiate the RT- 
qPCR-confirmed positive COVID-19 samples from their negative coun-
terparts (i.e., healthy controls). The feature-selection optimization for 
the gas sensor in the GeNose C19 has been successfully carried out using 
a combination of hierarchical agglomerative clustering (HAC) and per-
mutation feature importance approaches. HAC has brought fast analysis 
to calculate multicollinear features, while permutation feature impor-
tance can show the importance value and provide scoring of each 
feature. Combining these two filter and wrapper methods, optimization 
has succeeded in reducing the number of sensors in the system by 50% 
without sacrificing the performance of the COVID-19 classification 
model. The 5-selected-sensor model has exhibited the accuracy, sensi-
tivity, and specificity of (86 ± 3)%, (88 ± 6)%, and (84 ± 6)%, 
respectively, which are similar to the metrics from the model using all 
the 10 sensors. Aside from the sensor system miniaturization, further 
improvements in GeNose C19 can be expected when the adaptive 
learning method is associated with the currently developed hybrid 
feature selection approach. 

4. Methods 

4.1. Experimental setup 

The machine-learning-based assessment of GeNose C19 test data was 
performed using 460 breath samples of participants, in which the 
numbers of samples confirmed as positive (P) and negative (N) COVID- 
19 were nP = 230 and nN = 230, respectively. COVID-19 infection was 
confirmed by the RT-qPCR tests on the SARS-CoV-2 ribonucleic acid 
obtained from the oropharyngeal and nasopharyngeal swabs. Data were 
collected from February to March 2021 at a public hospital located in 
Sleman, Daerah Istimewa Yogyakarta, Indonesia. Each individual that 
participated in this study was requested to store his or her exhaled 
breath into a single-use sampling bag made of medical-grade PVC, as 

shown in Fig. S1. 
For obtaining reliable data and ensuring human safety, a breath 

sampling procedure for GeNose C19 was set and applied during the 
breath exposure measurements. First, the patients were requested to 
store their end-tidal breath into a 1 L sampling bag. The taken breath 
resulted from the third exhalation. Meanwhile, the first two breaths 
were not sampled to minimize possible contamination sources 
commonly found in a mixed expiratory breath (e.g., dead space air and 
mouth-released odor) [83]. In another study, different VOC ratios were 
yielded from various sampling methods (i.e., mixed expiratory and end- 
tidal breath sampling approaches) [84,85]. Nonetheless, when blood- 
borne volatile substances will be employed as disease biomarkers, the 
end-tidal breath sampling technique is suitable for usage [83]. The ratios 
describing the differences of expiratory and inspiratory concentrations 
and the alveolar concentration could be calculated to approximate the 
alteration of inhaled and exhaled substances. Here, blood-borne volatile 
substances with clearly exogenous (e.g., 2-butanone and 2-propanol) 
and endogenous (e.g., acetone, isoprene, and CO2) origins typically 
obtained low (<1) and high (>1.5) ratio values, respectively [23,84]. 
After inserting the third exhaled breath into the sampling bag, its valve 
was quickly closed to avoid any air leakages. Lastly, the sealed sampling 
bag was then connected to the GeNose C19 to perform the breath 
measurements. 

The utilized e-nose consisted of 10 different MOS gas sensors as listed 
in Table 1 and was equipped with a temperature and humidity sensor 
inside the chamber. The signals produced by GeNose C19 during the 
breath assessment were recorded using a data logging software (DAQ 
software), which also acted as a gas sampling configurator. During the 
sensor output data acquisition, the times for the baseline setting, breath 
sensing, and air purging were set to 2 s, 40 s, and 3 s, respectively. Here, 
each breath sample has a data dimension of 450 × 12 (i.e., 450 time- 
series data for 12 sensing outputs) because the software recorded the 
data with an interval of 100 ms. 

Despite the different places used during breath collections that 
depend on the patient locations, the measurements of all the breath 
samples using GeNose C19 were performed in the same room to ensure 
high data reliability for the analysis. Here, the collected sampling bags 
consisting of exhaled breaths distributed from different sampling sta-
tions were stored inside a portable container and brought to the same 
room where an e-nose was located for characterization. Apart from the 
HEPA filter employed to trap the virus-containing droplets in the front- 
side breath sampling system, a vacuum filter with a grade filtration of 
50 μm was integrated into a GeNose C19 machine to filter the dust 
microparticles out from ambient (reference) air. However, no specific 
environmental VOC filter was involved in this case. Again, before 
analyzing the breath samples, the baseline values and responses of the 
gas sensors to the reference air were continually measured and moni-
tored to validate the preconditioned system. 

During the breath sampling process (February–March 2021), the 
total number of persons tested for COVID-19 investigation in labora-
tories located in Daerah Istimewa Yogyakarta Province was 

Table 4 
Comparison of different e-nose technologies used for COVID-19 detection in exhaled breath. The compared parameters include sensor type, sensor number, breath 
sample number, positive rate of samples, measurement time, and results during assessment in exhaled breath test.  

Electronic nose (e-nose) technology Number of 
sensors 

Number of 
samples 

Positive rate of 
samples 

Measurement 
time 

Results Ref. 

MOS sensor (PEN3 e-nose) 10 503 5.4% 80 s 66.7% of true positive rate [42] 
MOS sensor (aeoNose) 3 219 26.0% 300 s 86% of sensitivity and 92% of negative 

predictive value 
[43] 

MOS sensor (SpiroNose) 7 4510 7.7% Not available 93.1% of ROC-AUC [44] 
Multiplexed nanomaterial-based 

chemoresistive sensor 
8 130 37.7% 3 s 100% of sensitivity and 61% of 

specificity 
[45] 

MOS sensor (GeNose C19) 10 reduced to 5 460 50.0% 45 s (88 ± 6)% of cross-validation sensitivity 
and 
(84 ± 6)% of cross-validation specificity 

This 
work  

S.N. Hidayat et al.                                                                                                                                                                                                                              



Artificial Intelligence In Medicine 129 (2022) 102323

10

approximately 47,705 according to the statistics from the local gov-
ernment of Yogyakarta [86]. To obtain reliable results and analysis, the 
number of samples used in the proposed study should be adequate to 
represent the existing population. Instead of choosing the whole popu-
lation, the infinite population formula was implemented as a population 
parameter to prevent high cost, time, and complexity [87]. Here, a 
confidence level of 95% (Z-value of 1.96), confidence interval of ±5%, 
and p- and q-values of 50% were set as key parameters for calculating the 
sample size [88]. As a result, the sample size of 382 was required to 
estimate the percentage of COVID-19-infected persons. We increased the 
number of sample size by ~17% from 382 to 460 to ensure a high 
precision level in the data analysis. In addition to this technique, a 
learning curve fitting-integrated post-hoc approach can be employed to 
simulate the relationship between the training sample size and the mean 
of the proposed classification model accuracy [89,90]. In Fig. S4, the 
minimum sample size required to discriminate positive and negative 
COVID-19 samples with optimum performance is 250. Thus, using a 
sample size of 460, our study has already met this criterion. 

4.2. Feature selection algorithms 

Hierarchical agglomerative clustering (HAC) is a method for 
grouping two clusters by calculating the distance between them. In case 
the clusters have a high proximity (data with a close distance), they will 
be combined using an agglomerative algorithm. In this algorithm, each 
datum is identified as a separate cluster (cluster singleton). During the 
iteration, the Euclidean distance from each cluster is calculated, and the 
most similar clusters are sequentially combined. This procedure is 
repeated until an optimum final cluster is formed. The Euclidean dis-
tance d(p,q), which measures the shortest straight distance between two 
points (p and q), is expressed as 

d(p, q) = d(q, p) =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑

i=1
(qi − pi)

2
√

(1) 

HAC has different methods for combining clusters, one of which is 
Ward's linkage. This approach attempts to analyze the variance between 
clusters rather than directly calculating the distance. The Ward's linkage 
determines the distance between two clusters of A and B using Eq. (2): 

Δ(A,B) =
∑

i∈A∪B

⃦
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⃦

2
(2)  

where m→j is the center of cluster j and nj is the number of points in it. 
Meanwhile, Δ(A,B) is the merging cost of combining clusters A and B 
[91,92]. 

Permutation feature importance measures the increase in the pre-
diction error of a model after the feature value is permutated [93–95]. 
This procedure causes the connection between the feature and output to 
be broken. Features that have a large importance value will produce an 
increase in a prediction error when they are permuted. For a feature that 
possesses a low importance score, the predictive value remains stable 
even though the feature value is randomized because the selected clas-
sification model ignores the feature. However, this method assumes that 
each feature is not correlated with each other. Therefore, the obtained 
results must be validated first. With a trained model ̂f , feature matrix X, 
target vector y, and error measure L(y, f̂ ), feature permutation impor-
tance can be performed by employing the following steps:  

1. Estimate the original model error eoriginal = L(y, f̂ )
2. For each feature j ∈ {1,⋯,p}, do:  

a. Generate feature matrix Xperm by permuting feature j in the data X.  
b. Estimate error eperm = L

(
Y, f̂

(
Xperm

) )
based on the predictions of 

the permutated data.  

c. Calculate permutation feature importance as the quotient FIj =
eperm/eoriginal or difference FIj = eperm − eoriginal.  

3. Sort features by descending FI. 

In this study, HAC, which is categorized to the filter-based learning 
approach, was combined with the permutation feature importance 
method as the feature-selection method for enhancing the GeNose C19 
performance and for reducing the required sensors in the system. The 
permutation feature importance was used to validate the HAC output 
results. Using this hybrid method, important features that are not 
correlated with one another can be found. HAC can quickly measure the 
correlation value between features. Hence, features that possess a high 
correlation (multicollinearity) can be obtained. Subsequently, the per-
mutation feature importance method was utilized to validate and select 
one of the best correlated features. The dendrogram plot was used to 
visualize the correlation results between the features. Moreover, the 
boxplot can visualize the importance level of each feature. 

The extra-tree classifier was employed to differentiate the positive 
and negative classes based on the decision tree algorithm, which is 
similar to the random forest classifier [96–98]. We utilized the 
normalized AUC during the sensor measurement as the input model. The 
AUC data were chosen as the feature extractions representing the 
amount of exhaled VOCs of the participant that interact with the sensing 
active layer during a 40 s-long sensing phase. In addition, Simpson's rule 
was used to numerically calculate the AUC of each signal. The signal was 
then further normalized to eliminate the environmental influence. The 
normalized AUC value for each sensor (xi) is determined as 

xi = AUC
(

yi(t) − yi(t = 0)
S

)

(3)  

where yi(t), yi(t = 0), and S are the sensor signal (volt), initial sensor 
signal (volt), and maximum value of the sensor response, respectively. 
Here, index i represents the sensor number (i = 1 to 10). 

4.3. Analysis of VOCs 

The VOCs contained in the RT-qPCR-confirmed negative and positive 
COVID-19 breath samples were analyzed using a GC–mass spectroscopy 
(GC–MS) equipment (ISQ 7000 single quadrupole GC–MS system, 
Thermo Fisher Scientific Inc., Massachusetts, USA). 

4.4. Research ethics approval 

This study has been approved by the Medical and Health Research 
Ethics Committee of Faculty of Medicine, Public Health and Nursing, 
Universitas Gadjah Mada/Dr. Sardjito General Hospital, Yogyakarta, 
Indonesia, with the reference number KE/0489/05/2020, and has been 
registered in clinicaltrials.gov (NCT04558372) [99]. All procedures 
were carried out following the relevant guidelines and regulations based 
on the Good Clinical Practice and the Helsinki Declaration of 2013 
[100]. 
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