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Introduction: Growth failure is considered the most important clinical outcome parameter in childhood

chronic kidney disease (CKD). Central to the pathophysiology of growth failure is the presence of a chronic

proinflammatory state, presumed to be partly driven by the accumulation of uremic toxins. In this study,

we assessed the association between uremic toxin concentrations and height velocity in a longitudinal

multicentric prospective pediatric CKD cohort of (pre)school-aged children and children during pubertal

stages.

Methods: In a prospective, multicentric observational study, a selection of uremic toxin levels of children

(aged 0–18 years) with CKD stage 1 to 5D was assessed every 3 months (maximum 2 years) along with

clinical growth parameters. Linear mixed models with a random slope for age and a random intercept for

child were fitted for height (in cm and SD scores [SDS]). A piecewise linear association between age and

height was assumed.

Results: Data analysis included data from 560 visits of 81 children (median age 9.4 years; 2/3 male). In (pre)

school aged children (aged 2–12 years), a 10% increase in concurrent indoxyl sulfate (IxS, total) concen-

tration resulted in an estimated mean height velocity decrease of 0.002 SDS/yr (P < 0.05), given that CKD

stage, growth hormone (GH), bicarbonate concentration, and dietary protein intake were held constant. No

significant association with height velocity was found in children during pubertal stages (aged >12 years).

Conclusion: The present study demonstrated that, especially IxS contributes to a lower height velocity in

(pre)school children, whereas we could not find a role for uremic toxins with height velocity during pu-

bertal stages.
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G
rowth failure is considered the most important
clinical outcome parameter in childhood CKD,

because poor growth has been closely related to
increased risk of hospitalization, poor school atten-
dance, and death.1-3 Moreover, growth failure has
major long-term consequences on the child’s quality of
life, self-esteem, education level, level of employment,
and chances of finding a partner.4,5 Growth failure in
childhood CKD remains common despite improvements
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in its general management. Depending on the country
of residence and the proportion of children with kid-
ney failure, a height below the third percentile has
been reported in up to 45% of children.6-9 Especially
the growth outcomes of children on dialysis and
post-transplantation did not significantly improve
with time, whereas improved growth outcomes due
to recent advantages appear to be limited to the predial-
ysis period.6,7 As a result, approximately 20% of pa-
tients with childhood-onset kidney failure have a
final adult height likely to impact social integration
and quality of life.4-6

Multiple factors have been identified to contribute
to growth failure in childhood CKD, such as distur-
bances in the somatotropic hormone insulin-like
growth factor-1 (IGF-1) axis, malnutrition, metabolic
Kidney International Reports (2024) 9, 1674–1683
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acidosis, CKD-mineral bone disease and vitamin D
deficiency, delayed puberty, steroid therapy, and
inflammation.10-15 In particular, the chronic inflamma-
tory state present in CKD is hypothesized to play a
significant role in the pathophysiology of growth fail-
ure in childhood CKD. Inflammatory markers such as
interleukin (IL)-1b and/or tumor necrosis factor-alpha
via nuclear factor-kappa-B activation, have been
related to the following: (i) an overexpression of sup-
pressor of cytokine signaling proteins-2 (SOCS2) lead-
ing to an imbalanced Janus kinase/signal transducers
and activators of transcription cascade and GH resis-
tance, (ii) a decrease of chondrocyte proliferation, (iii) a
decrease in appetite, and/or (iv) protein-energy
wasting.16-22 This chronic proinflammatory state is
the result of oxidative stress; increased generation and
reduced clearance of cytokines, infections, metabolic
acidosis; accumulation of toxic organic metabolites (also
called “uremic toxins”) and advanced glycation end
products; volume and sodium expansion, mineral bone
disease; and concomitant diseases.23,24

In particular, the accumulation of uremic toxins due
to decreased renal excretion whether or not accompa-
nied by increased toxin generation, is recognized to
contribute to this chronic proinflammatory state.25,26

Up to now, more than 150 uremic retention solutes
have been identified and they are divided into 3 cate-
gories, based on their physicochemical characteristics
and their behavior during dialysis, as follows: (i) small,
water-soluble compounds; (ii) middle molecules; and
(iii) protein-bound uremic compounds. In particular
the removal of protein-bound compounds is limited
during dialysis because only the free unbound fraction
of protein-bound uremic toxins can diffuse into the
dialysate. When pathophysiological effects are
demonstrated, the compounds are called uremic toxins.
Uremic toxins have been related to many complications
of kidney disease, especially cardiovascular and infec-
tious diseases and the progression of kidney insuffi-
ciency, but also to a number of distressing patient-
related outcomes, such as cognitive dysfunction or
itching, which are not fatal but affect quality of life
substantially.25,27,28

Despite extensive research on uremic toxicity over
the past decades, the role of uremic toxins in CKD-
related statural growth failure is unexplored. Never-
theless, several observational studies have demon-
strated that a high weekly dose of hemodialysis induces
catch-up growth in childhood kidney failure, sug-
gesting that the enhanced uremic toxin removal in
these extended hemodialysis strategies might
contribute to improved growth.29-32 Therefore, in this
study, we explored the association between uremic
toxin concentration and height velocity in a
Kidney International Reports (2024) 9, 1674–1683
longitudinal cohort of children with different stages of
CKD. We primarily aimed to assess the role of uremic
toxins on the GH-dependent height velocity in (pre)
school aged children (aged 2–12 years old), because
inflammation is a crucial contributor in the patho-
physiology of IGF-1 axis disturbances in CKD.
Secondarily, we aimed to evaluate the role of uremic
toxins on height velocity during pubertal growth (aged
>12 years), in which height velocity is primarily
dependent on the gonadotropic hormone axis.

METHODS

Study Population

In this cohort, children (aged 0–18 years) with CKD
stages 1 to 5D were recruited from the Departments of
Pediatric Nephrology of Ghent University Hospital,
University Hospital Antwerp, University Hospital
Leuven, CHC Liège, and University Hospital Saint-Luc
Brussels between August 2014 and December 2017.
CKD was defined according to the Kidney Disease:
Improving Global Outcomes guidelines and classified in
different stages (1–5D) according to estimated glomer-
ular filtration rate, determined by the updated bedside
Schwartz estimated glomerular filtration rate equa-
tion.33 Exclusion criteria were active systemic inflam-
matory conditions (e.g., systemic lupus erythematosus)
or active malignancy (e.g., posttransplant lymphopro-
liferative disease and malignancy under chemo-
therapy). Visits were performed away from active
bacterial or viral infectious disease (e.g., urinary tract
infections and respiratory infections) with implications
for the child’s wellbeing. Children with a genetic dis-
ease with an intrinsic impact on growth (i.e., Down
syndrome) were excluded from this analysis. Study
data were collected and managed using REDCap elec-
tronic data capture tools located on secure servers at
the Ghent University Hospital.34,35 REDCap is a secure,
web-based software platform designed to support data
capture for research studies, providing an intuitive
interface for validated data capture, audit trails for
tracking data manipulation and export procedures,
automated export procedures for seamless data down-
loads to common statistical packages, and procedures
for data integration and interoperability with external
sources. The study protocol was approved by the
Ethics Committee and written informed consent was
obtained from all individual participants included in
the study and/or from their parents (B670201524922;
B670201422206).

Data Collection

Study visits were performed every 3 months for a
maximum period of 2 years. Demographics were
recorded at baseline, and clinical parameters (age,
1675
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anthropometric data, medical treatment, dialysis pre-
scription, etc.) and dietary intake were recorded at each
3-monthly visit. Dietary protein intake was expressed
as the achieved percentage of the recommended 100%
dietary reference intake. For a detailed description of
the dietary intake methodology, we refer to earlier
published work by El Amouri et al.36 2021. Body
composition monitoring (Fresenius Medical Care, St.
Wendel, Germany) was performed at baseline, and
subsequently once a year. All visits in this cohort that
were performed in the first year after a kidney trans-
plantation were excluded from this analysis. The
following 2 growth outcome measures were selected: (i)
height expressed in SDS according to World Health
Organization Child Growth Standards (based on the
chronological age of the child) and (ii) height expressed
in cm.

Biochemical Measurements

From each participant, blood samples (ethylenediamine
tetraacetic acid plasma and serum) were drawn every 3
months during a routine ambulatory visit. For the
collection of serum, blood samples were allowed to clot
for 20 to 30 minutes before centrifugation (2095g; 10
min; 4 �C). Serum and plasma aliquots were stored
at �80 �C awaiting batch analysis. Standard laboratory
assays at the clinical laboratory of the Ghent University
Hospital (Ghent, Belgium) were used to measure serum
biochemical parameters such as creatinine (Photometric
[Architect c16000, Abbott, IL]), phosphate, calcium,
parathyroid hormone, albumin and total protein. A
selection of uremic toxins was made by the research
team, based on the following: (i) previous published
data,25,37 (ii) the in-center expertise, and (iii) the
physicochemical characteristics that affect the behavior
of these toxins during dialysis. Concentrations of IxS,
indole acetic acid, p-cresyl sulfate, p-cresyl glucuro-
nide, hippuric acid and 3-carboxy-4-methyl-5-propyl-
2-furanpropionic acid were quantified as previously
described.38 Briefly, for total concentrations, plasma
samples were deproteinized by heat denaturation, fol-
lowed by a filtration step through Amicon Ultra 0.5 ml
filters (molecular weight cut-off 30 kDa, Millipore
Merck, Darmstadt, Germany). For the free fraction,
untreated plasma samples were filtered first through
the Amicon Ultra Filters. Reversed-phase ultra-
performance liquid chromatography (Agilent 1290 In-
finity device, Agilent, Santa Clara, CA) was used to
separate the uremic toxins. IxS (lex: 280 nm, lem: 376
nm), p-cresyl sulfate and p-cresyl glucuronide (lex: 264
nm, lem: 290 nm) and indole acetic acid (lex: 280 nm,
lem: 350 nm) were detected by an Agilent G1316C
fluorescence detector. Hippuric acid and 3-carboxy-4-
methyl-5-propyl-2-furanpropionic acid were detected
1676
with an Agilent G4212A diode array detector at 245
nm, and 254 nm, respectively. Plasma concentrations of
the following solutes were determined by enzyme-
linked immunosorbent assay (ELISA): symmetric
dimethyl-arginine and asymmetric dimethyl-arginine
(competitive ELISA from DLD Diagnostika, Hamburg,
Germany), complement factor D (sandwich ELISA from
R&D systems, Abingdon, UK) and b2M (sandwich
ELISA from Orgentec Diagnostika, Germany). ELISAs
were used according to the manufacturer’s guidelines.
ELISAs were analyzed using the EL808 Ultra Micro-
plate Reader from Bio-Tek Instruments (Winooski, VT)
using KC4V3.0 Analysis Software (Bio-Tek
Instruments).

Uremic toxin concentrations were expressed as a
concentration and as a z-score relative to the healthy
control group (in SDS), using the reference values for
healthy children published by Snauwaert et al.39.
Three age categories (<6 years, 6–12 years, and 12–18
years) were used if uremic toxins were age-dependent
(e.g., complement factor D, hippuric acid). The z-
scores were calculated as follows: for child i the zi ¼
ðxi e xcÞ = sdxc; with xi ¼ concentration of uremic
toxin in child i; xc ¼ average toxin level in the control
group; and sdxc ¼ SD of uremic toxin in the control
group.39 The z-scores can be interpreted in terms of SD
away from the average toxin level in the healthy con-
trol group, independent of the effect of age.

Statistical Analyses

Continuous variables were summarized by their me-
dian value and (25th; 75th percentile). Categorical
variables were described with absolute frequencies
and percentages. Linear mixed models were fitted for
height (SDS and cm). A piecewise linear model was
selected to address the different stages of growth, that
is, infants (aged <2 years) in which nutrition pre-
dominates growth, (pre)school age (2–12 years) in
which IGF-1 axis disturbances predominates growth,
and pubertal age (>12 years) in which sex hormones
predominate growth. The fixed effects part included
CKD stage (i.e., stage 1–2 vs. stage 3–4 vs. stage 5–5D,
time-varying), GH (yes/no, time-varying), bicarbonate
concentration (mmol/l; time-varying), within-patient
mean dietary protein intake (% dietary reference
intake, time-fixed), the respective concurrent toxin
concentration (continuous, time-varying), age in years
(piecewise linear with 2 knot locations at 2 and 12
years), and 2-way interactions between the toxin
concentration and age splines. Models for height in cm
were also adjusted for sex (time-fixed). The random
effects part included a random slope for age and a
random intercept for child. We assume a piecewise
linear association between age and height, with 3
Kidney International Reports (2024) 9, 1674–1683



Table 1. Patient characteristics at baseline in overall CKD stage
1-5D cohort
Characteristics CKD stage 1--5D

Number of patients, n 81

Follow-up time (mo), median (25th pct; 75th pct) 23.3 (15.6; 25.2)

Total number of visits 560

Number of visits per patient, median (25th pct; 75th pct) 7 (5; 9)

Age (yr, at baseline), median (25th pct; 75th pct) 9.4 (4.1; 14.6)

Age category, n (%)

<2 yr 6 (7%)

2–12 yr 46 (57%)

>12 yr 29 (36%)

Male, n (%) 52 (64%)

Renal diagnosis, n (%)

CAKUT 41 (51%)

Cystic disease 3 (4%)

Glomerulonephritis 14 (17%)

Others/unknown 23 (28%)

CKD stage (at baseline), n (%)

Stage 1–2 (eGFR >60 ml/min per 1.73 m2) 16 (20%)

Stage 3 (eGFR 30–59 ml/min per 1.73 m2) 21 (26%)

Stage 4 (eGFR 15–29 ml/min per 1.73 m2) 22 (27%)

Stage 5 (eGFR <15 ml/min per 1.73 m2) 10 (12%)

Stage 5D (PD þ HD) 12 (15%)

Received dialysis (PD or HD) during or prior to the study?, n (%) 32 (40%)

Received a KTx prior to the study (all >1 yr before entry)?, n (%) 12 (15%)

Anthropometry (at baseline), median (25th pct; 75th pct)

Height (SDS, at baseline) �1.3 (�2.4; �0.4)

Calculated slope SDS/yr during study 0.1 (�0.2; 0.2)

Weight (SDS, at baseline) �1.1 (�2.0; 0.0)

BMI (SDS, at baseline)a �0.4 (�1.2; 0.4)

Body composition (at baseline), median (25th pct; 75th pct)b

Lean tissue index (kg/m2) 13.1 (12.3; 13.9)

Lean tissue mass (relative, %) 78.5 (70.0; 87.1)

Fat tissue index (kg/m2) 3.4 (2.0; 5.9)

Fat tissue mass (relative, %) 14.9 (9.7; 22.7)

Dietary protein intake (relative to DRI %), median
(25th pct; 75th pct)c

175 (118; 267)

Biochemistry (at baseline), median (25th pct; 75th pct)c

Serum albumin (g/l) 44 (42; 47)

PTH (ng/l) 65 (41; 112)

25-OH vitamin D (ng/ml) 34 (23; 47)

Serum alkaline phosphatase (U/l) 220 (141; 283)

Serum calcium (mmol/l) 2.43 (2.35; 2.50)

Serum phosphate (mmol/l) 1.41 (1.27; 1.60)

Serum bicarbonate (mmol/l) 22.3 (20.2; 25.0)

Treatment (during study follow-up), n (%)

rGH therapy ($50% of study period) 19 (23%)

Steroid therapy ($1 visit, all dose <10 mg/m2/d) 7 (1%)

Cinacalcet 0 (0%)

BMI, body mass index; CAKUT, congenital anomalies of kidney and urinary tract; CKD,
chronic kidney disease; DRI %, daily requirement index; eGFR, estimated glomerular
filtration rate; HD, hemodialysis; i.e., achieved percentage of the recommended 100%
dietary reference intake; KTx, Kidney transplantation; mo, months; pct, percentile; PD,
peritoneal dialysis; PTH, parathyroid hormone; rGH, recombinant growth hormone
therapy; SDS: SD score.
an ¼ 76 (5 missing <2 yr of age at baseline)
bn ¼ 71 (10 missing, children <15 kg)
cn ¼ 72 (9 missing)
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different (but connected) regression functions
(Supplementary Figure S1A and B). If needed to
improve linearity, the uremic toxin concentrations
were naturally log-transformed. Statistical analyses
were performed in R version 4.3.1.40 Hypothesis
testing was performed at the 2-sided 5% significance
level.

RESULTS

Study Population

In Table 1, we summarize the patients’ characteristics at
baseline in the CKD1 to 5D cohort (n ¼ 81 patients, 560
visits). For all children, between 2 and 10 visits were
included. The median follow-up time of the patients in
this observational cohort was 23.3 months; 75% of the
patients in this cohort had a follow-up time of 15.6
months or more (Table 1). At baseline, 54% of children
had an estimated glomerular filtration rate at baseline
less than 30 ml/min per 1.73 m2 and 15% were dialysis-
dependent. Of the 560 visits, 123 were visits of patients
treated with dialysis. The median age at baseline was 9.4
years (57% between 2 and 12 years, 36% >12 years)
and 2 of 3 was male. Of all the visits, 309 were in the
(pre)school age category (55%), whereas 231 (41%)
during pubertal stages and only 20 (4%) during in-
fancy. Half of the patients was diagnosed with
congenital anomalies of kidney and urinary tract and
15% underwent a kidney transplant before the study.
Dietary protein intake was adequate in this cohort, as
reflected by the high average daily requirement index
(i.e., the achieved percentage of the recommended 100%
dietary reference intake) of �180%, with a 25th
percentile dietary reference intake of $100%. As
visualized in Table 1, the children in this cohort had
adequate nutritional state reflected by a normal serum
albumin level. In addition, there was a controlled CKD-
mineral bone disease (median parathyroid hormone was
65 ng/l) and metabolic acidosis (median bicarbonate
level was 22.3 mmol/l). Recombinant GH (rGH) therapy
use during $50% of study visits was present in 23% of
the cohort. Children on rGH therapy were younger than
children without rGH therapy (median age 6.6 years vs.
10.4 years) and had a more advanced stage of CKD (52%
vs. 19% with estimated glomerular filtration rate less
than 15 ml/min per 1.73 m2 in the rGH vs. the non-rGH
group) (Supplementary Table S1). Steroid use was
limited to only low dose therapy (#10 mg/m2/d). In
Supplementary Table S2, we summarize the baseline
uremic toxin concentrations and z-scores.

Primary Outcome: Height Velocity in (Pre)

School Aged Children (2–12 years)

In Table 2, we summarize the results related to the
outcome height velocity (expressed in SDS/yr). For
Kidney International Reports (2024) 9, 1674–1683
every 10% increase in concurrent creatinine, IxS (total
and free), p-cresyl sulfate (total and free) concentration,
the estimated mean height velocity decreases with
1677



Table 2. The impact of the interaction between uremic toxins and age on height in (pre)school aged children between 2 and 12 years (in SDS
and in cm)
Age category: 2--12 yr Heigh velocity (SDS/yr) Height velocity (cm/yr)

Visits 309 309

Small water soluble molecules

SDMA (mg/l)a �0.00096 (�0.0035; 0.0016) �0.00075 (�0.011; 0.0094)

ADMA (mg/l/10,000) 1.5 (�1.1; 4) 2.7 (�8.5; 14)

Phosphate (mmol/l/10) �0.017 (�0.34; 0.29) 0.75 (�0.59; 2.1)

Creatinine (mg/dl)a L0.0039 (L0.0074; L0.00033)b �0.0097 (�0.027; 0.0078)

Middle molecules

b2-microglobulin (mg/ml)a 0.00027 (�0.0022; 0.0029) �0.0023 (�0.013; 0.0086)

Complement factor D (mg/dl)a 0.00075 (�0.0042; 0.0058) 0.031 (0.0052; 0.056)b

Parathyroid hormone (ng/l)a �0.0011 (�0.0024; 0.000088) �0.0037 (�0.0087; 0.0012)

Protein-bound uremic toxins

p-cresyl glucuronide (total, mg/dl)a �0.0007 (�0.0015; 0.00014) �0.0021 (�0.0056; 0.0014)

p-cresyl glucuronide (free, mg/dl)a �0.0004 (�0.0012; 0.00041) �0.0013 (�0.0046; 0.002)

Hippuric acid (total, mg/dl)a �0.0000 (�0.0009; 0.0001) 0.00043 (�0.0036; 0.0044)

Hippuric acid (free, mg/dl)a 0.00046 (�0.00057; 0.0015) 0.001 (�0.0033; 0.0054)

Indole acetic acid (total, mg/dl)a 0.0012 (�0.00061; 0.0029) 0.0032 (�0.0045; 0.011)

Indole acetic acid (free, mg/dl)a 0.00067 (�0.00033; 0.0017) 0.0015 (�0.0027; 0.0058)

Indoxyl sulfate (total, mg/dl)a L0.0023 (L0.0036; L0.00086)b L0.0063 (L0.012; L0.00054)b

Indoxyl sulfate (free, mg/dl)a L0.0015 (L0.0025; L0.00041)b �0.0046 (�0.009; �0.00013)

p-cresyl sulfate (total, mg/dl)a L0.0012 (L0.0022; L0.0002)b �0.0036 (�0.0078; 0.00062)

p-cresyl sulfate (free, mg/dl)a L0.0014 (L0.0025; L0.00034)b �0.004 (�0.0085; 0.00043)

CMPF(mg/dl)a 0.00073 (�0.00021; 0.0017) �0.083 (�0.17; 0.003)

ADMA, asymmetric dimethyl-arginine; CMPF, 3-carboxy-4-methyl-5-propyl-2-furanpropionic acid; SDMA, symmetric dimethyl-arginine; SDS, SD score.
aNatural log-transformed to improve linearity, results correspond to a 10% increase in toxin concentration.
bBoldface: P-value < 0.05.
Results of linear mixed models fitted for height (in SDS and in cm) in (pre) school aged children (2–12 yr).
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0.001 to 0.004 SDS/yr (P < 0.05), given that CKD stage,
GH, bicarbonate concentration, and dietary protein
intake are held constant. No significant association
with height velocity was found for the other assessed
uremic toxins (Table 2).

Given that the use of SDS for height is based on the
chronological age of the child and does not allow for
the expectation that growth trajectories may be
inherently different in CKD, the analysis was repeated
with the outcome height velocity expressed in cm/yr to
confirm our findings. As visualized in Table 2, similar
results for IxS (total) were obtained. In contrast, no
significant association with height velocity was found
for p-cresyl sulfate and creatinine.

Secondary Outcomes: Height Velocity in

Pubertal Stages (Children Aged >12 Years)

In contrast to the (pre)school age category, no associ-
ation between height velocity (SDS/yr) and uremic
toxin concentrations were found (Table 3). When the
outcome height velocity was expressed in cm/yr, an
inverse association with complement factor D and a
positive association with parathyroid hormone was
found (Table 3).

DISCUSSION

This study explored the association of uremic toxin
concentrations and height velocity in (pre)school aged
1678
children (2–12 years) and adolescents (>12 years) with a
variable degree of kidney impairment, using a unique
longitudinal cohort to address the well-described intra-
patient variability of uremic toxin concentrations.41 In
the present study, we found the following: (i) that
higher concentrations of especially IxS are associated
with a decreased height velocity in (pre)school children,
and (ii) that the height velocity in pubertal stages was
not associated with uremic toxin concentrations.

First, our study found that in (pre)school children,
higher concentrations of especially IxS were associated
with a decrease in the estimated mean height velocity,
irrespective of CKD stage, GH, metabolic acidosis
correction, and dietary protein intake. Linear growth
in (pre)school aged children is predominantly depen-
dent on the somatotrophic GH/IGF-1 axis.15 Distur-
bances in the GH/IGF-1 axis signaling pathways are
commonly found in children with chronic inflamma-
tory conditions such as juvenile idiopathic arthritis,
celiac disease, and CKD.42,43 In CKD, a role for IxS is
hypothesized from experimental studies in the patho-
physiology of GH/IGF-1 axis signaling pathway dis-
turbances as a result of an imbalanced JAK2-STAT5
signaling pathway.44 Although the cellular mechanisms
by which JAK2-STAT5 signaling pathway is impaired
in CKD remains incompletely characterized, SOCS2
overexpression is identified to play a crucial role in its
pathophysiology.14 SOCS2 is a critical negative
Kidney International Reports (2024) 9, 1674–1683



Table 3. The impact of the interaction between uremic toxins and age on height in adolescents during pubertal stages (>12 years) (in SDS and
in cm)
Age category: >12 yr Heigh velocity (SDS/yr) Height velocity (cm/yr)

Visits 231 231

Small water soluble molecules

SDMA (mg/l)a �0.00011 (�0.0073; 0.007) �0.011 (�0.039; 0.018)

ADMA (mg/l/10,000) �1.3 (�6.3; 3.5) 0.72 (�20; 21)

Phosphate (mmol/l/10) �0.13 (�0.64; 0.38) L0.63 (L2.8; 1.6)b

Creatinine (mg/dl)a 0.00094 (�0.0041; 0.006) 0.0016 (L0.024; 0.028)b

Middle molecules

b2-microglobulin (mg/ml)a �0.0037 (�0.0082; 0.00078) �0.0099 (�0.032; 0.012)

Complement factor D (mg/dl)a �0.0048 (�0.013; 0.0034) �0.063 (�0.11; �0.015)b

Parathyroid hormone (ng/l)a 0.0015 (�0.00059; 0.0036) 0.01 (0.0016; 0.019)b

Protein-bound uremic toxins

p-cresyl glucuronide (total, mg/dl)a 0.000038 (�0.0014; 0.0015) 0.0017 (�0.005; 0.0086)

p-cresyl glucuronide (free, mg/dl)a �0.00026 (�0.0016; 0.0011) 0.0015 (�0.0047; 0.0077)

Hippuric acid (total, mg/dl)a �0.00058 (�0.0022; 0.001) �0.0023 (�0.0097; 0.0051)

Hippuric acid (free, mg/dl)a �0.0012 (�0.0028; 0.00033) �0.0032 (�0.01; 0.0036)

Indole acetic acid (total, mg/dl)a 0.00045 (�0.0022; 0.0031) 0.00044 (�0.011; 0.012)

Indole acetic acid (free, mg/dl)a �0.0004 (�0.0019; 0.0011) �0.0025 (�0.0092; 0.0043)

Indoxyl sulfate (total, mg/dl)a 0.00014 (�0.0022; 0.0025) 0.0001 (�0.01; 0.011)

Indoxyl sulfate (free, mg/dl)a �0.00014 (�0.0018; 0.0015) 0.00014 (�0.0072; 0.0074)

p-cresyl sulfate (total, mg/dl)a 0.00045 (�0.001; 0.0019) 0.0023 (�0.0039; 0.0084)

p-cresyl sulfate (free, mg/dl)a 0.00051 (�0.0013; 0.0023) 0.0047 (�0.003; 0.012)

CMPF (mg/dl)a �0.00051 (�0.002; 0.00094) 0.00047 (�0.0059; 0.0067)

ADMA, asymmetric dimethyl-arginine; CMPF, 3-carboxy-4-methyl-5-propyl-2-furanpropionic acid; SDMA, symmetric dimethyl-arginine; SDS, SD score.
aNatural log-transformed to improve linearity, results correspond to a 10% increase in toxin concentration.
bBoldface: P-value < 0.05.
Results of linear mixed models fitted for height (in SDS and in cm) in adolescents during pubertal stages (>12 yr).
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regulator of GH-stimulated JAK2-STAT5 signaling
pathway and can, independently of IGF-1, inhibit the
growing bone.16,20,44-46 Known stimulators of SOCS2
relevant in the context of CKD are proinflammatory
cytokines (i.e., IL-6, IL-1, tumor necrosis factor-alpha)
but also IxS has been directly linked to SOCS2 over-
expression by binding the aryl hydrocarbon recep-
tor.47,48 In addition, IxS is an important contributor to
the chronic proinflammatory state present in CKD, by
inducing the release of IL-1b and several other proin-
flammatory cytokines.26,49

To the best of our knowledge, this is the first clinical
study that found an association between IxS and height
velocity in (pre)school aged children. The role of IxS and
other protein-bound uremic toxins has been hypothe-
sized by several clinical studies addressing extended
hemodialysis strategies and residual kidney function.
Previous research has taught us that the high degree of
protein-binding of IxS (and other protein-bound uremic
toxins) strongly limits the removal of these toxins during
both diffusive and convective dialysis strategies, and that
the removal of strongly bound uremic toxins such as IxS
is predominantly related to the amount of processed
blood, independent of the time frame used to obtain these
volumes.50 Observational studies have demonstrated that
a high weekly dose of hemodialysis induces catch-up
growth in childhood kidney failure, suggesting that the
enhanced uremic toxin removal in these extended
Kidney International Reports (2024) 9, 1674–1683
hemodialysis strategies might contribute to improved
growth.29-32 However, major changes in protein-bound
uremic toxin concentrations after transitioning from
conventional HD to an extended HD prescription could
not be found by several studies in adult population,
whereas Meyer et al.51 2016 could only detect a �11
(�6%; �15%) reduction in IxS in the HEMO study, no
reduction was found in the concentrations of protein-
bound uremic toxins in the Frequent Hemodialysis
Network Daily Trial52 and the observational study by
Kalim et al.53 2018. We could not find an association
between height velocity and middle molecules in both
(pre)school children and adolescents. This is in contrast to
the hemodiafiltration Heart Height study that found a
static annualized change in height SDS in the purely
diffusive conventional HD group whereas a significant
(modest) increase in the annualized change in height SDS
was found in children treated with posthemodiafiltration,
a combined diffusive and convective therapy that is
proven effective in decreasing predialysis levels of middle
molecules such as parathyroid hormone and b2m.54-60

Additional studies in pediatric populations are needed
to further address the mechanisms behind the beneficial
effects of extended hemodialysis strategies on growth.

In addition, studies assessing the relationship be-
tween growth failure and residual kidney function have
suggested a role for protein-bound uremic toxins in
its pathophysiology, because the concentrations of IxS
1679
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(and other protein-bound uremic toxins) are closely
related to the degree of residual kidney function on
maintenance dialysis.50,56,61-63 Residual kidney function
has previously been associated with height velocity in
children onperitoneal dialysis,whereas the authors could
not find an association between height velocity and
small-molecule clearance during peritoneal dialysis.64

Second, our study found no association between
height velocity and uremic toxins during pubertal
stages. The pubertal growth spurt is typically delayed
in adolescents on dialysis due to an insufficient acti-
vation of the hypothalamic GnRH pulse generator,
resulting in loss of growth potential.65-67 Experimental
studies have taught us that inflammatory cytokines can
have a direct effect on the hypothalamic-pituitary
gonadal axis, that is, both lipopolysaccharide and IL-1
administration suppressed the secretion of both lutei-
nizing hormone-releasing hormone and luteinizing
hormone in female rats.68-71 To the best of our knowl-
edge, this is the first clinical study that assessed the role
of uremic toxins and height velocity during pubertal
stages. More experimental and clinical studies are
needed to further explore and understand the patho-
physiology of pubertal development disturbances dur-
ing CKD and confirm the findings in the present study.

Although this study is the first to assess the asso-
ciation of uremic toxins and height velocity in chil-
dren with CKD, our study has some limitations. First,
the heterogenicity of the rather small cohort of chil-
dren might have hampered us to find an association
between uremic toxin concentrations and height ve-
locity. Indeed, the cohort included children with
diverse types of kidney disease and a wide range of
kidney impairment. Nevertheless, the fact that this
multicentric study was performed in solely 1 country
with an established national multidisciplinary pro-
gram for children with CKD including standard
reimbursed dietary follow-up and uniform access to
rGH therapy and tube feeding, allowed us to minimize
the recognized impact of regional differences in the
management of growth in childhood CKD.72 Second,
whereas the study design prioritized the incorporation
of the longitudinal accumulation of uremic toxins
with a large intrapatient variability, only a selection of
uremic toxins was assessed in this study, and the
rather short median observational period of 2 years
might have enabled us to find an association with
height velocity. Lastly, data on Tanner stages to
exactly define the cut-off between the (pre)school aged
children and the children during pubertal stages was
not available and was subsequently arbitrarily fixed at
12 years of age, which might have hampered us to find
associations between uremic toxin concentrations and
height velocity during pubertal stages.
1680
In conclusion, we hypothesize that, especially
IxS contributes to a lower height velocity in (pre)
school children, whereas we could not find a role
for uremic toxins on height velocity during pu-
bertal stages. The hypotheses formulated from this
observational study need to be translated into
future experimental studies to identify which and
how uremic toxins are contributing to the patho-
physiology of GH/IGF-1 and hypothalamic-pituitary
gonadal signaling pathway disturbances. Moreover,
efforts are needed to identify the uremic-toxin
driven molecular signaling pathways causing GH/
IGF-1 resistance and hypothalamic-pituitary
gonadal axis disturbances in the search for more
targeted strategies. These targeted therapies may
offer a more physiological correction of height ve-
locity and ideally prevent growth impairment in
future.
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