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Abstract

The spatiotemporal control of 3D genome is fundamental for gene regulation, yet it remains challenging to profile
high-resolution chromatin structure at cis-regulatory elements (CREs). Using C-terminally biotinylated dCas9,
endogenous biotin ligases, and pooled sgRNAs, we describe the dCas9-based CAPTURE method for multiplexed
analysis of locus-specific chromatin interactions. The redesigned system allows for quantitative analysis of the spatial
configuration of a few to hundreds of enhancers or promoters in a single experiment, enabling comparisons across
CREs within and between gene clusters. Multiplexed analyses of the spatiotemporal configuration of erythroid
super-enhancers and promoter-centric interactions reveal organizational principles of genome structure and

function.
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Background

The eukaryotic genome is hierarchically organized
into multiscale domains by 3D chromatin interactions
[1-3]. The spatial and temporal regulation of higher-
order chromatin organization modulates gene tran-
scription that in turn controls cellular phenotypes in
development and disease [4—8]. Recent genome-scale
analysis of the 3D genome uncovered multilayered
structural units including compartments, topologically
associating domains (TADs), and chromatin loops [9-
14]. At the highest resolution, chromatin loops medi-
ate enhancer-promoter interactions to control tissue-
and developmental stage-specific gene expression [13,
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14]. Currently, major challenges are to elucidate the
underlying principles of chromatin organization and
to understand how chromatin interactions between
cis-regulatory elements (CREs) relate to gene activity
[15, 16].

Current technologies in studying 3D genome rely
on chromatin conformation capture (3C)-based nu-
clear proximity ligation to detect interacting DNA
fragments tethered together by long-range chromatin
loops [15]. While Hi-C [9] and ChIA-PET [17] tech-
nologies have enabled systematic interrogations of
genome-scale landscapes of chromatin interactions,
they often lack the level of resolution required to
evaluate the spatial organization of locus-specific
interactions including enhancer-promoter looping, as
well as their temporal dynamics during cellular
differentiation [1, 16]. They also do not provide in-
formation about the composition of trams-acting fac-
tors that regulate long-range chromatin interactions.
To isolate endogenous CRE-regulating chromatin
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complexes and 3D structure, we previously devel-
oped the dCas9-based CAPTURE (CRISPR Affinity
Purification in situ of Regulatory Elements) method
[18-20]. By co-expression of the biotin-acceptor-site-
containing dCas9, bacterial BirA biotin ligase, and target-
specific sgRNAs, the locus-bound dCas9 complexes are
in vivo biotinylated and isolated by streptavidin-based affin-
ity purification, followed by analyses of locus-associated
protein factors and long-range DNA interactions using pro-
teomics and 3C-based methodologies, respectively [18—20].
The CAPTURE method provides a complementary method
for unbiased analysis of locus-specific chromatin inter-
actions without predefined protein factors or a priori
knowledge of the target loci.

The original CAPTURE protocol [18, 19] relies on a
single or several sgRNAs to isolate a single CRE in
mammalian genomes, which requires large numbers
of cells for proteomics (10%~10%) or 3C-based (5 x
107) analyses. Because of the cell number require-
ments, the experimental designs involve the gener-
ation of stable cell lines co-expressing CAPTURE
components, thus are not applicable to primary tis-
sues or rare cell populations, suggesting that the cap-
ture sensitivity and efficiency need to be improved for
low cell numbers. Moreover, the single locus-based
capture requires independent experiments by individ-
ual sgRNAs targeting discrete CREs and is subject to
variations in experimental conditions (e.g., dCas9 and
sgRNA expression levels in different cell lines). Thus,
it does not allow comparisons between different CREs
in a single experiment or the same CREs at different
stages of cellular differentiation [18].

Hence, there remains a need for the new methodology
that can map the spatial organization and temporal dy-
namics of chromatin structure of many genomic loci at
once in living cells. The method should be applicable to
any genomic loci and capture full interaction profiles at
high resolution, enabling systematic comparisons across
CREs within and between gene clusters or developmen-
tal stages. Here, we describe the significantly redesigned
CAPTURE2.0 method for multiplexed, high-throughput,
and high-resolution analysis of CRE-mediated 3D chro-
matin structure. The new system enables quantitative
analysis of the spatial configuration of a few to hundreds
of enhancers or promoters in a single experiment.
Multiplexed analyses of erythroid super-enhancers (SEs)
reveal SE hierarchical structure and distinct modes of
SE-gene interactions. High-throughput capture of
promoter-centric interactions establishes the instructive
function of developmentally controlled enhancer-
promoter loops in transcriptional regulation and lineage
differentiation. These applications illustrate the ability of
multiplexed CAPTURE for decoding the organizational
principles of genome structure and function.
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Results

A redesigned CAPTURE system by C-terminal biotin-
labeled dCas9

To isolate locus-specific chromatin interactions, we pre-
viously developed the CAPTURE method by co-
expressing the N-terminal FLAG-biotin (FB)-tagged
dCas9, BirA biotin ligase, and sgRNAs (Additional file 1:
Figure Sla; CAPTUREL.0). Upon in vivo biotinylation,
the locus-bound dCas9 was isolated by streptavidin-
based affinity purification, followed by the analysis of
locus-associated protein factors and long-range DNA in-
teractions [18-20]. The original CAPTUREL.Q0 system
required the generation of stable cell lines co-expressing
three components (FB-dCas9, BirA, and sgRNA), thus
was not applicable to primary cells or rare cell popula-
tions. Moreover, the single locus-based capture did not
allow comparisons between different genomic loci in a
single experiment [18, 19].

Several critical factors influence the efficiency of CAP-
TURE assays. First, the efficacy of the sequence-specific
sgRNA in directing dCas9 to its target genomic locus is
important and is largely dictated by the underlying se-
quences [21, 22]. Second, the expression levels of dCas9
and sgRNA need to be optimized to maximize dCas9
on-target binding and minimize non-specific signals [18,
19]. Third, the efficiency of in vivo biotinylation of
dCas9 protein is critical for the purification of dCas9-
tethered genomic loci from the cellular milieu. To de-
velop a widely applicable technology for analyzing locus-
specific chromatin structures across cell types, we sought
to evolve the CAPTURE method by multiple iterations
considering factors that influence capture efficiency. We
first engineered a tricistronic vector containing BirA,
FB-dCas9, and zsGreenl to allow for co-expression of
BirA and dCas9 from a single transcript (Additional file 1:
Figure S1a; CAPTUREL.1). We next replaced the FLAG-
biotin-tag with a BioTAP-tag [23, 24], which contains a
69-amino-acid biotinylation targeting sequence that is
recognized by endogenously expressed biotin protein li-
gases (BPL) in eukaryotic cells [23, 25]. More import-
antly, we noted that the N-terminus of dCas9 is in close
proximity to target DNA recognition domain that lies
within the PAM-recognition cleft [26, 27], which might
result in epitope masking that interferes with in vivo bio-
tinylation. In contrast, the C-terminus of dCas9 is largely
unstructured and exposed [26, 27]. Therefore, we
engineered two versions of CAPTURE2.0 using N- and
C-terminal biotin-tagged dCas9 (Additional file 1: Figure
Sla; CAPTURE2.0 NBio and CBio).

We then compared the capture efficiency and on-
target enrichment of different CAPTURE systems by
CAPTURE-ChIP-qPCR analysis of the human [-globin
gene promoters (HBG1, HBG2, and HBB) in K562 cells.
By co-expressing CAPTUREL.0 (FB-dCas9 and BirA)
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and a validated sgRNA targeting HBG1/2 promoters
[18], we detected 740-fold on-target enrichment relative
to the nearby non-targeted HBB promoter (Add-
itional file 1: Figure S1b). The bicistronic CAPTUREL.1
system modestly improved the capture efficiency by a
4.8-fold increase in ChIP signal at HBG1/2 promoters
(8.4% vs 1.7% of input DNA) and increased on-target en-
richment (2668-fold). Importantly, both NBio- and
CBio-CAPTURE2.0 systems markedly increased the cap-
ture efficiency (Additional file 1: Figure S1b). The C-
terminal biotinylation of dCas9 resulted in a 13.6-fold
increase in capture efficiency relative to CAPTUREL.0
(23.7% vs 1.7% of input DNA), whereas the on-target en-
richment was largely comparable between different
CAPTURE systems. These results demonstrate that the
redesigned CAPTURE2.0 system by C-terminal biotin-
tagging significantly improved the capture efficiency
while retaining high specificity and on-target enrichment
for purification of dCas9-targeted chromatin.

Multiplexed CAPTURE of B-globin locus control region

To validate the redesigned CAPTURE system for charac-
terizing locus-specific chromatin interactions, we fo-
cused on the CAPTURE-3C-seq method [18].
Specifically, we combined high-affinity dCas9 capture
with 3C-based chromatin interaction assays [15] to iden-
tify locus-specific long-range DNA interactions (Fig. la;
Additional file 1: Figure S2a). By co-expressing in vivo
biotinylated dCas9-CBio and sgRNAs targeting specific
CREs, the CRE-regulating long-range DNA interactions
were cross-linked, followed by restriction enzyme
(DpnlI) digestion and proximity ligation of interacting
DNA fragments. The ligated chimeric DNA were frag-
mented by sonication, followed by streptavidin-mediated
capture of biotinylated dCas9-targeted CREs. The cap-
tured CREs and associated long-range DNA interactions
were then reverse cross-linked, purified, and analyzed by
pair-end sequencing to identify the interacting DNA
sequences (Fig. 1a).

With the significantly improved capture efficiency, we
explored whether the CAPTURE2.0 system may enable
high-resolution and multiplexed analysis of several CREs
within the same enhancer cluster in a single experiment.
We focused on the locus control region (LCR) of the hu-
man [-globin gene cluster consisting of five DNase I
hypersensitive sites (DHS) (HS1 to HS5; Fig. 1b). We de-
signed pooled sgRNAs containing two sgRNAs for each
DHS (total 10 sgRNAs) and co-expressed with dCas9-
CBio in K562 cells (Fig. 1b; Additional file 2: Table S1).
The captured chromatin was analyzed by multiplexed
CAPTURE-3C-seq to determine LCR-mediated long-
range DNA interactions (Fig. la; see the “Methods” sec-
tion). As important quality controls, we analyze genome-
scale dCas9 binding by CAPTURE-ChIP-seq in cells
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expressing target-specific (sgLCR containing pooled 10
sgRNAs) or non-targeting (sgGal4) control sgRNAs. We
observed that the sgRNA-targeted DHS regions (HS1 to
HS5) were the top enriched peaks in sgLCR-expressing
samples, whereas no or minimal enrichment of the pre-
dicted sgRNA off-targets was detected (Fig. 1c; Add-
itional file 3: Table S2). Analysis of gene expression
using RNA-seq in cells expressing sgLCR or no sgRNA
(WT) also revealed minimal changes in transcriptomics
(Fig. 1d). Further, the expression of B-globin mRNAs
remained unchanged in cells expressing no sgRNA, non-
targeting sgGal4, or target-specific sgLCR (Fig. 1d; Add-
itional file 1: Figure S1c), suggesting that the multiplexed
capture of LCR enhancers by biotinylated dCas9 did not
interfere with endogenous gene expression.

By multiplexed CAPTURE-3C-seq, we identified a
total of 2564 LCR-associated long-range interactions, in-
cluding 1829 (71.8%) interactions within 1 Mb from LCR
and 1557 (61.2%) within the B-globin cluster (Fig. le;
Additional file 4: Table S3). We quantitatively analyze
long-range DNA interactions by the FDR-controlled
Bayes factor (BF) and identified “high-confidence inter-
actions” with BF scores =20 (see the “Methods” section;
Additional file 1: Figure S2a). Notably, the interaction
frequencies were significantly higher between LCR en-
hancers and the active genes (HBE1, HBGI, and HBG2)
than the repressed gene (HBD and HBB), consistent with
enhancer-promoter loop formation in transcriptional ac-
tivation [28, 29]. Comparing with CTCF and RNAPII
ChIA-PET data [30, 31], we identified known CTCEF- or
RNAPII-mediated chromatin interactions including the
interactions between the flanking HS5 and 3"HSI1 insula-
tors (Fig. le). We next resolved the captured LCR-
mediated interactions (sgLCR) to individual enhancers
by retaining the identified pair-end tags (PETs) at each
HS enhancer (HS1 to HS5; Fig. 1e). We observed strik-
ing similarities in the interaction profiles at each HS en-
hancer by multiplexed capture compared to our
previous results using individual enhancer-specific
sgRNAs in independent capture experiments [18] (Add-
itional file 1: Figure S3). These results suggest that the
multiplexed capture retains the native chromatin inter-
actions and is capable of capturing high-resolution
interactions at multiple CREs in a single experiment.
Moreover, by multiplexed capture of $-globin LCR en-
hancers, we also confirmed our previous findings that
the HS3 enhancer contained significantly more long-
range interactions than the nearby HS2 enhancer [18]
(Fig. 1e; Additional file 1: Figure S3), although HS2 had
stronger enhancer functions in reporter assays or trans-
genic mouse models [32, 33]. Given that all sgRNAs
were co-expressed with dCas9 in the same experiment,
these results illustrate that the multiplexed capture of
multiple constituent enhancers within the same
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Fig. 1 Multiplexed CAPTURE of locus-specific long-range DNA interactions. a Schematic of multiplexed analysis of locus-specific chromatin

interactions by the redesigned CAPTURE2.0 system containing the C-terminal biotin-tagged dCas9 (dCas9-CBio) and sgRNA. Major steps of the
CAPTURE-3C-seq method are shown. b Schematic of dCas9-mediated multiplexed capture of the human 3-globin LCR. ¢ Genome-wide analysis
of dCas9 binding in cells expressing LCR-targeting sgRNAs (sgLCR) or non-targeting sgGal4. Data points for the sgRNA target regions are shown
by arrowheads, and the predicted off-targets are shown as red dots. The x- and y-axes denote the log2 mean read counts and the log2 ratio of
read counts in sgLCR and sgGal4 samples from N =2 and 4 CAPTURE-ChIP-seq experiments, respectively. d Genome-wide differential gene
expression analysis was performed using RNA-seq in K562 cells expressing dCas9-CBio with sgLCR or wild-type (WT) K562 cells. The 3-like globin
genes are indicated by colored data points. Pearson correlation coefficient (R) value is shown (N =2 RNA-seq experiments). e Browser view of
LCR-mediated long-range interactions (chr11: 5,222,424-5,323,623; hg19) is shown. Contact profiles including the density map and interactions (or
loops) for the dCas9-captured LCR or the resolved individual HS regions are shown. The statistical significance of interactions was determined by
the Bayes factor (BF) and indicated by the color scale bars. DHS, ChIP-seq, RNA-seq, ChromHMM, CAPTURE-ChIP-seq (sgLCR), and ChIA-PET (CTCF
and RNAPII) data are shown for comparison
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enhancer cluster helps identify the underlying
organizational structures controlling enhancer function.
Finally, by comparing the normalized number and fre-
quency of long-range DNA interactions identified by
CAPTURE, ChIA-PET [30, 31], 4C [34], H3K27ac
HiChIP [35], and Hi-C [13, 36], we observed that the
multiplexed CAPTURE2.0 system displayed comparable
or slightly higher percentage of unique PETs and on-
target enrichment than CAPTUREL.0 (Additional file 1:
Figure S4a). Both CAPTURE systems outperformed
ChIA-PET or Hi-C by increasing the percentage of
unique PETs and on-target enrichment (Additional file 1:
Figure S4a,b).

Together, the proof-of-principle analyses of [-globin
LCR by dCas9 capture not only validated previously
identified CRE-mediated long-range DNA interactions,
but also established the redesigned CAPTURE2.0 system
for high-resolution and multiplexed analysis of locus-
specific chromatin interactions in situ.

Multiplexed CAPTURE of erythroid super-enhancers

Super-enhancers (SEs) are putative enhancer clusters as-
sociated with high levels of enhancer activities and
enhancer-regulating chromatin factors [37], although the
organizational principles of SEs remain largely unknown.
A major challenge of analyzing SE structure-function is
the lack of sufficient resolution by Hi-C or ChIA-PET-
based analysis of SE-mediated chromatin interactions.
We reasoned that multiplexed analysis of SEs and their
constituent enhancers by high-resolution dCas9 capture
in their native chromatin may allow the dissection of
spatial organization of SE structure-function in gene
regulation. To this end, we designed pooled sgRNAs
consisting of 2 or 3 sgRNAs at each constituent enhan-
cer within the top 157 SEs identified by H3K27ac ChIP-
seq in K562 cells (total 1870 sgRNAs for 807 constituent
enhancers; Fig. 2a; Additional file 2: Table S1) [37]. To
avoid interference with endogenous enhancer activity or
gene transcription, we designed sgRNAs in close prox-
imity to but not overlapping with the enhancer-
associated accessible chromatin by ATAC-seq (Fig. 2a).
We next performed multiplexed CAPTURE-3C-seq of
dCas9-captured SEs in a single experiment (two bio-
logical replicates; Additional file 3: Table S2) and identi-
fied high-confidence long-range DNA interactions at
156 of 157 (99.4%) SEs and 753 of 807 (93.3%) individual
enhancers (Fig. 2a), indicating a high capture efficiency
by multiplexed analysis of hundreds of independent
CREs. We also observed significant enrichment of the
vast majority of sgRNA-targeted enhancers by
CAPTURE-ChIP-seq in cells expressing target-specific
(sgSE) related to non-targeting (sgGald) sgRNAs
(Fig. 2b). No significant change in the expression of SE-
associated genes, defined as the nearest neighbor genes
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within a 50-kb genomic region, was detected by RNA-
seq (Fig. 2c), suggesting that the multiplexed capture of
erythroid SEs by dCas9 did not interfere with endogen-
ous gene transcription.

Enhancers often regulate gene transcription over long
distances; thus, it remains difficult to identify the target
gene(s) of a given enhancer. By multiplexed capture of
chromatin interactions associated with SEs and their
constituent enhancers, we sought to determine SE-
regulating target genes that physically interact with the
capture enhancers. To this end, we categorized the cap-
tured SE-mediated long-range DNA interactions into
three groups including SEs to gene promoters (SE-P),
SEs to gene bodies (SE-G), and SEs to other genomic re-
gions (SE-O) (Fig. 2d). We observed that the frequencies
of SE-P interactions are significantly higher than SE-G
or SE-O interactions (Fig. 2d). We then designated SE
target genes as genes that significantly interact with the
capture SEs (see the “Methods” section). By this analysis,
we identified 5 distinct patterns of SE-gene interactions,
including single SE to single gene, single SE to multiple
genes, multiple SEs to single gene, multiple SEs to mul-
tiple genes, and SEs containing no significant interacting
gene (Fig. 2e). Of note, the most predominant interact-
ing patterns are the single SE to multiple genes (88 SEs
or 56%) and multiple SEs to multiple genes (29 or 19%),
suggesting that the majority of SEs form long-range in-
teractions with multiple target genes. Compared with
CTCE- or RNAPII-mediated interactions by ChIA-PET
[30, 31] or in situ Hi-C [13], the multiplexed capture dis-
played improved resolution at the capture loci (Fig. 2f—
h; Additional file 1: S5a-d). These results demonstrate
that multiplexed CAPTURE-3C-seq enables the high-
resolution analysis of enhancer-mediated chromatin
looping and the identification of SE-associated gene tar-
gets at the single enhancer resolution.

Spatial and hierarchical organization of super-enhancers

With the significantly improved resolution in identifying
locus-specific chromatin interactions by multiplexed
CAPTURE-3C-seq, we next determined the spatial
organization of SEs by analyzing long-range interactions
associated with individual constituent enhancers (Fig. 3a).
We previously analyzed SE hierarchy based on Hi-C in-
teractions and identified a subset of SEs containing “hub
enhancers” in several human cell lines [38]. We defined
hub enhancers using a computational metric called hier-
archical score (H-score), in which the frequency of chro-
matin interactions identified by Hi-C was standardized
and compared across the binned human genome.
However, due to the limited sequencing depths of the
available Hi-C experiments, our analysis of SE hierarchy
was limited by a 5-kb resolution [38]. With the high-
resolution capture of SE-mediated interactions by
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extend to 1.5x of the interquartile range. P values were calculated by a two-sided Kolmogorov-Smirnov (K-S) test. e Pie chart shows the fractions
of the captured SE-mediated interactions between SEs and gene targets. f A representative locus is shown for the single SE to single gene
interactions (SE137). Contact profiles including the density map and interactions for the dCas9-captured SE region (red bar) are shown. The
statistical significance of interactions was determined by the Bayes factor (BF) and indicated by the color scale bars. DHS, ChIP-seq, ChromHMM,
ChIA-PET (CTCF and RNAPII), and in situ Hi-C data are shown for comparison. g A representative locus is shown for the single SE to multiple
genes (SE43). h A representative locus is shown for the multiple SEs to multiple genes (SE41 and SE42)
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Fig. 3 Hierarchical organization of super-enhancers identified by multiplexed CAPTURE. a Schematic of the hierarchical structure of SEs based on
constituent enhancer-mediated long-range chromatin interactions. b Identification of hierarchical SEs by the H-score computational metric. ¢ A
representative locus is shown for a hierarchical SE containing the hub enhancer. Contact profiles including the density map, interactions between
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CAPTURE-3C-seq (Fig. 2a), we adapted the H-score
computational metric by the following modifications
(Additional file 1: Figure S2b). First, we counted PETs
identified at each enhancer and normalized by enhancer
peak size and sequencing depth. The normalized PETs
reflect the standardized chromatin interactions at cap-
tured enhancers that are independent of capture effi-
ciency by different sgRNAs (Fig. 2b). Second, we
calculate the H-score by the mean of PETs of all en-
hancers within a SE. By this analysis, a higher H-score
indicates that the chromatin interactions at the associ-
ated enhancer are more enriched than other enhancers
within a SE. Third, the H-scores of all enhancers are fit-
ted as gamma distribution, and the enhancers associated

with significantly higher H-scores (P < 0.05) are referred
to as hub enhancers, whereas other enhancers are
termed non-hub enhancers (Fig. 3b; Additional file 1:
Figure S2b). Lastly, a SE is categorized as a hierarchical
SE if it contains at least one hub enhancer, otherwise as
a non-hierarchical SE (Fig. 3b).

We applied this pipeline to dissect SE hierarchy using
chromatin interactions from multiplexed CAPTURE-3C-
seq in K562 cells, and identified 40 of 156 (25.6%) cap-
tured SEs that displayed hierarchical structures contain-
ing at least one hub enhancer (Fig. 3b; Additional file 5:
Table S4; Additional file 6: Table S5). Importantly, some
hierarchical SEs were not identified in previous Hi-C-
based analysis likely due to the limited resolution [38].
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By comparing chromatin interactions identified by
ChIA-PET (30, 31], Hi-C [13], and multiplexed CAP-
TURE at multiple individual hierarchical and non-
hierarchical SEs, we observed higher resolution inter-
action profiles at the captured enhancers by CAPTURE
(Fig. 3¢, d; Additional file 1: Figure S6a, b), illustrating
that the multiplexed dCas9 capture enables quantitative
analysis of the spatial organization of individual en-
hancers within the SE clusters.

To determine the distinguishing features associated
with hub and non-hub enhancers within hierarchical
SEs, we analyzed the spatial patterns of DHS, enhancer-
associated histone marks (H3K4mel and H3K27ac), and
chromatin occupancy of various transcription factors
(TFs) (p300, RNAPII, GATA1, and TAL1) and chroma-
tin regulators (CTCF, SMC3, and RAD21). Active en-
hancers are operationally defined by the presence of
H3K4mel and H3K27ac [39-41]; however, no signifi-
cant difference in H3K4mel and H3K27ac ChIP-seq sig-
nals was observed at hub and non-hub enhancers,
suggesting that hub enhancers cannot be reliably identi-
fied by enhancer-associated histone marks. Instead, we
observed significantly higher signals for p300 and eryth-
roid master regulators GATAL and TALI and a modest
increase in DHS signals at hub enhancers (Fig. 3e). Most
importantly, we observed significantly increased binding
of CTCF and cohesin subunits (SMC3 and RAD21), two
factors essential for mediating long-range chromatin
looping and enhancer-promoter interactions [42, 43], at
hub enhancers (Fig. 3e). Although non-hub enhancers
and non-hierarchical SEs were also enriched with
CTCEF/cohesin relative to the flanking genomic regions,
no or modest differences in CTCF/cohesin binding were
observed between non-hub enhancers and non-
hierarchical SEs (Fig. 3e). These results are consistent
with the role of CTCF and cohesin in mediating chro-
matin interactions at hub enhancers [38], illustrating
that the analysis of high-resolution chromatin interac-
tions by dCas9 capture provides opportunities to exam-
ine the underlying organizational principles of SEs in
gene regulation. Furthermore, while similar TF motifs
were found to be enriched at hierarchical and non-
hierarchical SEs (Additional file 1: Figure Séc), we noted
that the distances between hierarchical SEs and their as-
sociated gene targets were significantly greater than the
distances between non-hierarchical SEs and gene targets
(P=1.95E-5 by Student’s ¢ test; Additional file 1: Figure
S6d), suggesting that the hub enhancer-containing hier-
archical SEs tend to locate more distal to their gene targets.

Multiplexed CAPTURE of promoter-centric chromatin
interactions

Lineage differentiation requires coordinated control of
gene-proximal promoters and distal CREs such as
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enhancers, yet the temporal dynamics of CRE-mediated
chromatin interactions and how they relate to gene ac-
tivity remain largely unknown. To gain insights into the
temporal regulation of locus-specific chromatin interac-
tions during lineage differentiation, we mapped
promoter-centric chromatin architecture in the well-
established G1E-ER4 (hereafter called G1ER) erythroid
cell differentiation model [44]. The Gatal-null G1ER
cells, a G1E subclone that constitutively expresses an
estradiol-activated form of GATALI fused to the estrogen
receptor ligand binding domain (GATA1-ER) [44-46],
are maintained in an undifferentiated state and express a
high level of GATA2. Upon activation of the GATA1-ER
transgene by p-estradiol treatment in GI1ER cells,
GATA1 binds to its chromatin targets to modulate gene
transcription whereas GATA2 expression is sharply
downregulated resulting in a “GATA switch” and eryth-
roid differentiation [44, 47, 48]. Notably, while pB-
estradiol treatment had no apparent effect on GATA1-
ER transgene expression, GATA1 shifted its chromatin
occupancy during erythroid maturation of G1ER cells
(Additional file 1: Figure S7a, b). Using this model, we
sought to determine how promoter-mediated chromatin
loops are established or reconstructed upon gene activa-
tion or deactivation, respectively, at varying time points
of GATA1-induced erythroid differentiation (0, 2, 6, 12,
and 24h) (Fig. 4a). The differentiation-associated
changes in gene expression, chromatin accessibility, epi-
genetic landscapes, and promoter-centric chromatin in-
teractions were determined by RNA-seq, ATAC-seq,
ChIP-seq, and multiplexed CAPTURE-3C-seq, respect-
ively (Fig. 4a; Additional file 2: Table S1).

We designed pooled sgRNAs consisting of 2 or 3
sgRNAs per promoter region for 22 promoters of the
most significantly upregulated genes (hereafter called
“activated” promoters) during erythroid differentiation of
GI1ER cells (Fig. 4a). Likewise, we designed pooled
sgRNAs consisting of 2 or 3 sgRNAs per promoter re-
gion for 20 promoters of the most significantly downreg-
ulated genes (hereafter called “repressed” promoters). To
avoid interference with endogenous promoter activity or
gene transcription, we designed sgRNAs in close prox-
imity to but not overlapping with the promoter-
associated accessible chromatin. As important quality
controls, we performed RNA-seq in cells expressing
sgRNAs targeting activated promoters (sgAct), repressed
promoters (sgRep), or non-targeting sgGal4 in undiffer-
entiated (O h) and differentiated (24 h) G1ER cells. The
global transcriptomic profiles were highly similar in
GI1ER cells expressing target-specific (sgAct or sgRep) or
non-targeting sgGald before or after differentiation
(Fig. 4b, ¢; Additional file 1: Figure S7c-f). The expres-
sion of the captured promoter-associated genes
remained unchanged between different groups in
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Fig. 4 Analysis of promoter-centric chromatin interactions by multiplexed CAPTURE. a Schematic of multiplexed CAPTURE of promoter-centric
interactions during erythroid differentiation of G1ER cells using sgRNAs targeting 22 activated (sgAct) or 20 repressed (sgRep) promoters. RNA-
seq, ATAC-seq, ChIP-seq (H3K27ac and H3K4me3), and CAPTURE-3C-seq of promoter-centric interactions were performed in undifferentiated (0 h)
and differentiated (2, 6, 12, and 24 h) G1ER cells. b Genome-wide gene expression analysis of cells expressing target-specific sgRNAs (sgAct or
sgRep) in undifferentiated (0 h) and differentiated (24 h) G1ER cells. Data points for the sgRNA-targeted activated or repressed promoters are
shown as green and red, respectively. The x- and y-axes denote the log2 read counts in sgAct and sgRep samples from N =3 RNA-seq
experiments, respectively. ¢ Differential gene expression analysis in G1ER cells expressing dCas9-CBio with sgAct, sgRep, or non-targeting sgGal4.
Pearson correlation coefficient (R) values are shown for pair-wise comparisons (N =3 RNA-seq experiments). d Pie charts show the numbers and
percentages of captured activated or repressed promoters (green color). e A representative locus is shown for the activated promoter (Mafk)-
mediated chromatin interactions during erythroid differentiation. Contact profiles including the density map and interactions for the dCas9-
captured region (blue bar) and interacting CREs (red bar) are shown. The statistical significance of interactions by the Bayes factor (BF) is indicated
by the color scale bars. The locations of the annotated Mafk TSS, Tmem184a TSS, and candidate enhancers are shown on the bottom. Numbers
represent the distances to the Mafk TSS (+ 1). Two independent experiments were performed for RNA-seq, ATAC-seq, ChIP-seq, and multiplexed
CAPTURE-3C-seq in G1ER cells at varying time points of erythroid differentiation, and the replicates were merged for the genome browser view.

f A representative locus is shown for the repressed promoter (Gata2)-mediated chromatin interactions during erythroid differentiation. The
locations of the annotated Gata? TSS (+ 1) and candidate enhancers are shown on the bottom

J

undifferentiated and differentiated G1ER cells, respect-
ively, suggesting that the multiplexed capture of
promoter-centric interactions by dCas9 did not interfere
with endogenous gene transcription.

By multiplexed CAPTURE-3C-seq of dCas9-captured
promoters in G1ER cells, we identified significant long-
range DNA interactions at 21 of 22 (95.5%) activated
promoters and 18 of 20 (90.0%) repressed promoters
(Fig. 4d; Additional file 7: Table S6), respectively, illus-
trating a high capture efficiency comparable to multi-
plexed enhancer capture (Fig. 2a). We next compared
the high-resolution chromatin interaction profiles with
gene expression (by RNA-seq), chromatin accessibility
(by ATAC-seq), and histone modifications (H3K27ac
and H3K4me3 by ChIP-seq) at various time points of
GATA1-induced erythroid differentiation (0 to 24 h) at
multiple independent loci. Importantly, we noted strong
correlations between promoter-mediated long-range
DNA interactions and gene expression at both activated
and repressed promoters (Fig. 4e, f; Additional file 1:
Figure S8a-e). For instance, GATA1 activation by p-
estradiol treatment led to significant and progressive ac-
tivation of Mafk and Tmeml84a genes in G1ER cells
(Fig. 4e; Additional file 1: Figure S8a, b), consistent with
rapid gain of chromatin interactions between the cap-
tured Mafk and Tmem184a promoters and several anno-
tated enhancers (- 89kb, + 13 kb, +27 kb, and + 40 kb;
Fig. 4e) after 2h of GATAL activation. The enhancer-
promoter interactions progressively gained strength dur-
ing subsequent differentiation (6 to 24-h). By contrast,
little or no change in chromatin accessibility or epigen-
etic landscapes was noted at the captured promoters and
their interacting enhancers at the same time points
(Fig. 4e). At the repressed promoters, the GATAI1-
induced erythroid differentiation resulted in a significant
and progressive downregulation of GATA2 mRNA ex-
pression (Additional file 1: Figure S8c). Gata2 silencing
was associated with significant and rapid loss of

chromatin interactions between the captured Gata2 pro-
moter and some but not all enhancers as early as 2h of
GATAI1 activation, whereas modest changes in chroma-
tin accessibility and epigenetic landscapes at Gata2 pro-
moter and enhancers were noted at later time points
(12h and 24 h) (Fig. 4f). Similar patterns were observed
at the other representative activated (Btnlal) and re-
pressed (Ms4a2) promoters (Additional file 1: Figure
S8d,e).

Together, the side-by-side comparisons between chro-
matin interactions, gene expression, and epigenetic
changes at multiple loci demonstrate that changes in
gene activation or repression are strongly associated with
reconstruction of promoter-mediated chromatin interac-
tions, in particular enhancer-promoter loop formation,
during lineage differentiation. Furthermore, the refined
kinetic analyses at several independent loci demonstrate
that changes in gene expression occur in close cooper-
ation with gained or lost enhancer-promoter interactions
and precede significant changes in epigenetic landscapes
or chromatin accessibility, supporting the notion that
enhancer-promoter loop formation causally underlies
gene activation or deactivation [18, 28, 29].

Temporal dynamics of enhancer-promoter interactions
during differentiation

Given the strong correlations between promoter-centric
chromatin interactions and gene expression at individual
loci, we next compared the temporal changes in gene ex-
pression, chromatin interactions, accessibility, and epi-
genetic landscapes at the captured activated and
repressed promoters during differentiation. At the global
level, we observed progressive gain (at activated pro-
moters) or loss (at repressed promoters) of chromatin
interactions, ATAC-seq, H3K27ac, and H3K4me3 ChIP-
seq signals associated with gene activation or repression,
respectively (Fig. 5a, b; Additional file 1: Figure S9a, b).
We next categorized the captured promoter-centric
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Fig. 5 Temporal dynamics of promoter-centric interactions during differentiation. a Temporal changes in gene expression (RNA-seq), chromatin
interactions (CAPTURE-3C-seq), chromatin accessibility (ATAC-seq), and epigenetic landscapes (H3K27ac and H3K4me3 ChlIP-seq) at the captured
activated promoters during erythroid differentiation of G1ER cells. The x-axis denotes the time points of undifferentiated (0 h) or differentiated (2,
6, 12, and 24 h) G1ER cells. The y-axis denotes the normalized signals calculated by the mean normalized gene FPKM (RNA-seq), read counts
(ATAC-seq and ChlIP-seq), or PETs (CAPTURE-3C-seq) per kilobase of captured genomic region per million mapped reads and shown as mean +
SEM (N =22 activated promoters). b Temporal changes in gene expression, chromatin interactions, chromatin accessibility, and epigenetic
landscapes at the captured repressed promoters during erythroid differentiation of G1ER cells. The y-axis denotes the normalized signals shown
as mean + SEM (N = 20 repressed promoters). ¢ Temporal changes in gene expression and chromatin interactions (all, E-P, and other interactions)
at the captured activated promoters during erythroid differentiation. E-P interactions and gene expression were significantly and positively
correlated (Pearson correlation coefficient R =0.890, P=0.022 by Student's t test), whereas the other interactions showed no significant
correlation (R=0.698, P=0.095). d Temporal changes in gene expression and chromatin interactions (all, E-P, and other interactions) at the
captured repressed promoters. E-P interactions and gene expression were significantly and positively correlated (Pearson correlation coefficient
R=10.905, P=0.018), and the other interactions also showed a positive correlation with expression (R =0.871, P=0.028). e Top enriched TF motifs
at genomic regions associated with E-P interactions or other interactions with the captured activated promoters. f Top enriched TF motifs at the
genomic regions associated with E-P interactions or other interactions with the captured repressed promoters. g Chromatin occupancy of GATAT
at enhancers interacting with the captured activated or repressed promoters in undifferentiated (0 h) and differentiated (24 h) G1ER cells. P values

were calculated using the two-sample Kolmogorov-Smirnov (K-S) test. h Chromatin occupancy of TAL1 at enhancers interacting with the
captured activated or repressed promoters in undifferentiated (0 h) and differentiated (24 h) G1ER cells. i Spatial distribution of chromatin
accessibility at the captured activated or repressed promoters, enhancers, and other regions interacting with captured promoters in
undifferentiated (0 h) and differentiated (2, 6, 12, and 24 h) G1ER cells. P values were calculated using the two-sample Kolmogorov-Smirnov (K-S)
test. ***P < 0.0001, **P < 0.01, *P < 0.05, ns. not significant. j Spatial distribution of H3K27ac ChIP-seq signals at the captured activated or repressed
promoters, enhancers, and other regions interacting with captured promoters in undifferentiated and differentiated G1ER cells
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interactions into enhancer-promoter (E-P) interactions
and other interactions based on the overlap between the
captured PETs and annotated enhancers (Add-
itional file 1: Figure S2¢; Additional file 8: Table S7; see
the “Methods” section). By this analysis, we noted that
the E-P interactions are more significantly and positively
correlated with gene expression changes at both acti-
vated and repressed promoters (Pearson correlation co-
efficient R=0.890 and 0.905, P=0.022 and 0.018 by
Student’s ¢ test, respectively; Fig. 5c, d). Consistent with
the global analysis, the progressive gain or loss of E-P in-
teractions is the most significantly changed chromatin
feature at multiple individual loci upon gene activation or
repression during differentiation (Fig. 4e, f; Additional file 1:
Figure S84, e), respectively.

To determine the underlying TFs associated with the
dynamically regulated chromatin interactions during
erythroid differentiation, we performed motif enrich-
ment analysis of genomic regions associated with E-P or
other interactions (Fig. 5e, f). We identified TF motifs
for hematopoietic lineage TFs including GATA factors
(GATA1 and GATA2), TAL1, and KLF1 as the top
enriched motifs associated with E-P interactions at the
activated promoters. There are few enriched motifs asso-
ciated with other interactions (Fig. 5e). Similarly at the
repressed promoters, motifs for lineage master TFs such
as GATA factors and BMYB are highly associated with
E-P interactions but not with other interactions (Fig. 5f).
The enrichment of TAL1:GATA1 composite motif in E-
P interactions at activated but not repressed promoters
is consistent with the role of GATA1/TAL1 complex in
transcriptional activation during erythroid differentiation
[49, 50]. The enrichment of motifs for GATA factors is

consistent with the roles of GATA1 and GATA2 as both
transcriptional activators and repressors in
hematopoietic cells [44, 48, 51, 52].

We then investigated whether the binding of GATA1
and TAL1 underlies the gain or loss of E-P interactions
during erythroid differentiation by ChIP-seq of GATA1
and TAL1 before or after GATA1 activation in G1ER
cells (Fig. 5g, h). We noted significantly increased bind-
ing of GATA1 at enhancers associated with gained E-P
interactions and significantly decreased GATA1 binding
at enhancers associated with lost E-P interactions in dif-
ferentiated G1ER cells (Fig. 5g). Modest increases in
GATALI binding at activated promoters and decreases in
GATAI1 binding at repressed promoters were also noted
in differentiated G1ER cells, respectively (Additional file 1:
Figure S10a). Likewise, significantly increased TALI1
binding at enhancers associated with gained E-P interac-
tions and activated promoters were observed (Fig. 5h;
Additional file 1: Figure S10b). Furthermore, we noted
significant enrichment of CTCF occupancy in the prox-
imity of the captured activated and repressed promoters,
as well as the enhancers interacting with the activated
promoters (Additional file 1: Figure S10c). These results
demonstrate that the chromatin occupancy of CTCF and
lineage master TFs strongly associates with the forma-
tion or reconfiguration of E-P interactions during lineage
differentiation.

Finally, we examined the kinetic changes in epigenetic
landscapes at the captured activated or repressed pro-
moters and their interacting genomic regions by ATAC-
seq and ChIP-seq during G1ER differentiation (0, 2, 6,
12, and 24 h; Additional file 2: Table S1). We observed
strongly coordinated increases in chromatin accessibility



Liu et al. Genome Biology (2020) 21:59

and H3K27ac at activated promoters and their interact-
ing enhancers (Fig. 5i, j), indicating cooperated epigen-
etic changes likely through progressively gained E-P
interactions (Fig. 5a, c). Likewise, we observed coordi-
nated decreases in chromatin accessibility and H3K27ac
at repressed promoters and their interacting enhancers
(Fig. 5i, j), consistent with progressively lost E-P interac-
tions (Fig. 5b, d). Slight or modest changes in H3K4me3
at the capture promoters were also noted (Add-
itional file 1: Figure S10d), consistent with the transcrip-
tional changes associated with altered promoter
activities during erythroid differentiation.

Taken together, the refined kinetic analyses of
promoter-centric interactions, gene expression, and epi-
genetic changes at single locus and global levels illustrate
that gene activation or repression is strongly associated
with the reconfiguration of E-P looping during lineage
differentiation. The genomic regions associated with
gained or lost E-P interactions are enriched with binding
sites for lineage master TFs including GATA1l and
TALI, and changes in GATA1 and TAL1 chromatin oc-
cupancy strongly associate with the reorganized E-P in-
teractions. Therefore, our findings support an instructive
role of E-P interactions in controlling gene transcription
in response to lineage master TF-induced differentiation,
and the reconfiguration of E-P loop formation causally
underlies gene activation or deactivation during develop-
ment. Furthermore, our results illustrate the ability of
the redesigned dCas9-based CAPTURE for high-
throughput analysis of the spatial organization and tem-
poral dynamics of locus-specific chromatin interactions,

providing  opportunities  for  interrogating the
organizational principles of genome structure and
function.

Discussion

Multiplexed CAPTURE of enhancer hierarchical structure

It is estimated that the human genome contains more
than one million CREs that control tissue and develop-
mental stage-specific gene expression. SEs were de-
scribed as intensively marked clusters of enhancers that
control the expression of cell identity-related genes [37];
however, it remains unclear how SEs are spatially orga-
nized through the assembly of their constituent en-
hancers. Here, we describe the resigned CAPTURE
system for high-resolution and multiplexed analysis of a
few to hundreds of enhancers in a single high-
throughput experiment. Compared to individual capture
assays [18, 19], the multiplexed analyses by the rede-
signed CAPTURE provide several advantages, including
(1) the significantly increased capture efficiency; (2) the
combination of C-terminal dCas9 biotin-tagging and en-
dogenous biotin ligases enables simplification of cell line
engineering, thus broader applications in various cell
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models including primary cells; and (3) more cost effect-
ive for high-resolution and high-throughput mapping of
CRE-mediated chromatin interactions in a single experi-
ment. We showcased the applications of the new system
by multiplexed capture of the human p-globin LCR and
erythroid SEs and revealed distinct patterns of SE-gene
interactions and the hierarchical organization of SEs.
These results demonstrate that the multiplexed CAP-
TURE coupled with the 3C approach enables quantita-
tive analysis of enhancer-mediated chromatin looping
and identification of SE-associated gene targets at single
enhancer resolution. Thus, the CAPTURE approach pro-
vides a platform for the systematic dissection of SE con-
stituents and the underlying formative composition
controlling enhancer structure-function in a mammalian
genome.

Temporal dynamics of 3D chromatin structure during
development

High-order chromatin structures have been analyzed by
Hi-C-based approaches in mammalian development [1—
3]; however, the quantitative analysis of enhancer-
promoter (E-P) interactions remains challenging. This is
due in large to insufficient resolution of Hi-C assays and
the prohibitive cost for generating Hi-C datasets with
basepair resolution [9-16]. By multiplexed capture of
promoter-centric interactions in a well-defined model of
erythroid differentiation, we revealed the time-resolved,
high-resolution E-P interaction profiles during the im-
mediate and late phases of lineage differentiation of
G1ER cells. By comparative analyses of changes in gene
expression, chromatin accessibility, and epigenetic land-
scapes, we uncovered that the formation or disruption of
E-P interactions is significantly and positively correlated
with gene expression changes at both activated and re-
pressed promoters, respectively. The changes in gene ex-
pression and chromatin interactions are highly
correlated and precede changes in epigenetic land-
scapes or chromatin accessibility, supporting the
causative roles of E-P loop formation in gene tran-
scription [18, 28, 29]. In addition, we found that the
developmentally regulated E-P interactions highly
associate with chromatin occupancy of lineage-
specifying TFs to rewire 3D chromatin interactions
during differentiation. These findings support an
instructive role of E-P interactions in controlling gene
transcription in response to TF-induced diffe-
rentiation. Furthermore, the wunbiased analysis of
promoter-centric  interactions helps identify the
complete set of promoter-interacting constitutive or
lineage-specific CREs and will facilitate the identifica-
tion and follow-up studies of functionally relevant
CREs controlling gene expression during lineage
differentiation.
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Considerations for multiplexed CAPTURE assays

The successful application of multiplexed capture of
locus-specific chromatin interactions requires several
important considerations in assay development. First,
the sgRNAs should be designed to locate in close prox-
imity to the captured CREs, but not overlapping with
known TF binding sites to avoid interference with en-
dogenous protein-DNA interactions. Second, the ana-
lysis of CRE-mediated long-range DNA interactions by
3C requires the design of sgRNAs in the same chromatin
fragments digested by the restriction enzyme (e.g.,
Dpnll). Multiple sgRNAs may be designed for multiple
Dpnll-digested fragments containing the captured CREs
to maximize the capture efficiency. Third, the genome-
wide specificity and on-target enrichment of the
pooled sgRNAs should be evaluated to minimize off-
target effects, although the PETs associated with non-
captured regions may be filtered during data process-
ing to eliminate off-target signals. Fourth, the multi-
plexed analysis of many CREs in a single experiment
requires comparable on-target enrichment for each
sgRNA to minimize variations in capture efficiency.
Finally, multiplexed capture of CRE-regulating protein
factors may be limited due to the difficulty to ascribe
the identified tranms-acting factors to specific CREs;
however, it may be used to study larger chromatin
domains such as heterochromatin, euchromatin, and
lamina-associated domains. The multiplexed capture
of interacting proteins at many loci in the same chro-
matin domains may help identify chromatin regulators
that are shared or unique to specific chromatin archi-
tectures in controlling genome structure and function.

Methods

Cells and cell culture

Human K562 cells were obtained from ATCC and cul-
tured in an IMDM medium containing 10% fetal bovine
serum (FBS) and 1% penicillin/streptomycin (P/S). Hu-
man HEK293T cells were obtained from ATCC and cul-
tured in a DMEM medium containing 10% FBS and 1%
P/S. G1E and GI1ER cells were cultured as described
[44]. All cultures were incubated at 37 °C in 5% CO,. All
cell lines were tested negative for mycoplasma contam-
ination. No cell line used in this study was found in the
database of commonly misidentified cell lines main-
tained by ICLAC and NCBI BioSample.

sgRNA design and cloning

sgRNAs were designed to target the proximity of cis-
regulatory elements using the public tool (http://crispr.
mit.edu/) as previously described [18, 19]. sgRNAs
targeting promoters or LCR enhancers were cloned into
the U6 promoter-driven lentiviral vector pSLQ1651-
sgRNA(F+E)-sgGal4d (Addgene, #100549) by PCR
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amplification using a common reverse primer and
unique forward primers containing the protospacer se-
quence [53]. The PCR amplicon and the sgRNA vector
containing a mCherry reporter were digested by BstXI
and Xhol. The digested DNA fragments were then puri-
fied, ligated to the digested sgRNA vector, and validated
by Sanger sequencing. For multiplexed SE capture, the
top 157 SEs were identified by ROSE [37] based on
H3K27ac ChIP-seq signals. All regions overlapping with
annotated promoters within SEs were removed. For each
constituent enhancer, 2—3 sgRNAs were designed target-
ing the proximity but not overlapping with enhancer-
associated accessible chromatin based on ATAC-seq.
DNA oligonucleotides containing sgRNAs were
synthesized on a programmable microarray using a B3
Synthesizer (CustomArray). Full-length oligonucleotides
(96 nt) were amplified for 15 cycles by PCR using Phu-
sion® High-Fidelity DNA Polymerase (referred to as
PCR1). PCR2 was then performed using amplicon from
PCR1 as the template to remove the barcodes and re-
place with homology arms of pSLQ1651-sgRNA(F+E)-
sgGal4 vector for Gibson assembly reaction. The PCR
amplicon was gel purified. The pSLQ1651-sgRNA(F+E)-
sgGal4d vector was digested by BstXI and Xhol and gel
purified. Gibson assembly was performed to generate
the sgRNA vector pool following the manufacturer’s
protocol. Briefly, 10 ul of the Gibson assembly reaction
was added to 100 ul E. cloni 10G ELITE electrocompe-
tent cells (Lucigen, #60052-4) and electroporated using
Bio-Rad MicroPulser. The transformed bacteria were
plated onto pre-warmed 24.5-cm” bioassay plates with
ampicillin and incubated overnight at 37°C. The
colonies were counted to calculate the library coverage
(>200x). All colonies were collected, and maxiprep was
performed to isolate the sgRNA vectors. A pool of
lentiviruses containing all sgRNAs was produced as
previously described [18, 19]. The sequences of all
sgRNAs used in this study are listed in Additional file 2:
Table S1.

Cloning of CAPTURE vectors

To generate the pLVX-EFla-BirA-P2A-FB-dCas9-IRES-
zsGreenl (CAPTUREL.1) vector, the BirA-V5-6xHis and
FB-dCas9 were amplified from the pEFla-BirA-V5-neo
vector (Addgene, #61357) and pEFla-FB-dCas9-puro
(Addgene, #100547) as templates, respectively, and
cloned into Xbal-digested pLVX-EFla-IRES-zsGreenl
by In-Fusion® HD Cloning Kit (Clontech). To construct
the pLVX-EFla-NBio-dCas9-IRES-zsGreenl  (CAP-
TURE2.0-NBio) and pLVX-EFla-dCas9-CBio-IRES-
zsGreenl (CAPTURE2.0-CBio) vectors, the dCas9 and
BioTAP sequences were amplified from the pEFla-FB-
dCas9-puro (Addgene, #100547) and pEFla-FB-dCas9-
bioTAP-puro, respectively. Then the PCR amplicons
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were subcloned into Xbal-digested pLVX-EFla-IRES-
zsGreenl by In-Fusion®” HD Cloning Kit (Clontech). The
pLVX-EFla-BirA-P2A-FB-dCas9-IRES-zsGreenl, pLVX-
EFla-NBio-dCas9-IRES-zsGreenl, and pLVX-EFla-
dCas9-CBio-IRES-zsGreenl vectors were deposited to
Addgene under #138417, #138418, and #138419,
respectively.

Lentivirus production and transduction

Lentiviruses  containing  pLVX-EFla-BirA-P2A-FB-
dCas9-IRES-zsGreenl, pLVX-EFla-NBio-dCas9-IRES-
zsGreenl, pLVX-EFla-dCas9-CBio-IRES-zsGreenl, or
sgRNAs were packaged in HEK293T cells as previously
described [18, 19] with modifications. Briefly, 4 pg of
pA8.9, 2 ug of VSV-G, and 6 pug lentiviral vectors were
co-transfected into HEK293T cells in 10-cm dishes. Len-
tiviruses were collected by harvesting the supernatant
48-72h after transfection. For CAPTURE1.0, FB-dCas9
and BirA-expressing K562 stable cells [18, 19] were
transduced with sgRNA-expressing lentiviruses in 6-well
plates. For CAPTURE1.1 and CAPTURE2.0, K562 cells
were co-transduced with BirA-P2A-FB-dCas9, NBio-
dCas9, or dCas9-CBio and sgRNA-expressing lenti-
viruses. To maximize sgRNA expression, the top 5%
of mCherry-positive cells were sorted 48h post-
transfection.

RNA-seq and gqRT-PCR analysis

RNA was isolated using RNeasy Plus Mini Kit following
the manufacturer’s protocol (Qiagen). RNA-seq libraries
were prepared using NEBNext Ultra II Directional RNA
Library Prep Kit (NEB). Sequencing reads were aligned
to human (hgl9) or mouse (mm1l0) reference genome
by TopHat v2.0.13 [54] with the parameters: --solexaq-
uals --no-novel-juncs. Uniquely mapped reads were then
process by Cufflinks [55] for assembly of gene
expression FPKM (Fragments Per Kilobase of transcript
per Million mapped reads). Quantitative RT-PCR (qRT-
PCR) was performed using the iQ SYBR Green
Supermix (Bio-Rad) as previously described [56]. Primer
sequences are listed in Additional file 2: Table S1. RNA-
seq data in G1E and undifferentiated (0 h) and differen-
tiated (24h) G1E-ER4 cells were obtained from GEO
(GSM2400140, GSM2400141, GSM240018, GSM240019,
GSM2400132, and GSM2400133) and aligned to the
mml0 (GENCODE Version M4) reference genome.
Sequencing reads were processed using the “Long RNA-
Seq Processing Pipeline” from ENCODE [30]. Briefly,
sequencing reads were aligned using STAR v2.4.0 [57]
with  ENCODE standard options and expression was
quantified using RSEM v1.2.15 [58] using default para-
meters. Gene expression values as transcripts per million
(TPM) were used to compare Gatal expression in G1E
and G1E-ER4 cells.
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ChIP-seq and data analysis

ChIP was performed as described [18] using antibodies
for H3K4me3 (Millipore, #04-745) or H3K27ac (Abcam,
#ab4729) in G1ER cells at various time points of differ-
entiation. ChIP-seq libraries were generated using NEB-
Next Ultra II DNA Library Prep Kit following the
manufacturer’s protocol (NEB) and sequenced on an
[lumina NextSeq500 system using the 75-bp high out-
put kit. ChIP-seq raw reads were aligned to the mouse
genome assembly (mm10) using Bowtie2 [59] with the
default parameters. Unique mapped reads were used for
peak calling by MACS with the “--nomodel” parameter
[60]. The read depths and signal density of chromosomal
regions were performed and visualized by deepTools2
[61]. To compare ChIP-seq signals at promoters, en-
hancers, and other genomic regions between samples,
we also calculated FPKM (Fragments Per Kilobase of
transcript per Million mapped reads) for each region.
GATA1 ChIP-seq data in G1E and undifferentiated (0 h)
and differentiated (24h) G1E-ER4 cells were obtained
from GEO (GSM946538, GSM923581, GSM995441,
GSM995445, GSM995439, and GSM923572). Sequen-
cing reads were aligned to mm10 mouse reference gen-
ome using Bowtie2 with default parameters [57].
Uniquely mapped reads were used for peak calling
by MACS with the “--nomodel” parameter and with
P value 10°® [58]. Shared and sample-specific GATAL
peaks were derived using the “intersect” command from
BEDTools suite [62].

ATAC-seq and data analysis

ATAC-seq was performed as previously described with
modifications [63]. Briefly, 5x10* GIER cells were
washed twice in PBS and resuspended in 500 pl lysis buf-
fer (10 mM Tris-HCl, 10 mM NaCl, 3mM MgCl,, 0.1%
NP-40, pH 7.4). Nuclei were harvested by centrifugation
at 500xg for 10 min at 4°C. Nuclei were suspended in
50 pl of tagmentation mix (10 mM TAPS, 5 mM MgCl,,
pH 8.0, and 2.5 ul Tn5) and incubated at 37 °C for 30
min. Tagmentation reaction was terminated by incubat-
ing nuclei at room temperature for 2 min followed by in-
cubation at 55°C for 7 min after adding 10 ul of 0.2%
SDS. Tn5 transposase-tagged DNA was purified using
QIAquick MinElute PCR Purification kit (Qiagen) and
amplified using KAPA HiFi Hotstart PCR Kit (KAPA).
ATAC-seq libraries were sequenced on an Illumina
NextSeq500 system using the 75-bp high output kit.
Raw reads were trimmed to remove adaptor sequence
and aligned to mouse genome assembly (mm10) using
Bowtie2 [59] with default parameters. Only tags that
uniquely mapped to the genome were used for analysis.
ATAC-seq peaks were identified using MACS with the
“--nomodel” parameter [60]. To compare signals at
promoters, enhancers, and other genomic regions
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between samples, we calculated FPKM (Fragments Per
Kilobase of transcript per Million mapped reads) for
each region.

CAPTURE assays

The dCas9-based CAPTURE assays consist of CAPTURE-
ChIP-seq, CAPTURE-ChIP-qPCR, CAPTURE-3C-seq ex-
periments, and associated data analysis methods.

CAPTURE-ChIP-seq

K562 stable cells co-expressing FB-dCas9 and BirA
(CAPTUREL.0 and CAPTUREL.1) or BioTAP-tagged
dCas9 (CAPTURE2.0 NBio or CBio) and sequence-
specific or non-targeting sgRNAs were used for
CAPTURE-ChIP experiments. Cells were cross-linked
with 1% formaldehyde for 10 min and quenched with
0.125M of glycine for 5min. After washing with PBS,
cells were lysed in 1 ml RIPA buffer (10 mM Tris-HCl, 1
mM EDTA, 0.1% sodium deoxycholate, 0.1% SDS, 1%
Triton X-100, pH 8.0) and rotated for 15 min at 4°C.
Cell nuclei were collected by centrifugation at 2300xg
for 5min at 4°C. Nuclei were resuspended in 500 ul of
0.5% SDS lysis buffer (0.5% SDS, 10 mM EDTA, 50 mM
Tris-HCl, pH 8.0), and chromatin was sonicated to an
average size 200 to 500 bp on the Branson Sonifier 450
ultrasonic processor (20% amplitude, 0.5s on 1s off for
30s). Fragmented chromatin was centrifuged at 16,
100xg for 10 min at 4 °C. Supernatant containing soluble
chromatin was transferred to a new tube. Final concen-
tration 300 mM NaCl was added to 450 pl of super-
natant, followed by incubation with 10pul of MyOne
Streptavidin T1 Dynabeads (Thermo Fisher Scientific) at
4°C. After overnight incubation, Dynabeads were
washed twice with 1 ml of 2% SDS, twice with 1 ml of
RIPA buffer with 0.5M NaCl, twice with 1 ml of LiCl
buffer (250 mM LiCl, 0.5% NP-40, 0.5% sodium deoxy-
cholate, 1 mM EDTA and 10 mM Tris-HCI, pH 8.0), and
twice with 1 ml of TE buffer (10 mM Tris-HCl, 1 mM
EDTA, pH 8.0). Chromatin was eluted in SDS elution
buffer (1% SDS, 10 mM EDTA, 50 mM Tris-HCl, pH
8.0) and reverse cross-linked at 65°C overnight. ChIP
DNA was incubated with RNase A (5 pg/ml) and prote-
ase K (0.2 mg/ml) at 37 °C for 30 min and purified using
QIAquick Spin columns (Qiagen). 1~10ng of ChIP
DNA was processed for library generation using the
NEBNext Ultra II DNA Library Prep Kit (NEB), and se-
quenced on an Illumina NextSeq500 system using the
75-bp high output kit.

CAPTURE-ChIP-qPCR

For CAPTURE-ChIP-qPCR experiments, 1 to 5x 10°
K562 stable cells transduced with target-specific sgRNAs
or non-targeting sgGal4 were used. The captured DNA
was isolated wusing the protocol described for
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CAPTURE-ChIP experiment and analyzed by quantita-
tive PCR (qPCR). For input control samples, 80 pul of
SDS elution buffer was added into 20 pl of sonicated sol-
uble chromatin. The samples were reverse cross-linked
at 65°C overnight. DNA fragments were purified with
the QIAquick PCR Purification Kit and eluted with
100 pl of EB buffer (Qiagen). Primer sequences are listed
in Additional file 2: Table S1.

CAPTURE-ChIP-seq data analysis

Raw reads were aligned to human (hgl9) or mouse
(mm10) genome assembly using Bowtie2 [59] with de-
fault parameters. Peak calling was performed by MACS
using the “--nomodel” parameter [60]. Peaks that overlap
with the blacklist regions annotated by the ENCODE
project [30], the repeat masked region (chr2:33,141,250-
33,142,690; hgl9), or the validated non-targeting control
sgRNA (sgGal4)-enriched regions (chr6:119,558,373-119,
558,873, chr21:15,457,141-15,457,641, chr20:26,188,800-
26,190,400, and chr11:192,110-192,410; hgl9) were re-
moved. MAnorm [64] was applied to compare ChIP-seq
signal intensities in samples prepared from cells express-
ing the target-specific sgRNAs or non-targeting sgGal4.
The window size was 1kb which matched the average
width of the identified ChIP-seq peaks.

CAPTURE-3C-seq

CAPTURE-3C-seq assays were performed as previously
described [18, 19] with modifications. Specifically, 5 x
10° cells were cross-linked with 2mM EGS (ethylene
glycol bis(succinimidyl succinate)) (Thermo Fisher Sci-
entific) for 45 min and 1% formaldehyde for 10 min and
quenched with 0.25mM of glycine for 5min at room
temperature with rotation. After two washes with PBS,
cells were resuspended in 1 ml of ice-cold cell lysis buf-
fer (25 mM Tris-HCI pH7.4, 85 mM KCl, 0.1% Triton
X-100, and 1:100 proteinase inhibitor cocktail) and ro-
tated for 30 min at 4 °C. Nuclei were collected by centri-
fugation at 2300xg for 5 min at 4°C and rinsed once in
100 ul of 1 x NEBuffer Dpnll buffer. Nuclei were resus-
pended in 120 pl of 0.5% SDS and incubated at 62 °C for
10 min. Nuclei were immediately incubated on ice for 5
min and followed by a 30-min incubation at 37 °C after
adding 350 pl of ddH,O and 60 pl of 10% Triton X-100
to sequester SDS. Nuclei were mixed with 60 ul of 10 x
NEBuffer Dpnll buffer and digested using 500U of
Dpnll (NEB) on a rotator at 37 °C overnight. DpnlI di-
gestion was quenched by incubation at 62 °C for 20 min.
Digested nuclei were diluted with 2.4 ml of 1.25 x T4
ligation buffer (300 ul of 10 x NEB T4 ligase buffer,
240 ul of 10% Triton X-100, 1.845 ml of ddH,O, freshly
added 1:200 proteinase inhibitor cocktail). Nuclei were
then ligated by adding 15 pl of NEB T4 DNA ligase (final
concentration 30 Weiss U/ml) with rotation overnight at
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16°C. Chromatin was collected by centrifugation at
2300xg for 5min at 4°C, resuspended in 500 pl 0.5%
SDS lysis buffer (0.5% SDS, 10 mM EDTA, 50 mM Tris-
HCI, pH 8.0), and sonicated to ~ 500-bp average size on
the Branson Sonifier 450 ultrasonic processor (10% amp-
litude, 0.5s on 1s off for 30s). Chromatin fragments
were centrifuged at 16,100xg for 10 min at 4°C. Final
concentration 300 mM NaCl was added to the super-
natant followed by incubation with 50 ul of MyOne
Streptavidin T1 Dynabeads (Thermo Fisher Scientific) at
4°C. After overnight incubation, Dynabeads were
washed twice with 1 ml of 2% SDS, twice with 1 ml of
RIPA buffer with 0.5M NaCl, twice with 1ml of LiCl
buffer, and twice with 1 ml of TE buffer. Chromatin was
resuspended in SDS elution buffer (1% SDS, 10 mM
EDTA, 50mM Tris-HCI, pH 8.0, 0.2 mg/ml proteinase
K) followed by reverse cross-linking and proteinase K di-
gestion at 65°C overnight. CAPTURE-3C DNA was
purified using QIAquick Spin columns (Qiagen), and 5
ng of DNA was processed for library generation using
the NEBNext DNA Library Prep Kit (NEB). Libraries
were pooled and 38-bp or 75-bp pair-end sequencing
was performed on an Illumina NextSeq500 platform
using the 75-bp or 150-bp high output kit.

CAPTURE-3C-seq data analysis

Raw reads were processed as previously described [18]
with modifications for multiplex capture. First, read
pairs of replicate experiments were merged and mapped
separately to human (hgl9) or mouse (mm1l0) genome
assembly. Unmapped reads were remapped after remov-
ing Dpnll digestion sites. The mapped reads from both
procedures were merged and the reads with low map-
ping quality were removed. Then the uniquely mapped
reads were paired and PCR duplicates were removed.
For each sgRNA-targeted region, the preprocessed read
pairs were used to define its peak size. If a bait region
(enhancer or promoter) contained multiple sgRNAs,
their peaks were merged as a single peak for the bait re-
gion. For each peak region, the read pairs with both ends
within the same peak region were considered as self-
ligations and discarded for the downstream analysis. The
read pairs with only one end within the peak region
were considered as PETs for analyzing long-distance in-
teractions. For each bait region, all chromosomes were
binned as the size of its peak size. The statistical signifi-
cance of the identified intra- and inter-chromosomal
PETSs were tested as previously described [18]. If a SE re-
gion had several enhancers, all the tested PETs were
merged as the PETSs of this SE. To define the significance
of interactions between two bait regions, we imple-
mented a modified Bayesian model [18]. Specifically,
given two bait regions i and j with sizes of L(i) and L()),
respectively, we first constructed the random
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background by randomly sampling two chromosomal re-
gions with the same region sizes of L(i) and L(j), and
with the same chromosomal distance between them.
The random paired samplings were performed 10,000
times by avoiding the overlapping of any bait regions.
Then the random PETSs of each random paired sampling
were extracted and fitted as a negative binomial distribu-
tion. Suppose the observed PET number of bait regions i
and j is x(i, j), we can calculate P values of random PET
x less (more) than x(i,j). We then calculated the Bayes
factor (BF) to compare the hypothesis Hy that random
interactions are less than observed interactions against
the alternative hypothesis H;, representing the comple-

mentary case. The BF is defined as BF :%
}Zﬁgﬁ;; where EEEE[;; was assigned as 0.001 for controlling

false discovery rate (FDR). The BF value larger than 20
was considered as significant interactions between bait
regions i and j.

Comparison of chromatin interactions from multiple 3C-
based methods

We compared the CAPTURE-3C-seq data with existing
datasets for five DHS regions at the PB-globin LCR
region. The datasets were obtained from NCBI GEO
database with accession numbers GSM970213 and
GSM970216 for RNAPII and CTCF ChIA-PET;
GSM2037371 for UMI-4C; GSM970500 for 5C;
GSM2705043, GSM2705044, and GSM27050435 for
H3K27ac HiChIP  (merged); GSM1370434 and
GSM1370436 for DNase Hi-C (merged); and
GSM1551618 for in situ Hi-C (Additional file 3: Table
S2). For each datatype, the raw reads were processed
with the same procedure and parameters as in the
CAPTRE-3C-seq data analysis. We then extracted the
unique read pairs (PETs) with one end in the targeted
enhancer regions and calculated the PETs of an enhan-
cer region as PPKM (PETs Per Kilobase of bait region

per Million mapped reads) PPKM = PETsx10°

Enhances;,e x TotalPairs*

Identtification of hub enhancers and hierarchical SEs by H-
score

To determine the hierarchical structure of SEs, we calcu-
lated the relative PET enrichment of enhancers. First, we
counted the PET number for enhancer i within a SE j,

denoted as ENj(i). The H-score is calculated as H;(i)

0
L(i)x1 Z EN(i)
1

i and s is the total number of enhancers within the SE ;.
Here, the H-score of an enhancer is defined as mean

, where L(i) is the peak size of enhancer
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normalized score, indicating the relative enrichment of
interactions among all enhancers within a SE. We then
fitted the H-scores of all enhancers as a gamma distribu-
tion, and the enhancers with significant H-scores (P <
0.05) were referred to as hub enhancers, whereas the
other enhancers as non-hub enhancers. If a SE contains
at least one hub enhancer, it is categorized as a hierarch-
ical SE, otherwise as a non-hierarchical SE (Add-
itional file 1: Figure S2b). To determine the distance
between SEs and their associated gene targets, the genes
with significant interactions between their promoters
and constituent enhancers within the SEs were extracted
using the GENCODE gene annotation V19. For each
gene, the distance between its transcription start site
(TSS) and interacting enhancers was calculated. If there
are multiple enhancers interacting with one gene, the
enhancer with the strongest interacting strength was se-
lected for the calculation. Then two distance sets of hier-
archical and non-hierarchical SEs were grouped and
tested.

Analysis of promoter-centric chromatin interactions

The CAPTURE-3C-seq data of promoter-centric chro-
matin interactions in undifferentiated (0 h) and differen-
tiated (2, 6, 12, and 24 h) G1ER cells were processed as
described above. We used the peak sizes of the captured
22 activated promoters and 20 repressed promoters as
the anchor regions to identify different types of inter-
actions including enhancer-promoter (E-P) and other in-
teractions. We first annotated enhancers as the genomic
regions overlapped with ATAC-seq and H3K27ac ChIP-
seq peaks. Then the long-range DNA interactions be-
tween an anchor promoter region and its neighboring
enhancers within 200 kb are defined as E-P interactions.
The rest of intra-chromosomal interactions except E-P
interactions were defined as other interactions. The
detailed information about the captured promoter
regions and the interacting enhancers is shown in Add-
itional file 8: Table S7. To quantify the dynamic kinetics
of different types of signals including RNA-seq, ATAC-
seq, ChIP-seq, and CAPTURE-3C-seq, we normalized
each signal by its own sequencing depth across all time
points. Specifically, for RNA-seq, we calculated gene ex-
pression as FPKM (Fragments Per Kilobase of transcript
per Million mapped reads). For ATAC-seq and ChIP-
seq, we calculated FPKM values of the captured pro-
moter region. For CAPTURE-3C-seq, we calculated
PPKM (PETs Per Kilobase of bait region per Million
mapped reads) for all interactions, E-P interactions, and
other interactions. We then generated the normalized
signals by the mean of all five time points for each data
type (RNA-seq, ATAC-seq, ChIP-seq, and CAPTURE-
3C-seq). The resulting normalized FPKM (NFPKM) or
normalized PPKM (NPPKM), which indicates the
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relative signals across all time points for any given data
type, was used to compare between different conditions
or samples. The enriched TF motifs were identified by
HOMER [65] using G+C content controlled genome-
wide random background.

Quantification and statistical analysis

Statistical details including N, mean, and statistical sig-
nificance values are indicated in the text, figure legends,
or “Methods” section. Error bars in the experiments rep-
resent standard error of the mean (SEM) or standard de-
viation (SD) from either independent experiments or
samples. All statistical analyses were performed using
GraphPad Prism, and the detailed information about
statistical methods is specified in the figure legends or
“Methods” section.
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