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A highly diverse T-cell receptor (TCR) repertoire is a fundamental property of

an effective immune system, and is associated with efficient control of viral

infections and other pathogens. However, direct measurement of total TCR

diversity is impossible. The diversity is high and the frequency distribution of

individual TCRs is heavily skewed; the diversity therefore cannot be captured

in a blood sample. Consequently, estimators of the total number of TCR clono-

types that are present in the individual, in addition to those observed, are

essential. This is analogous to the ‘unseen species problem’ in ecology. We

review the diversity (species richness) estimators that have been applied to

T-cell repertoires and the methods used to validate these estimators. We show

that existing approaches have significant shortcomings, and frequently under-

estimate true TCR diversity. We highlight our recently developed estimator,

DivE, which can accurately estimate diversity across a range of immunological

and biological systems.
1. Introduction
The human T-cell receptor (TCR) repertoire—the range of different TCRs

expressed—plays a vital role in host defence. By recombination, random insertion,

deletion and substitution, the small set of genes that encode the T-cell receptor has

the potential to create between 1015 and 1020 TCR clonotypes (a clonotype is a

population of T cells that carry an identical TCR) [1,2]. However, the actual diver-

sity of a person’s TCR repertoire cannot possibly lie in this range. There are only an

estimated 1013 cells in the human body [3], and many clonotypes are of high abun-

dance due to strong selection forces (for example, thymic education or antigen

specificity). The actual, or realized, diversity of the human TCR repertoire remains

unknown. The term ‘diversity’ is commonly used to mean either the number of

classes (also known as ‘species richness’), or the degree of dispersion among

those classes. In this study, we use the term ‘species’ to refer to a single TCR

clonotype, and ‘diversity’ to refer to the number of TCR clonotypes.

TCRs are heterodimers and fall into two classes: TCR-ab and TCR-gd; gdT cells

constitute 1–10% of the T-cell repertoire [4]. Avariable (V ), joining (J ) and constant

region (C) constitute the TCR a- and g-chains. The TCR b- and d-chains are also

made up of a V, J and C region, with an additional diversity (D) region [5]. One seg-

ment from each region is recombined, with additional nucleotide additions and/or

deletions, to generate each rearranged TCR (figure 1). This recombination generates

high T-cell diversity [1] and enables the recognition of millions of antigens [6].

While V(D)J gene rearrangement is believed to be random [7], some clonotypes

are produced more commonly than others [2,8], leading to unequal frequencies

of naive T-cell clonotypes and to ‘public’ clonotypes, i.e. clonotypes shared

between people. This unequal frequency distribution is believed to be due to a

process known as convergent recombination, whereby certain nucleotide

sequences can be produced using a greater variety of recombination events; cer-

tain amino acid sequences can be made by a greater number of nucleotide triplets;
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Figure 1. T-cell receptor gene rearrangement. (a) Variable (V ), joining (J ) and constant regions (C ) constitute the TCR a-chain. (b) Variable (V ), joining (J ) and
constant regions (C ) constitute the TCR b-chain, with an additional diversity (D) region. Segments from each region are recombined, with additional nucleotide
additions, to generate each rearranged TCR. These processes generate substantial T cell diversity. (c,d) Hypervariable complementarity-determining regions (CDR1-
CDR3) of the a-chain (c) and b-chain (d ). CDR1 and CDR2 regions are encoded on the V region, while the most variable CDR3 region straddles the V(D)J junction.
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and certain TCRs require fewer nucleotide insertions, deletions

or substitutions [9].

The third complementarity-determining region 3 (CDR3)

of both the TCR a- and TCR b-chains straddles the V(D)J
junction [10,11] (figure 1b), the primary site of antigen contact

[5]. The CDR3 is the region most affected by recombination

[12], and the CDR3 region of the b-chain accounts for most

of the variation within a person’s T-cell repertoire. Antigenic

cross-reactivity of T cells results in a discrepancy between

structural diversity (the number of different nucleotide or

amino acid TCR combinations in the host) and functional

diversity (the number of different antigens recognized by

the T-cell repertoire) [1].
2. Why is T-cell receptor diversity important?
TCR diversity is associated with the effective control of viral

infections and other pathogens [13–15]. The number of clono-

types observed in the blood in one person has been reported to

decrease with age [16–19], viral challenge [15,20,21], immuniz-

ation [22] and as a result of immune suppression, for example

after haematopoietic stem cell transplantation (HSCT) [23].

TCR diversity has also been positively associated with autoim-

munity in both mice [24,25] and humans [26]. Accurate

quantification of diversity is important to assess the extent of

immune convergence (sharing of clonotypes between people)

[7,24,27–29].

Species diversity is also important in many systems out-

side T-cell immunology, for example, in estimating the

repertoire of antibody classes [30,31], assessing the size of

the metagenome in microbial communities [32,33] and

measuring the rate of evolution of quasi-species of a patho-

genic virus [34]. The original motivation for estimating

diversity comes from population ecology, where the question

of how many species there are in a given population gives

rise to the ‘unseen species problem’: how many species are

present, but unobserved, in the population of interest? Typi-

cally, there is a nonlinear relationship between the number of
individuals (e.g. a T cell, a microbe) and the number of

‘species’ (e.g. a clonotype or viral variant), and so diversity

cannot usually be estimated through linear scaling.
3. Why is estimating diversity difficult?
Estimating the diversity of the T-cell repertoire is difficult for

many reasons. First, the repertoire is highly diverse. Given

the number of T cells, (assumed to be of the order of 1012

[35,36]), a diversity of (say) 107 clonotypes [36] is unlikely to

be directly observed owing to the limited volume of blood

that can be taken from a person at any one time, and to the

heavy-tailed frequency distributions with highly non-uniform

clonotype abundances [19,37].

Second, the precise relationship between the diversity of

different TCR-a and TCR-b sequences and the actual TCR

functional diversity is unclear. Most recent studies focus on

the CDR3 region [5,24,38–40], because it is the most variable

region and because it is short enough to be captured in a

single sequence read [30]. However, a T-cell receptor consists

of pairings between either a and b chains or g and d chains;

this adds a further level of diversity that is not routinely

captured by many sequencing approaches. Furthermore, the

relationship between TCR sequence and three-dimensional

structural diversity and functional diversity are not fully

understood [40,41].

Third, laboratory techniques that give absolute and

unbiased estimates of clonotype frequency are technically

challenging. Early studies measured TCR diversity qualitat-

ively, where different clonotypes were identified visually as

discrete bands on genomic southern blots [42–44]. Other

approaches [45] used flow cytometry to measure the average

observed frequency of each clonotype, reasoning that if this

frequency was low then the population was more diverse.

Greater precision was achieved with spectratyping

[22,46,47], where the number of different CDR3 lengths is

used as a proxy for the number of clonotypes. The degree to

which the frequency distribution of CDR3 lengths deviates
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Figure 2. PCR amplification can lead to ‘false saturation’ of rarefaction curves.
Example of ‘exhaustive sequencing’ of CD4þ T cell compartment in a healthy
donor. Unbiased sequence data was obtained through 50 rapid amplification
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from normality is used as a metric of clonal expansion and thus

of reduced diversity (because of limited lymphocyte capacity)

[21,26]. Although this inference seems reasonable, expansion

of some clonotypes does not imply the extinction of other

clonotypes, merely their reduced relative frequency. Spectra-

typing produces incomplete sequence information [10]

without further subcloning of the PCR product [2,48,49]

which is low-throughput and labour-intensive [26,40].

High-throughput sequencing (HTS) allows greater sequen-

cing depth and significantly more accurate quantification of

TCR clonotype abundance [39], albeit at a greater expense

than spectratyping [10]. However, HTS is still subject to

PCR bias and sequencing error, with the consequences that

clonotype abundances can be drastically distorted and that

non-existent clonotypes can be recorded, thus falsely increasing

the observed diversity [50].

of cDNA ends (RACE) [53]. The rarefaction curve approaches saturation, falsely
implying that further sequencing would not yield many additional clono-
types. However, the approximate saturation value of 2.5 � 104 is not a
realistic estimate of total CD4þ TCR diversity. For example, Robins et al.
[47] frequently observed more than 105 clonotypes before estimating the
number of unseen clonotypes. PCR amplification overestimates the repeated
observation of TCR clonotype in the sample, leading to false saturation and
substantial underestimates of TCR diversity. (Online version in colour.)

.B
370:20140291
4. Unbiased sequencing of T-cell receptor
diversity is insufficient for diversity estimation

50 rapid amplification of cDNA ends (RACE) is reported to

suffer from markedly less bias than other HTS approaches

[5,51]. Nevertheless, 50 RACE (and unbiased sequencing

more generally) is unlikely to be sufficient for diversity esti-

mation. Diversity estimation usually makes use of two

quantities: the relative abundances of observed species, and

the extent to which each species is repeatedly observed in the

sample. If PCR amplification is unbiased, then relative abun-

dances will be preserved but the degree of repetition in the

sample will not.
5. ‘Exhaustive sequencing’ cannot capture full
repertoire diversity

Because all T cells within a sample of blood will not usually

be detected in a single sequencing experiment, many

researchers have used ‘exhaustive sequencing’ [37,38,52], i.e.

the library is sequenced with the greatest possible depth, to

maximize the number of reads per clonotype. It can then be

justifiably concluded that further sequencing of the same

library would not yield greater observed diversity. It is there-

fore tempting to conclude that the sample of blood contains a

complete census of clonotypes in the periphery. However,

such a conclusion would be false.

The principle that exhaustive sequencing does not capture

full repertoire diversity was demonstrated by Warren et al.
[52]. The authors exhaustively sequenced a library derived

from a peripheral blood sample. However, upon sequencing

a second library derived from the same blood sample, they

found that 75% of the sequences returned were new, i.e. not

contained in the first library. Furthermore, sequencing data

were obtained from a second independent blood sample,

and only 13% of the clonotypes observed in the second

sample were observed in the first. This indicates that exhaus-

tive sequencing of a single sample is incapable of capturing

diversity, regardless of the apparent degree of repetition of

species provided. That is, a saturating relationship between

the number of reads and the number of clonotypes does not

imply that there is a saturating relationship between the

number of T cells and the number of clonotypes. The limit-

ing factor is the number of TCRs present in the sample, not
the extent of amplification or depth of sequencing. We have

observed similar effects of ‘false repetition’ and ‘false saturation’

in our work [53]: figure 2 shows apparent saturation of the

number of new clonotypes observed as the number of sequence

reads increases. However, the number of clonotypes in the full

data (2.5� 104) is a drastic underestimate of TCR diversity,

where between 105 and 106 distinct CDR3 sequences have

been directly observed [47,52]. Finally, it has been noted [54]

that exhaustive sequencing of either or both of the TCR a and

b chains is insufficient to capture the full repertoire of a person.
6. Absolute T-cell counts are required
for diversity estimation

Recent approaches have used DNA barcoding [29,50,51,55]

or amplicon length discrimination [56,57] to resolve the

problems of PCR amplification. Under DNA barcoding, a clo-

notype is identified by its nucleotide or amino acid sequence,

but a second identifier is assigned to each individual short

DNA sequence through the addition of a random DNA

sequence label. Thus, the combination of a given clono-

type nucleotide sequence and a given random label is

unique. This allows identical T cells to be distinguished

from identical sequence reads, and so preferential amplifica-

tion is irrelevant. For example, if there are two amplicons

that have identical CDR3 sequences and identical labels, it

can be concluded that both amplicons have been derived

from a single DNA sequence. The resulting data therefore

consist of absolute—not relative—clonotype abundances,

which are required for any abundance-based estimator. Fur-

thermore, DNA barcoding can be extended to correct for

sequencing error [50,55].

Another factor that prevents absolute quantification of TCR

abundance is the sequencing of cDNA rather than genomic

DNA, since a single T cell may express multiple mRNA

copies. Therefore, cDNA is not suitable for diversity estimation.



Table 1. Comparison of diversity estimation approaches.

estimator advantages disadvantages

parametric

(e.g. Poisson abundance

models, Power laws)

can estimate clonotype frequency distribution requires a priori assumptions on analytical form of

clonotype frequency distribution

lack of validation: goodness-of-fit to observed data

does not confirm model accuracy

non-parametric abundance-

based estimators

(e.g. Chao1, ACE, capture –

recapture)

no a priori assumptions required on analytical form

of clonotype frequency distribution

cannot estimate clonotype frequency distribution

biased by sample size

inaccurate in highly diverse immunological

populations

non-parametric incidence-based

estimators

(e.g. Chao2, ICE)

does not require absolute count data lack of validation in immunological populations

biased by sample size

DivE accurate in multiple validations, across all

immunological populations tested

unbiased by sample size

time consuming: multiple models must be fitted
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7. Unseen clonotypes: the problem
Even where data collection involves considerable sequencing

depth, and where unbiased data have been obtained, estimators

of the number of unseen clonotypes will need to be employed

because of limits on blood volume that can be taken from

donors. Several estimators of species richness (i.e. the number

of species) developed in ecology have been applied to estimate

TCR diversity, treating each clonotype as a ‘species’. Such esti-

mators fall into two broad categories: parametric estimators

[58], where the shape of the species frequency distribution is

assumed to follow some analytical form, and non-parametric

estimators that make no such assumptions, and thus population

frequencies cannot be inferred [59]. Since the true numbers of

species or clonotypes are unknown, it is difficult to validate

estimators of diversity, and so in common with ecological

populations, it is often unclear which estimator should be

used. We compare diversity estimators below and in table 1.
8. Differences between ecological and
immunological data

There are important qualitative differences between T-cell

repertoires and ecological populations in the uniformity of

sampling. In ecological populations, data collection is fre-

quently not random. For example, while placement of

quadrats may be random, all of the individuals present in

that quadrat are counted, leading to clustering of data [60].

Also, the probability of detection varies between species as it

is influenced by colour, physical size, noise emission, geo-

graphical distribution, movement, variety of habitats and

relationship to other species [61,62]. By contrast, in samples

of T cells derived from blood, it is reasonable to assume that

individual T cells have the same probability of detection; this

assumption is less justifiable in solid tissue, as for example,

lesions are non-randomly sampled.

In many ecological populations (e.g. plants, arthropods),

the actual counting of individuals present in the sample is
more straightforward than for populations of T cells, where

sequencing introduces biases [19] and where it is difficult

to distinguish sequencing errors from rare species [52]. The

frequent implicit assumption that sequencing data comprised

individuals that are equally detectable is often inappropriate.

The probability that a given sequence read is recorded is con-

ditional on two events: first, the probability that the T cell is

sampled from blood, which is equal among T cells; and

second, the probability that an amplicon from a T cell is

amplified, which is not equal across all CDR3 sequences.

This problem does not arise in ecological datasets.

The use of diversity indices developed in ecology that are

used in T-cell repertoires is not restricted to species richness

estimators. Similarity indices such as the Jaccard [63,64],

Morisita-Horn [41,63], analysis of similarity (ANOSIM) [10]

and dispersion metrics such as Simpson’s diversity index

[48,65], the Shannon entropy [20,66] and Renyi entropy [66]

have been used to compare the TCR diversities between

different people or between different T-cell phenotypes

[65,67]. Many of the difficulties that arise in applying eco-

logical species richness estimators to T-cell repertoires also

confound the measurement of the extent of dispersion or

similarity between repertoires, and ecological indices should

be used with caution when analysing TCR repertoires.
9. Non-parametric abundance based species
richness estimators

One of the most commonly used estimators is Chao1 [68] or

its bias-corrected form (Chao1-bc) [69]. These estimators have

been used to estimate TCR diversity in mice [70], and humans

[71], making use of an amendment to the estimator [72] that

takes account of the maximum upper bound of diversity.

The abundance-based coverage estimator (ACE) [73],

which has been suggested as best practice [58] and is com-

monly used in ecology, has been used to estimate repertoire

diversity in transgenic mice in the contexts of T-cell differen-

tiation [64], and TCR specificity and self-recognition [63,74].
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Figure 3. Performance of species richness estimators. (a,c) The Chao1bc (blue), Chao2 (orange), ACE (grey), Bootstrap (green) and Good-Turing (black) estimators are
applied to in silico random subsamples of observed data. Examples for HTLV-1 and microbial data are shown. Estimates systematically increase with sample size.
Chao2 estimates are calculated by randomly dividing each subsample into four in silico replicates. We observe the same bias with sample size where subsamples
were divided into two and three in silico replicates (data not shown). (b,d ) DivE (red) is applied to same subsamples as the other estimators. Performance of DivE
was evaluated by comparing the error of estimates (Ŝobs), to the (known) number of species Sobs in the full observed data ( purple line) and by comparing estimates
as a function of sample size. In all datasets, DivE accurately estimates the species richness of the full observed data from subsamples of that data and is unbiased by
sample size.
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However, Hsieh et al. [74] note that ACE is based on the prob-

ability that uniform sampling would produce the observed

frequency distribution.

Weinstein et al. [30] used a capture–recapture approach to

estimate the size of the antibody repertoire in zebrafish, and

this approach was extended in Glanville et al. [31] to estimate

antibody diversity in humans. The latter study also used a

technique that allows sequencing of reads long enough to span

all three CDR regions, which would allow more direct data

on T-cell repertoires to be collected. No validation of the

capture–recapture method was performed in either study.

Non-parametric abundance-based species richness estima-

tors have been validated using ecological populations that

have been extensively sampled and where approximate species

richness is assumed to be known [75]. However, the accuracy of

these ecological estimators has been questioned in immunologi-

cal populations. We recently compared the performance of

widely used non-parametric species richness estimators (the

Chao1bc [69], ACE [73], Bootstrap [76] and Good-Turing [77]

estimators) from population ecology when applied to immuno-

logical and microbiological systems [53]. We considered three

distinct sets of data: the clonal distribution of cells naturally

infected with human T-lymphotropic virus type-1 (HTLV-1),

operational taxonomic units (OTUs) of Bifidobacteria in the
gastrointestinal tract of infants, and T-cell receptor repertoires.

In the case of HTLV-1, a ‘species’ is a clone, defined as a popu-

lation of infected cells that share a genomic site of proviral

integration.

For each set of data, we found that all estimators were

biased by sample size (figures 3 and 4). This is problematic

as estimates of species richness would increase if, for example,

greater blood volumes were drawn or technique sensitivity

was improved. Furthermore, there was strong evidence that

the estimators underestimated diversity. Firstly, the estimators

frequently produced estimates from subsamples that were

lower than the diversity of the full observed sample. Secondly,

in almost all cases, only a small number of unseen ‘species’ was

predicted in addition to those observed. Such estimates are

implausible in the HTLV-1 and T-cell repertoire datasets

where there is such a vast potential diversity.
10. Non-parametric incidence-based species
richness estimators

The incidence-based coverage estimator [78] was used to esti-

mate the diversity of regulatory T cells in transgenic mice

[64], although no validation of this estimator was performed.
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Qi et al. [19] used multiple replicate libraries to compute the

Chao2 estimator [79], resulting in an estimate of 108 clonotypes.

The Chao2 estimator makes use of incidence (i.e. presence or

absence) data, as opposed to abundance data, across different

replicates. The estimator therefore provides a method of avoid-

ing the distorted abundances due to PCR amplification

mentioned above.

To validate their approach, the authors created an in silico
Zipf distribution of clonotype frequencies from which to

sample. They took random samples of varying sizes and

found that the estimated diversity accurately estimated the

number of clonotypes in their in silico distribution. Although

indirect and using only one in silico distribution, this vali-

dation suggests that their method holds promise. However,

we have applied Chao2 to HTLV-1 and microbial OTU

data, and we again observed a bias with sample size, as

seen with the other non-parametric estimators we tested

(figures 3 and 4).
11. Parametric species richness estimators
Robins et al. [47] frequently observed as many as approximately

105 TCR clonotypes using single-molecule DNA sequencing,

and employed a method originally devised by Efron & Thisted

[80] and amended in Ionita-Laza et al. [81] to estimate a periph-

eral blood diversity of 3 to 4 � 106 clonotypes, including 1 � 106

antigen-experienced T-cell clonotypes, where the latter is

approximately one order of magnitude higher than estima-

ted previously [36]. Their method assumes that individual

T-cell clonotypes enter the sample according to a Poisson

process with clonotype-specific rates, which are inferred from

the observed clonotype abundances. The method predicts

the number of new sequences that would be observed in a

subsequent sample. Hence their method does not merely pro-

vide an estimate of TCR diversity, but also the relationship

between sample size and diversity. Therefore, the authors

were able to validate their method. While this validation was

direct, in that observation was compared with the predic-

ted number of additional clonotypes, it was limited to only a

single additional sample.
Several recent studies have made use of the class of Poisson

abundance models (PAMs). Sepúlveda et al. [59] noted that

species frequency data come from a multivariate hypergeo-

metric distribution (i.e. a multinomial distribution where

samples are taken without replacement). Because the size of

a sample is dwarfed by the size of the total population (and

therefore sampling does not drastically alter clonotype relative

abundances), these authors approximated the multivariate

hypergeometric distribution using a Poisson distribution.

Incorporation of a varying sampling rate for clonotypes of

varying frequencies leads to the class of PAMs [41,82]. They

applied their method to previously published data on mice

with different phenotypes, and evaluated the consistency of

their method by excluding clonotypes above successively

higher cut-off frequencies. Worryingly, there was wide vari-

ation in diversity estimates across all phenotypes depending

on the specific PAM used. Rempala et al. [41] focused on one

such model, the bivariate Poisson-lognormal distribution,

and concluded that under-sampling in their repertoire datasets

is more severe (and thus the population is more diverse) than

would be estimated using the Good-Turing estimator [77].

Other extensions of the class of PAMs have been developed

[41,82] that estimate the similarity between populations in

the presence of unseen clonotypes.

Using a compound Poisson process model used originally

to estimate gene capture diversity [83], Wang et al. [39] esti-

mated TCR diversity in the context of T-cell fate and

differentiation. This method can also model the relationship

between the number of clonotypes and the number of T

cells. They estimated approximately 106 unique TCRa and

TCRb CDR3 nucleotide sequences, approximately one third

of that predicted by Arstila et al. [36]. Their method was vali-

dated previously in the context of gene capture diversity [83]

using in silico distributions, choosing lognormal, exponential

and gamma distributions of varying diversities. It is unclear

how this validation translates to T-cell immunology.

In addition to the capture–recapture approach used in

Weinstein et al. [30], Klarenbeek et al. [37] fitted multiple Pois-

son mixture models to HTS data to estimate b-chain diversity

in the CD4þ and CD8þ T-cell compartments. Extending the

distribution fitted to the observed data to model the

number of unseen clonotypes, the authors estimated that
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the memory compartment consists mainly of unexpanded

clones and is far more diverse than thought previously [36]

(only 2 and 3–10 times less diverse than the naive repertoire

in CD4þ and CD8þ T-cell compartments, respectively). Their

estimates are also remarkable in that they predict that more

than 90% of memory clonotypes are relatively small.

Power laws have been used to model the form of the T-cell

repertoire [84,85]. An advantage of this method is that the fitted

parameters are relatively easy to interpret. It can be shown that

one parameter quantifies the proportion of the repertoire occu-

pied by clonotypes of a single T cell, and the other provides a

measure of dispersion. Power law characterizations of the

T-cell repertoire could be extended to estimate the number of

unseen clonotypes in a similar manner to Klarenbeek et al.
[37] by extending the modelled distribution.

Parametric approaches are often evaluated using goodness

of fit to the observed data, for example using x2-tests or

Akaike’s information criterion (AICc) [30,59,86,87]. While

these methods are useful for comparative purposes, they do

not validate the resulting model’s accuracy. A major limitation

of all parametric approaches is that the estimated diversity is

dependent on the assumed form of the clonotype distribution.
12. A new approach to T-cell receptor diversity
estimation: DivE

We developed an estimator named DivE [53] which uses

rarefaction curves (figure 5). Similar to a species accumulation

curve, an individual-based rarefaction curve is created by cumu-

lating the number of species as the number of observed

individuals (e.g. a T cell) increases, in a single resample. Species

counts are averaged over multiple resamples of the data to

obtain the expected number of species as a function of the

number of individuals. Sample-based rarefaction curves plot

the expected number of species against the number of samples.

DivE involves fitting multiple simple mathematical models,

many of which are well known in ecological studies [88,89], to

rarefaction curves, and to nested subsamples of these curves.

Novel criteria are then used to determine the most appropriate

model; as well as assessing the quality of fit to seen data these

criteria also assess the quality of fit to unseen data, i.e. how

well a given model can predict the full dataset from random

subsets thereof. The best-performing models are then aggre-

gated and extrapolated to a user-specified population size to

produce the diversity estimate (figure 5).
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We used three methods to validate the performance of DivE.

We measured the extent to which DivE could: (i) estimate the

diversity of the observed dataset from subsamples; (ii) estimate

from a single dataset the diversity of additional independent

HTLV-1 data, obtained using separate blood samples taken in

immediate succession and (iii) provide consistent estimates

given samples of unequal size. In each validation, the estimator

performed better than the non-parametric abundance-based

estimators we tested (figure 3). We believe the principal

reason that DivE performs well is that candidate models are

selected on their ability to consistently predict additional rare-

faction data. The additional data (i.e. the full rarefaction curve)

have no influence on fitted parameter values, and so DivE not

only assesses goodness of fit but also evaluates the accuracy of

the model. DivE has been provided as an R package [90], avail-

able at http://cran.r-project.org/web/packages/DivE/index.

html [91].

Accurate extrapolation of rarefaction curves assumes that

the sampled population is representative of the whole popu-

lation to be extrapolated to [60,92,93]. This is a reasonable

assumption in the case of T-cell sampling in the blood, i.e.

T cells sampled in one blood draw are likely to be represen-

tative of all T cells in the peripheral blood. However, this is

a poor assumption when trying to infer the TCR diversity

in the whole body as T cells sampled in the blood may not

be representative of T cells in lymphoid tissue, etc. The diffi-

culty of inferring total population diversity from estimates in

the blood is not unique to DivE and will adversely affect the

accuracy of all estimators.

An alternative approach to rarefaction curve extrapolation

that is based on a rigorous statistical footing has recently been

developed [94–96]. However, to estimate the rarefaction

curve, this method requires an input of species richness

(usually provided by ACE or Chao1), which is the quantity

we seek to estimate. Furthermore, the authors of these

papers caution that this method is not suitable for extrapol-

ation beyond two- or threefold.

We summarize the advantages and disadvantages of

different diversity estimation methods in T-cell repertoire

analysis in table 1.
13. Discussion
To estimate repertoire diversity it is essential to obtain

unbiased data, with absolute counts of TCR clonotypes. If

unbiased absolute count data are not available, neither rela-

tive abundances nor the degree of repetition of observations

are credible, and so diversity estimators should not be

applied. While Chao2 does not require abundance data, we

have found that this estimator too is biased by sample size

in immunological and microbiological data (figure 3).

We also caution against estimating diversity using severely

under-sampled data, whether due to limited sequencing depth

or low blood volume. To quantify ‘under-sampling’, we pre-

viously defined a parameter based on the curvature of the

observed rarefaction curve (see [53] for further details).
A linear rarefaction curve implies an implausible constant

rate of species accumulation. As sampling depth increases,

the rate of species accumulation should decrease as previously

encountered species are repeatedly observed. Abundance-

based estimators should not be applied when the rarefaction

curve is close to linear.

Recent advances in HTS combined with DNA barcoding

mean that unbiased absolute count data is now increasingly

available. However, because of the enormous potential diver-

sity of the TCR repertoire and the limited amount of blood

that can be drawn from a donor at any given time, there will

almost certainly be unseen TCR clonotypes regardless of the

precision of data collection. Therefore, estimators of diversity

must be employed. Existing parametric estimators suffer from

the requirement of an a priori form of the species frequency dis-

tribution. Furthermore, each non-parametric estimator we have

tested, either abundance- or incidence-based, was significantly

biased by sample size.

Absolute count data allow important simplifying assump-

tions to be made about the relationship between the observed

data and the underlying T-cell repertoire, namely that individ-

ual T cells have been sampled independently, randomly and

with equal detection probabilities. These assumptions in turn

allow the extrapolation of models fitted to individual-based

rarefaction curves. The question of which model to fit, how-

ever, is non-trivial. DivE selects which models are most

appropriate based on their ability to faithfully reproduce all

observed rarefaction data from subsamples, providing a

degree of robustness that we have not observed with classical

non-parametric estimators. Crucially, the form of the model

chosen depends on the data, and so DivE does not require a
priori assumptions regarding the form of the clonotype fre-

quency distribution, or regarding the relationship between

the number of T cells and the number of TCR clonotypes.

We have validated DivE across three independent immuno-

logical and microbiological systems. In all systems, the estimator

was accurate, and considerably more so than the non-parametric

estimators we examined. We believe that this estimator will be an

important tool to estimate T-cell repertoire diversity.
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