
REVIEW ARTICLE
published: 23 November 2011

doi: 10.3389/fendo.2011.00075

Comparative endocrinology of aging and longevity
regulation
John B. Allard and Cunming Duan*

Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA

Edited by:

Vance Trudeau, University of Ottawa,
Canada

Reviewed by:

Anderson O. L. Wong, The University
of Hong Kong, Hong Kong
Mark Sheridan, North Dakota State
University, USA

*Correspondence:

Cunming Duan, Department of
Molecular, Cellular, and
Developmental Biology, University of
Michigan, Natural Science Building,
Ann Arbor, MI 48109, USA.
e-mail: cduan@umich.edu

Hormones regulate growth, development, metabolism, and other complex processes in
multicellular animals. For many years it has been suggested that hormones may also influ-
ence the rate of the aging process. Aging is a multifactorial process that causes biological
systems to break down and cease to function in adult organisms as time passes, eventu-
ally leading to death. The exact underlying causes of the aging process remain a topic for
debate, and clues that may shed light on these causes are eagerly sought after. In the last
two decades, gene mutations that result in delayed aging and extended longevity have been
discovered, and many of the affected genes have been components of endocrine signaling
pathways. In this review we summarize the current knowledge on the roles of endocrine
signaling in the regulation of aging and longevity in various animals.We begin by discussing
the notion that conserved systems, including endocrine signaling pathways, “regulate” the
aging process. Findings from the major model organisms: worms, flies, and rodents, are
then outlined. Unique lessons from studies of non-traditional models: bees, salmon, and
naked mole rats, are also discussed. Finally, we summarize the endocrinology of aging in
humans, including changes in hormone levels with age, and the involvement of hormones
in aging-related diseases.The most well studied and widely conserved endocrine pathway
that affects aging is the insulin/insulin-like growth factor system. Mutations in genes of this
pathway increase the lifespan of worms, flies, and mice. Population genetic evidence also
suggests this pathway’s involvement in human aging. Other hormones including steroids
have been linked to aging only in a subset of the models studied. Because of the value
of comparative studies, it is suggested that the aging field could benefit from adoption of
additional model organisms.
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INTRODUCTION
Aging is the process of progressive decline in the biological func-
tions of cells and organs that causes most organisms to suffer
from exponentially increasing mortality rates over time. The exact
underlying causes of aging at the cellular level remain obscure.
The most popular theory has been the free-radical theory of
aging put forward by Harman (1956). This theory suggests that
reactive oxygen species produced by mitochondria as a result of
normal metabolism cause irreversible damage to DNA and pro-
tein that accumulates over a lifetime, and eventually causes the
breakdown of homeostasis. There is a large amount of correl-
ative evidence supporting this theory. However, direct evidence
for the free-radical theory of aging is still scarce. To date, there
have been a number of in vivo studies using transgenic/knockout
mice with alterations in a wide variety of genes that affect the
levels of free-radicals or oxidative stress. So far, most of these
genetic manipulations have failed to show an effect on lifespan
(reviewed in Perez et al., 2009). Thus the search for the underlying
mechanisms of aging continues.

In recent years, forward genetics studies have discovered gene
mutations that result in delayed aging and extended longevity, and
many of the affected genes are components of endocrine signaling
pathways. In retrospect, this should not have been surprising in

view of the fact that the extension of lifespan is a massively com-
plex phenotype that likely requires varying pleiotropic actions in
different tissue and cell types, and would have to be synchronized
at the organismic level. The endocrine system is known to regulate
metabolism,growth,and homeostasis throughout the body,and by
comparison, it is logical that the various mechanisms that oppose
the underlying aging process would also be under the control of
hormonal signaling systems.

This review will focus on our current understanding of the
roles that hormonal signaling plays in the regulation of longevity
in animals. We concentrate on so-called “cell-non-autonomous”
mechanisms of aging, in which aging-related changes at the cellu-
lar level are caused by signals released from other cells rather than
by an intrinsic factor within the cell itself. It should be noted that
the relevant literature on the comparative endocrinology of aging
is vast. We have attempted to focus on major endocrine signal-
ing pathways that have been demonstrated to regulate longevity in
order to paint a broad picture of the current state of the field.
Throughout this article we refer to the concept of aging and
longevity being “regulated.” This is not intended to signify a pre-
sumption that aging is “programmed,” but rather that the rate of
aging can be promoted and inhibited by various factors including
endocrine signaling.
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CONSERVED ROLES OF ENDOCRINE SIGNALING IN
LONGEVITY REGULATION
The role of the endocrine system in human aging was first pro-
posed in the late 1800s by Charles-Édouard Brown-Séquard who
has been called one of the fathers of endocrinology for his role in
the demonstration that the adrenal glands produce hormones that
are essential for life (Tattersall, 1994). Unfortunately, his attempts
to extend his own life by subcutaneously injecting animal seminal
fluid and testicular extracts were misguided, but they launched a
fad in the early twentieth century of similar attempts to extend
life (Haber, 2004). It is now known that in worms (Hsin and
Kenyon, 1999), flies (Flatt et al., 2008), fish (Robertson, 1961), rats
(Drori and Folman, 1976), and possibly humans (Hamilton and

Mestler, 1969), removal of the gonads (or germline in C. elegans)
actually extends lifespan. These findings may indicate a conserved
role of gonadal hormones in longevity regulation, but a hormone
involved in mediating this effect has so far been identified only in
C. elegans (Yamawaki et al., 2010).

Direct evidence for the involvement of hormonal signaling in
longevity came after the identification of the first single gene muta-
tions in C. elegans that extended lifespan (Friedman and Johnson,
1988; Kenyon et al., 1993; Kimura et al., 1997). These were com-
ponents of a widely conserved endocrine signaling pathway that is
orthologous to the Insulin and Insulin-like growth factor Signaling
pathways in mammals, and is therefore referred to as the “IIS path-
way,” (see Figure 1A). Mutations in genes encoding components

FIGURE 1 | Endocrine signaling pathways affecting longevity.

(A) Role of the conserved IIS signaling pathway in longevity regulation.
Insulin-like peptides bind to an insulin/IGF receptor on the
plasma membrane. Ligand binding causes dimerization of the
receptor, activating the intracellular tyrosine kinase domain.
Phosphorylation by the receptor kinase domain activates the
PI3 Kinase (PI3K). The signaling activity of PI3K, antagonized by the PTEN
phosphatase, activates the Akt kinase. Akt phosphorylates FOXO/DAF-16
which is then sequestered in the cytosol. In the absence of IIS signaling,
FOXO translocates to the nucleus and activates transcription of longevity
promoting genes. AKT signaling also opposes longevity by activating the TOR
pathway, which inhibits autophagy, a pro-longevity process. (B) Endocrine
signaling in the C. elegans germline longevity pathway. The germ line stem
cells send an unknown signal that allows other tissues to detect that they are
present. When the germ line stem cells are ablated, the somatic gonad

releases the steroid dafachronic acid that binds to the nuclear hormone
receptor DAF-12. It is unclear exactly where DAF-12 acts to receive this signal
but the intestine is a possible location. As a result of signaling via DAF-12,
DAF-16/FOXO activity increases in the nuclei of intestinal cells. This in turn
leads to signaling from the intestine to the other tissues that informs them
about status of the DAF-16/FOXO in the intestine. INS-7 promotes IIS
signaling which suppresses DAF-16/FOXO activity but DAF-16/FOXO in the
intestine can down regulate the expression of INS-7 and this may be one
mechanism by which intestinal DAF-16/FOXO controls other tissues. (C)

Regulation of longevity by 20-hydroxyecdysone (20E) and juvenile hormone
(JH) in insects. JH suppresses reproductive diapause which promotes
longevity. JH may also negatively affect longevity in other ways. The
receptor(s) to which JH binds is unknown. 20E activates the ecdysone
receptor which may reduce longevity. IIS engages in cross talk with both JH
and 20E and also reduces longevity via other signaling pathways.
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of this pathway in Drosophila were later found that also extended
lifespan (Clancy et al., 2001; Tatar et al., 2001b). In mice, muta-
tions that reduce the levels of insulin-like growth factor 1 (IGF-1)
were shown to extend lifespan (Flurkey et al., 2001; Coschigano
et al., 2003). Hypomorphic mutations in IIS pathway component
genes in humans also have been associated with extended longevity
(Suh et al., 2008; Tazearslan et al., 2011). The conserved role of
the IIS pathway in longevity regulation is a central theme in the
comparative endocrinology of aging.

The conservation of molecular mechanisms that regulate
longevity is suggested also by the effects of caloric restriction
on lifespan in different animal species. It was observed in 1935
that rats fed fewer total calories while receiving sufficient vitamins
and other nutrients to prevent malnutrition exhibited an extended
lifespan (Mccay et al., 1935). Since then, this life-extending inter-
vention has been tested and demonstrated to be effective in the
major model systems C. elegans (Klass, 1977), Drosophila (Chap-
man and Partridge, 1996; Mair et al., 2003), and mice (Cheney
et al., 1980), as well as in a diverse range of other species including
spiders, rotifer, guppies, and many others (Comfort, 1963; Fanestil
and Barrows, 1965; Austad, 1989). Caloric restriction seems to not
only extend the duration of life but also the, “health span,” or
the period during which an animal remains free of aging-related
diseases. This is demonstrated by the fact that caloric restriction
delays a large number of aging-related diseases and conditions
in rodents, monkeys, and humans, including cancer, cardiovascu-
lar disease (CVD), diabetes, sarcopenia, and immunosenescence,
among others (Cheney et al., 1980; Weindruch and Walford, 1982;
Weindruch et al., 1986; Black et al., 2003; Fontana et al., 2004;
Messaoudi et al., 2006; Colman et al., 2008, 2009). Many differ-
ent variations in the protocols of caloric restriction exist, and the
methods used for different species differ. The exact effects and
extent of longevity enhancement often vary depending on the
strain and the different protocols used, and these effects have been
reviewed extensively elsewhere. It is not surprising that the effects
of caloric restriction would be complex given the complexity of
the underlying aging process and its dependence on may differ-
ent genes. Given this complexity, the nearly universal ability of
caloric restriction to extend lifespan would seem to support the
notion that it is regulated by conserved genetic mechanisms. The
exact processes that mediate the effects of caloric restriction are
still unclear.

A possible conserved role of endocrine signaling in longevity
regulation is suggested by the fact that caloric restriction causes
alterations in hormonal signaling levels in various species. In
rodents, caloric restriction reduces insulin levels (Masoro et al.,
1992) and IGF-1 levels (Breese et al., 1991; D’Costa et al., 1993),
increases corticosterone levels (Sabatino et al., 1991), and decreases
serum thyroid hormone levels (Herlihy et al., 1990). The effects
on thyroid hormone, which regulates metabolic rate, would seem
to suggest that a reduction in metabolic rate could be involved in
extending lifespan, but energy expenditure in calorically restricted
rats was found to be higher than expected based on body com-
position (Selman et al., 2005). Rats that stood in cool water for
4 h a day, 5 days a week throughout life consumed 44% more
food than controls, but their longevity was not different despite
their increased energy expenditure (Holloszy and Smith, 1986).

Drosophila also did not show reduced metabolic rate under caloric
restriction (Hulbert et al., 2004). Metabolic rate was found to be
uncorrelated with lifespan in an analysis of data from hundreds of
species (De Magalhaes et al., 2007). Rather, age at sexual maturity
was found to be positively correlated with lifespan, suggesting that
factors that regulate growth and maturation may be connected
with longevity regulation (Prothero, 1993; De Magalhaes et al.,
2007).

In humans caloric restriction can also reduce serum IGF-1 lev-
els, insulin levels, and the levels of sex steroids, in addition to
other hormonal changes (see the section below on the endocrinol-
ogy of human aging). Salutary effects of caloric restriction have
been reported in humans, but any possible effects on lifespan have
yet to be determined (reviewed in Fontana and Klein, 2007). In
Drosophila, ablation of the cells in the nervous system that secrete
insulin-like peptides (ILPs), called the median neurosecretory cells
(mNSCs), resulted in the loss of most of the increased longevity
caused by caloric restriction, indicating that the function of these
cells is required for the extension of lifespan observed (Broughton
et al., 2010). Mutation in the Drosophila insulin receptor substrate
1 (IRS-1) gene, chico, results in lower IIS signaling and increases
lifespan, and subjection of these mutant flies to caloric restriction
produced different effects depending on the amount of dietary
restriction. The effects were consistent with the idea that the chico
mutants were already subject to some of the same effects caused by
dietary restriction, as mild dietary restriction could extend their
lifespans but more severe restriction caused them to die sooner
than controls (Clancy et al., 2002). This suggests overlap between
the mechanisms of lifespan extension in caloric restriction and
reduction in IIS signaling. In C. elegans however, caloric restric-
tion by both reduction of food availability and mutations that
reduce efficiency of the eating process, are independent of the IIS
signaling pathway (Lakowski and Hekimi, 1998; Houthoofd et al.,
2003). One way this was demonstrated was by showing that already
long-lived mutants with reduced IIS signaling could be made to
live even longer by caloric restriction. Long-lived Ames dwarf mice
also live even longer when subjected to caloric restriction (Bartke
et al., 2001), but, long-lived growth hormone receptor knockout
mice do not (Bonkowski et al., 2009).

ADVANCES IN THE ENDOCRINOLOGY OF AGING IN MODEL
SYSTEMS
In this section we discuss the major findings that relate to the
endocrinology of aging in each of the major model organisms:
C. elegans, Drosophila, and rodents. Both widely conserved and
species-specific mechanisms have been discovered in each of these
models, and by comparing the results from multiple organisms
one can formulate better hypotheses regarding human aging (see
Table 1).

C. ELEGANS
The first mutation found to extend lifespan in C. elegans was in the
age-1 gene (Klass, 1983; Friedman and Johnson, 1988). This gene
was shown to encode a homolog of PI3 kinase, which is a down-
stream component of the intracellular pathway that transduces
signals from the IIS pathway (see Figure 1A). A later analysis found
that second generation homozygous null age-1 mutant worms
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Table 1 | Characteristics of aging model organisms.

Organism Lifespan Advantages Disadvantages Endocrine pathways linked

to longevity

C. elegans ∼2 weeks Short lifespan, easy to work with,

genetically tractable

Lacks distinct endocrine tissues

and various other tissue types,

very distant from humans

IIS, steroids

Drosophila ∼3 months Short lifespan, easy to work with,

genetically tractable, has a wide range

of tissue types, has adult stem cells

Distant from humans IIS, ecdysone, JH

Honey bee Varies depending

on caste

Social structure affects lifespan

allowing study of plasticity of aging

Distant from humans Vitellogenin, JH, possibly IIS

Long-lived bivalves Centuries Exceptionally slow aging rate Distant from humans None so far

Zebrafish ∼4–5 years Vertebrate, genetically tractable, small

size, cheap to maintain

Longer lifespan than mice None so far

Killifish ∼3 months Vertebrate, exceptionally short lifespan,

small size, cheap to maintain

New model None so far

Salmon Several years Vertebrate, special case of

programmed aging

Large size, relatively long

lifespan

Corticosteroids, sex

steroids, possibly IGF

Mouse ∼2–3 years Mammal, relatively short-lived, many

genetic tools available

Expensive to work with GH, IGF, Insulin, klotho, angio-

tensin II, possibly thyroxine,

possibly sex steroids

Naked mole rat ∼20–30 years Mammal, very slow aging rate for size New model None so far

Non-human primates Years to decades Very similar to humans Difficult and expensive to work

with

None so far

Humans ∼80 years Research is highly relevant for

improving health

Limited ability to do experiments IGF

lived almost 10 times longer than wild type worms (Ayyadevara
et al., 2008). Subsequently, mutations in various other compo-
nents of this pathway were shown to be involved (Kenyon et al.,
1993). Many of these mutants that exhibited long adult lifespans
were so-called dauer formation mutants; that is, mutants with an
altered tendency to enter the dauer larval state.

The C. elegans dauer larva is an alternative larval stage that can
survive for months without feeding and is very resistant to stress
(Cassada and Russell, 1975). Formation of dauer larvae is pro-
moted by low nutrient availability in the environment, and also
by high levels of a dauer pheromone produced by all individuals
(Golden and Riddle, 1984). This stage allows the worms to survive
until more food becomes available. Various dauer formation (daf)
mutations have been found that either prevent dauer formation
or cause constitutive dauer formation (Riddle et al., 1981). The
observation has been that mutations that increase dauer forma-
tion tend to increase adult lifespan as well. The gene daf-2 is the
C. elegans insulin receptor homolog and the major down stream
effector of the pathway is daf-16, which is a FOXO family tran-
scription factor that is required for the lifespan extension effects
produced by mutation of daf-2 and other pathway components
(Kenyon et al., 1993; Kimura et al., 1997). Signaling through the
IIS pathway leads to sequestration of DAF-16/FOXO in the cytosol,
thereby suppressing its anti-aging activity (Figure 1A).

daf-2 mutant worms live two to three times longer than wild
type worms. It is noteworthy that mosaic analysis showed that
daf-2 mutation only in certain cells was capable of extending lifes-
pan for the whole organism, indicating a cell-non-autonomous

effect which may be mediated by endocrine signaling (Apfeld and
Kenyon, 1998). Some but not all mutations in daf-2 cause reduced
fecundity in addition to varying levels of lifespan extension, indi-
cating lifespan can be decoupled from reduced reproductive costs
(Gems et al., 1998). Furthermore it was shown that RNAi knock-
down of daf-2 during development reduced fecundity but did
not extend lifespan, whereas knockdown only during adulthood
extended lifespan without affecting fecundity (Dillin et al., 2002).
This indicates that the effects of IIS mutants on lifespan in the
adult stage are actually dependent on the levels of IIS during
adulthood, rather than “left over” longevity factors of some kind
from the larval stage during which the dauer formation decision
is made.

C. elegans has about 40 ILP genes in its genome
(www.wormbase.org). It is thought that these ILPs functioned
by binding to the receptor tyrosine kinase DAF-2 (Olinski et al.,
2006). Some of these molecules function as DAF-2 receptor ago-
nists while others were proposed to act as antagonists (Pierce et al.,
2001; Li et al., 2003; Murphy et al., 2007). However, the functions
of most of the ILPs remain unknown, and it is not clear whether
all of them interact with DAF-2. Vertebrates have a subgroup of
insulin-like molecules called the relaxin/insulin-like family that
function by binding to G protein-coupled receptors (Hsu et al.,
2002; Hoffmann and Opazo, 2011).

Other signaling pathways have been implicated in regulat-
ing aging in worms including transforming growth factor TGFβ

signaling which seems to act partly through modulation of IIS
signaling (Shaw et al., 2007; Narasimhan et al., 2011). Serotonin
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signaling was also shown to promote aging via an effect on the IIS
pathway (Murakami and Murakami, 2007).

Of particular interest is the observation that signaling in cer-
tain specific tissues is required for longevity enhancement in a
number of cases. Disabling sensory input to certain neurons can
extend or reduce lifespan for the whole organism (Apfeld and
Kenyon, 1999; Alcedo and Kenyon, 2004; Bishop and Guarente,
2007). daf-16 expression is normally required for lifespan exten-
sion in daf-2 mutants. Expression of daf-16 only in the intestine
is sufficient to rescue the lifespan extension in long-lived daf-2
mutants that lack DAF-16/FOXO in other tissues (Libina et al.,
2003). DAF-16 down-regulates expression of one of the ILPs,
INS-7. INS-7 is a DAF-2 agonist, and when DAF-16 activity is
increased in the intestine, it leads to increased DAF-16/FOXO
activity throughout the body by reducing levels of INS-7 secreted
by the intestine (Murphy et al., 2007). In long-lived daf-2 mutants,
replacement of daf-2 only in neurons was found to reduce the lifes-
pan to wild type levels (Wolkow et al., 2000). However the role of
neuron-specific IIS was found to be minor in a later study (Libina
et al., 2003). A mutation which alters mitochondrial function can
extend lifespan even when present only in certain cells, indicating
cell-non-autonomous functions even for a mutation affecting a
fundamental metabolic process (Durieux et al., 2011).

Steroid hormones have also been shown to contribute to
longevity regulation in C. elegans (Jia et al., 2002; Broue et al., 2007;
Gerisch et al., 2007). Mutations of an enzyme involved in steroid
hormone synthesis called DAF-9 extend lifespan, and this exten-
sion also requires a nuclear hormone receptor called DAF-12, but
does not require DAF-16/FOXO (Jia et al., 2002). Long-lived daf-9
mutants are returned to normal lifespan by treatment with bile
acid-like steroids called dafachronic acids (Gerisch et al., 2007),
which are endogenous ligands of DAF-12 (Motola et al., 2006).
These findings suggest that DAF-9 generates dafachronic acid,
which promotes aging by interacting with DAF-12. In contrast,
treatment with another steroid, called pregnenolone, which can be
found in vertebrates, extended lifespan in worms, and this exten-
sion also required DAF-12 (Broue et al.,2007). Thus, steroid signal-
ing via DAF-12 is capable of both promoting and opposing aging,
and in fact, different mutations in daf-12 itself can either shorten
or extend lifespan (Fisher and Lithgow, 2006). It is also noteworthy
that null mutations of daf-12 further extend the already long lifes-
pans of strong daf-2 (insulin receptor) mutants, but they block the
lifespan extension caused by weak daf-2 mutations (Gems et al.,
1998).

When the C. elegans germline cells are ablated, lifespan is
increased, and daf-9 and daf-12 are required for this effect, along
with daf-16 (Hsin and Kenyon, 1999; Gerisch et al., 2001; Arantes-
Oliveira et al., 2002). Removal of the entire gonad does not extend
lifespan, and it was shown that the somatic gonad tissue, which
expresses daf-9 (Gerisch et al., 2001), was required for the lifespan
extension due to removal of the germline (Yamawaki et al., 2008).
However, in already long-lived DAF-2 deficient worms, removal
of the entire gonad extended lifespan even further, allowing them
to live six times longer than wild type and remain healthy and
active throughout most of this time (Arantes-Oliveira et al., 2003).
This indicates that strong reduction in IIS signaling eliminates the
need for the signal normally provided by the somatic gonad. The

hormone responsible for this anti-aging signal has been identified
as the steroid dafachronic acid, which binds to DAF-12 (Gerisch
et al., 2007; Yamawaki et al., 2010). Germline removal causes DAF-
16/FOXO to accumulate in the nuclei of intestinal cells and this
mediates the increase in lifespan (Lin et al., 2001; Libina et al.,
2003). It is speculated that dafachronic acid released by the somatic
gonad activates DAF-12 in the intestinal cells, which in turn
enhances DAF-16 nuclear localization and promotes longevity by
down-regulating intestinal secretion of INS-7, leading to lower IIS
levels throughout the body (Figure 1B), but this has not yet been
confirmed. The factors that determine whether DAF-12 promotes
or opposes aging remain unknown. A gene called kri-1 and a tran-
scription elongation factor caller TCER-1 are required for DAF-16
nuclear localization and transcriptional activity to be promoted by
germline removal but not by IIS reduction (Berman and Kenyon,
2006; Ghazi et al., 2009). There is presumably another endocrine
pathway that signals the presence or absence of the germ line to
the rest of the body but this pathway has not yet been identified.
Many other open questions exist regarding the roles of endocrine
signaling in regulating longevity in response to germ line removal
(reviewed in Kenyon, 2010).

DROSOPHILA
The fruit fly Drosophila has several advantages as a model
for studying endocrinology of aging. Flies have several distinct
endocrine glands and a wider range of tissue types in general than
C. elegans. Also, unlike C. elegans which lack dividing somatic stem
cells in the adult stage, Drosophila have now been shown to posses
adult somatic stem cells in at least five different tissues (Margolis
and Spradling, 1995; Micchelli and Perrimon, 2006; Ohlstein and
Spradling, 2006; Singh et al., 2007, 2011; Voog et al., 2008).

IIS signaling regulates longevity in Drosophila. The Drosophila
genome contains seven insulin-like peptide (dILP) genes and one
insulin receptor (INR), and signaling through the INR by each
of the dILPs promotes growth in flies (Brogiolo et al., 2001). The
dILPs are expressed in different spatiotemporal patterns during
development (Brogiolo et al., 2001). Three of the dILPs are pro-
duced and secreted by a collection of neurons called mNSCs and
this secretion can be regulated by the availability of nutrients in
larvae (Ikeya et al., 2002). Genetic ablation of the mNSCs slows
growth and larval development, and increases lifespan (Rulifson
et al., 2002; Broughton et al., 2005). Loss of the mNSCs also inter-
feres with the lifespan extension resulting from caloric restriction
by yeast dilution (Broughton et al., 2010). A null mutation of the
gene encoding dILP2 extended lifespan but null mutations in the
other dILP genes did not (Gronke et al., 2010). It is noteworthy
that the developmental expression patterns of progenitors of the
two tissues indicates homology between the mNSCs in flies and the
insulin secreting pancreatic beta cells in vertebrates (Wang et al.,
2007b).

Some hypomorphic mutations in the gene encoding the sin-
gle INR were shown to extend female Drosophila lifespan by up
to 85% while causing dwarfism and preventing maturation of the
gonads (Tatar et al., 2001b). Mutations of many genes encoding
components of the INR signaling pathway, such as the PI3K and
AKT homologs, cause normal or reduced lifespan or are lethal,
which is not surprising due to the important roles of this pathway
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in normal growth and development (Clancy et al., 2001). How-
ever, heterozygous and homozygous mutations in the IRS gene
homolog, chico, extend fly lifespan (Clancy et al., 2001; Tu et al.,
2002a). They can also further extend lifespan in long-lived female
flies that also carry a mutation which prevents oogenesis, indicat-
ing that reduction of fertility is not the mechanism by which the
longevity of chico mutants is extended (Clancy et al., 2001). Also,
chico heterozygotes have normal size and normal fertility and are
nevertheless longer-lived than wild type although not as long-lived
as the homozygotes (Clancy et al., 2001).

As in C. elegans, several studies have demonstrated in Drosophila
that tissue-specific modifications can extend the lifespan of the
whole organism, indicating cell-non-autonomous effects that may
be mediated by endocrine signaling. The transcription factor
dFOXO is the Drosophila homolog of C. elegans DAF-16 and
functions downstream in the IIS pathway (see Figure 1A). Over-
expression of dFOXO in the head fat body (the equivalent of
adipose tissue in mammals) during adulthood modulated expres-
sion of one of the ILPs and extended lifespan (Giannakou et al.,
2004; Hwangbo et al., 2004). Overexpression of dFOXO in the
head fat body only during the early adult period was found to be
sufficient for increasing lifespan and did not adversely affect fecun-
dity (Giannakou et al., 2007). Autophagy, or macroscopic cellular
self-digestion, has been proposed as a cell-autonomous longevity
mechanism. Increasing levels of autophagy only in the fly ner-
vous system by overexpression of an autophagy protein increases
fly lifespan by 50%, indicating likely cell-non-autonomous effects
on other tissues (Simonsen et al., 2008). Olfactory neuron sig-
naling has also been shown to regulate lifespan in Drosophila
(Libert et al., 2007).

Because caloric restriction and many lifespan-extending IIS
mutations often result in reduced fecundity in various model sys-
tems, it has often been suggested that there is a trade-off between
investment of energy in reproduction or in somatic maintenance
(i.e., repairing mutations and damage etc.). In Drosophila, dietary
restriction extends lifespan and reduces fecundity (Chapman and
Partridge, 1996; Mair et al., 2003). However, it is frequently possi-
ble to decouple positive longevity effects from negative fecundity
effects. When additional quantities of the amino acid methionine
were provided to flies during dietary restriction, the fecundity was
restored to the level of wild type flies without reducing the exten-
sion in lifespan caused by the reduced calorie intake (Grandison
et al., 2009). In Drosophila, there is a cost of mating for females
in that their lifespan is reduced by mating (Chapman and Par-
tridge, 1996). If this were caused by transfer of resources from
somatic maintenance to reproduction, then it would be expected
that sterile females would have reduced costs of mating, but in fact
it was found that their costs were increased (Ueyama and Fuyama,
2003). The cost of mating has been found to be mediated by a sig-
naling molecule in male seminal fluid called sex peptide (Wigby
and Chapman, 2005). Ablation of germ cells in flies has been
found to extend lifespan (Flatt et al., 2008). Whether this effect
is mediated by endocrine signaling as in C. elegans is currently
unknown.

The phyla to which Drosophila and C. elegans belong, Arthro-
poda and Nematoda respectively, are both members of the super-
phylum ecdysozoa (Mallatt and Winchell, 2002; Dunn et al.,

2008). The most significant common feature that members of
these phyla share is that during early development they peri-
odically shed their cuticle or exoskeleton and produce a new
larger one to accommodate continued growth. This process is
termed ecdysis, and it gives the super phylum its name. Ecdy-
sis is stimulated by a steroid hormone called 20-hydroxyecdysone
(20E), which is the active form of a prohormone called ecdysone
(Thummel, 1996; Nakagawa and Henrich, 2009). A group of
hormones called juvenile hormones (JH) that are sesquiter-
penoid lipids also participate in the regulation of growth and
development along with 20E, and the presence or absence of
JH is what determines whether a larva will undergo ecdysis
or metamorphosis in response to 20E (reviewed in Dubrovsky,
2005).

Both 20E and JH regulate a wide variety of processes in insects,
and they have been implicated in the regulation of adult longevity
(Figure 1C). JH is secreted by a gland called the corpus alla-
tum (Altaratz et al., 1991). Drosophila and some other insects
can undergo so-called reproductive diapause during their adult
stage, which in many ways resembles the dauer in C. elegans
(Tatar et al., 2001a). In this condition, oogenesis and mating cease,
stress resistance increases, metabolism decreases, and longevity is
increased (Tatar et al., 2001a). Reductions in JH signaling con-
trol entry into diapause (Tatar, 2004). Treatment with a JH analog
blocks diapause in Drosophila (Tatar et al., 2001a). When the cor-
pus allatum is removed in other insects, their lifespan can be
increased (Tatar and Yin, 2001). Removal of the corpus allatum
in monarch butterflies that undergo reproductive diapause dou-
bled longevity whereas injection with JH halved it (Herman and
Tatar, 2001). Long-lived inr mutants have reduced JH signaling,
and treatment with JH reduces their lifespan back to wild type
levels (Tatar et al., 2001b; Tu et al., 2005). When fly larvae were
treated with a JH analog their lifespan was reduced but early life
fertility was increased (Flatt and Kawecki, 2007). Flies selected for
19 generations for survival in somewhat toxic levels of JH analog
overcame some of the lifespan reduction; these flies were longer-
lived than wild type in the absence of JH (Flatt and Kawecki,
2007). The exact roles that JH plays in regulating aging are still
being studied but the indications are that it promotes aging in
insects.

Long-lived female inr mutants also have reduced 20E levels,
which may be related to the fact that their ovaries are unde-
veloped, and the ovaries are the major site of 20E synthesis (Tu
et al., 2002b). The 20E and IIS signaling pathways engage in cross
talk during growth and development (Colombani et al., 2005;
Walkiewicz and Stern, 2009). Flies heterozygous for mutations in
the ecdysone receptor have increased longevity with no negative
effects on reproduction (Simon et al., 2003). A mutant involved
in 20E biosynthesis also has increased longevity (Simon et al.,
2003). A more recent study involving adult-specific inactivation
of the ecdysone receptor by RNAi or dominant negatives found
that there was a mild lifespan extension in males, but in females
lifespan was decreased (Tricoire et al., 2009). This harmful effect
was prevented in a sterile mutant (Tricoire et al., 2009). There are
many interesting similarities between 20E signaling in flies and
dafachronic acid signaling in worms that suggest that these are
homologous pathways (reviewed in Galikova et al., 2011).
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MICE AND RATS
In vertebrates, the IIS signaling pathway has diverged into two dis-
tinct pathways, those of insulin and IGFs. Mammals have three
IIS ligands, insulin, IGF-1, and IGF-2, and an insulin receptor
and IGF-1 receptor (IGF-1R; reviewed in Taguchi and White,
2008). Insulin regulates metabolism, and IGF regulates develop-
ment, growth, cell survival, proliferation, and other effects. IGF-1
is secreted by the liver in response to growth hormone from the
anterior pituitary gland; signaling by IGF-1 is responsible for the
growth-promoting effects of growth hormone (Liu and Leroith,
1999). IGF-1 is also secreted by peripheral tissues and this pool of
IGF-1 can compensate for the loss of liver-derived IGF-1, which
normally accounts for most of the IGF-1 in the serum (Yakar et al.,
1999). IGF-1R signaling is essential for postnatal survival in mice,
making it difficult to study using knockouts (Liu et al., 1993).

The observation that caloric restriction in rats increased lifes-
pan was followed by work showing that pituitary hormone secre-
tion was inhibited during this state (Mccay et al., 1935; Mulinos
and Pomerantz, 1940). It was later demonstrated that removal of
the pituitary gland retarded some effects of aging (Everitt and
Cavanagh, 1965; Olsen and Everitt, 1965). The Snell and Ames
dwarf mice that have mutations in transcription factors (Pit-1 and
Prop-1) that prevent the normal development of the anterior pitu-
itary were discovered many decades ago (Snell, 1929; Schaible and
Gowen, 1961). More recently, these mutant mice were studied and
found to be long-lived (Brown-Borg et al., 1996; Flurkey et al.,
2001). These dwarf mice lack the hormones GH, prolactin (PRL),
and thyroid-stimulating hormone (TSH). Increasing PRL levels in
these mice back to essentially normal levels by transplanting pitu-
itary glands into them (which secrete only PRL constitutively) did
not decrease their long lifespans, suggesting PRL is not involved
(Flurkey et al., 2001). Treatment of Snell dwarf mice with the thy-
roid hormone thyroxine throughout their adulthood reduced their
lifespan somewhat (Vergara et al., 2004). Hypothyroid mice have
slightly increased longevity, suggesting that some but not all of the
lifespan extension in dwarf mice may be due to reduced thyroid
hormone levels (Ooka et al., 1983).

Interestingly, when dwarf mice were treated with GH and thy-
roxine for 11 weeks, they were able to grow significantly more
than they normally would. Males became fertile, but they still had
increased longevity, suggesting that retarded growth and reduced
fertility are not the causes of increased longevity (Vergara et al.,
2004). When the pituitary gland is removed in adults, lifespan
is still extended, just as caloric restriction begun in adults also
extends lifespan despite the fact that the animals are already fully
grown (Weindruch and Walford, 1982; Powers et al., 2006). Mice
expressing an antagonist of GH have reduced growth but do not
live longer, further indicating that these effects can be uncoupled
(Coschigano et al., 2003).

Knockout of the growth hormone receptor gene, or the growth
hormone releasing hormone receptor gene, results in significantly
increased longevity and reduced cancer rates (Zhou et al., 1997;
Coschigano et al., 2000; Flurkey et al., 2001; Ikeno et al., 2009).
Both of these mutants have extremely low levels of IGF but the for-
mer also has high levels of GH, whereas the latter has none. These
results indicated that IGF itself was probably involved in regulat-
ing longevity. Heterozygous IGF-1R mutant females were shown to

have increased lifespan, although the control group had elevated
mortality in this study (Holzenberger et al., 2003). It has been
reported that another group was unable to reproduce this increase
in lifespan (unpublished data cited in Ladiges et al., 2009). Mice
that overexpress IGF or GH have reduced lifespans (Steger et al.,
1993; Zaina et al., 2003). However, overexpression of IGF specifi-
cally in the hearts of mice actually increased their median lifespan,
although maximum lifespan was not significantly changed, and
thus the aging rate itself may not have been affected (Li and Ren,
2007). IGF can also be a protective signal for heart cells (Ren et al.,
1999).

When the insulin receptor was knocked out specifically in adi-
pose tissue, these mice had increased health parameters and lived
18% longer (Bluher et al., 2003; Katic et al., 2007). Fat itself may
have negative effects on longevity as evidenced by the fact that sur-
gical removal of fat can increase lifespan in rodents (Muzumdar
et al., 2008). However, mice subjected to caloric restriction that
had amounts of adipose tissue similar to those of the mice whose
fat was surgically removed lived even longer (Muzumdar et al.,
2008). A study in which the IRS-1, a downstream signaling com-
ponent of the insulin and IGF pathways, was knocked out showed
increased lifespan in mice (Selman et al., 2008). When IRS-2 was
knocked out specifically in the brain of mice, they also lived longer
(Taguchi et al., 2007).

In vertebrates IGF is bound and transported by a conserved
family of high affinity IGF binding proteins (IGFBPs) numbered
1–6, and virtually all IGF found in the blood is bound by IGFBPs.
The IGFBPs have equal or higher affinity for IGF than the IGF-1R,
so they can be inhibitory but can also act to potentiate IGF sig-
naling in some cases (Duan and Xu, 2005). Some of the IGFBPs,
notably IGFBP-4, a principally inhibitory binding protein, can be
cleaved by a protease called “pregnancy-associated plasma protein
A” (PAPP-A; Lawrence et al., 1999). Deletion of the PAPP-A gene
increases mouse lifespan by around 40% and delays some effects of
aging (Conover and Bale, 2007; Vallejo et al., 2009). PAPP-A may
promote aging by releasing IGF from inhibitory IGFBPs (cleaved
IGFBPs lose affinity for IGF), thereby increasing pro-aging IGF
signaling levels (Conover, 2010).

Mutation of a gene called klotho was shown to reduce lifespan
greatly, and the mutants exhibited signs of apparent accelerated
aging (Kuro-O et al., 1997). Subsequently, the extracellular domain
of klotho was found in the bodily fluids and shown to act as a hor-
mone (Imura et al., 2004). Overexpression of klotho can increase
the longevity of mice, suggesting more strongly that it may be
involved in normal aging; it may function by suppressing insulin
or IGF signaling (Kurosu et al., 2005). It has also been shown to
affect other signaling pathways that may be relevant for aging (Liu
et al., 2007; Wang and Sun, 2009).

Other forms of hormonal signaling have not been studied
nearly as well in mice as the GH–IGF axis. Gonadal signaling
has been implicated in longevity regulation. In rats, castration
can increase lifespan (Drori and Folman, 1976). When the ovaries
of young female mice were transplanted into older female mice
whose ovaries had been removed before puberty, the lifespan of the
recipients was increased by 40% relative to controls that received
sham surgeries (Cargill et al., 2003). Removal of the ovaries of old
mice and replacing them directly with young ovaries also extended
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lifespan of the recipients (Mason et al., 2009). Estrogen levels fall
in female mammals after cessation of reproductive cycling, and
this change is associated with an increased risk of CVD (Jacobsen
et al., 1999). Female mice that received transplanted young ovaries
after having undergone cessation of reproductive cycling were pro-
tected from the normal increase in cardiovascular risk (Mason
et al., 2011). These results suggest a cell-non-autonomous effect on
longevity mediated by endocrine signaling from the ovary, possibly
involving estrogen, but this has yet to be determined.

In mice and most other vertebrates, the thymus, the major
site of T-lymphocyte production, undergoes striking involution
starting at puberty, causing it to be replaced with adipose tis-
sue. Involution continues progressively throughout life until the
organ is only a small fraction of its size at puberty, and this
is thought to account for some of the reductions in immune
system function that occur with age (reviewed in Taub and
Longo, 2005). When old rats were castrated, the thymus regen-
erated, and immune functions were rejuvenated, but treatment
of castrated rats with testosterone reversed these effects (Green-
stein et al., 1986; Utsuyama and Hirokawa, 1989). The same
effects have been found in mice and humans as well (Suther-
land et al., 2005). Glucocorticoids have long been implicated
in promoting thymic involution (Wyllie, 1980). It has recently
been shown that testosterone signaling induces thymocytes to
produce glucocorticoids, and mice that lack the glucocorticoid
receptor in the thymus are completely protected from thymic
involution (Chen et al., 2010). Incidentally, long-lived PAPP-A
mutant mice are also protected from thymic involution (Vallejo
et al., 2009).

Cell-non-autonomous effects in aging were demonstrated
decades ago when it was shown that bone marrow cells from old
mice were competent to repopulate bone marrow in young trans-
plant recipients, but bone marrow cells from young individuals
were not able to aid old recipients (Harrison, 1975a,b). Marrow
cells can be transplanted serially and last through the lives of sev-
eral generations of mice, suggesting that an intrinsic limit on cell
divisions did not limit lifespan (Siminovitch et al., 1964). Adult
tissue stem cells often exhibit defects in replicative capacity, or are
lost altogether with age (Kuhn et al., 1996; Maslov et al., 2004;
Nishimura et al., 2005; Waterstrat and Van Zant, 2009; Zhou et al.,
2010). Recent studies have shown that aged muscle stem cells in
old individuals could be rejuvenated by exposure to blood from
young animals, suggesting that hormones in the blood regulate the
aging-related changes in muscle stem cells (Conboy et al., 2005;
Brack et al., 2007). FoxO3, a daf-16 homolog inhibited by the
IGF pathway was shown to oppose the aging of neural stem cells
(Renault et al., 2009).

LESSONS FROM OTHER ANIMAL SPECIES
In this section we discuss results of studies on the aging of three
non-traditional model organisms that provide unique insights
into the endocrine regulation of longevity. Some of the aging
mechanisms in these organisms may not be directly relevant to
humans, but understanding the diversity of regulatory mecha-
nisms which evolution has produced is useful when considering
the kinds of differences that may exist between model systems and
humans (see Table 1).

SOCIAL INSECTS
Social insects like bees, ants, and termites provide interesting
models for aging research because workers are typically much
shorter-lived than queens giving examples of massively differ-
ent lifespan being produced by the same genome. Queens in
many species can live 100 times longer than their workers
(Keller and Genoud, 1997). This additional longevity does not
appear to be a result of increased oxidative stress resistance
(Corona et al., 2005; Schneider et al., 2011). The difference in
longevity between highly reproductively active queens and ster-
ile female workers is also of interest because it suggests that
investment in reproduction does not necessarily preclude“somatic
maintenance” from taking place. In various mammal and bird
species, it has also been found that reproductive investment is
unconnected with lifespan (Ricklefs and Cadena, 2007). There
have also been a number of examples from other model sys-
tems that show that fecundity and longevity can be decoupled
(Gems et al., 1998; Ueyama and Fuyama, 2003; Vergara et al.,
2004; Liu et al., 2005; Copeland et al., 2009; Grandison et al.,
2009).

Honey bee workers begin adult life performing tasks in the hive
and then transition to foraging for resources outside. Foragers have
higher external mortality rates (due to predation and other haz-
ards) but they also have more rapid declines in cognitive ability and
stress resistance, and they experience exponential aging-related
increases in mortality (Behrends et al., 2007; Remolina et al., 2007;
Rueppell et al., 2007a,b). The lifespan of a worker is 4–8 weeks; the
main determinant of lifespan is the age at which they transition
to foraging (Amdam et al., 2004). This transition is promoted by
JH signaling, and JH levels increase as the transition draws nearer
(Jaycox et al., 1974; Fluri et al., 1982). During the winter months in
temperate climates, workers become so-called “winter bees” that
survive 6 months to a year; in this state their JH levels are very low
(Fluri et al., 1982).

Workers are sterile and do not produce eggs but they neverthe-
less synthesize an evolutionarily conserved egg yolk protein called
vitellogenin (Rutz and Luscher, 1974). Nurse bees use the vitel-
logenin to generate a secretion called royal jelly that is used to feed
larvae, the queen, and other bees (Amdam et al., 2003). Young hive
bees express vitellogenin at extremely high levels but expression
declines with age (Fluri et al., 1982). Knockdown of vitellogenin
by RNAi increases JH levels and speeds up the transition to for-
aging, thus reducing lifespan (Guidugli et al., 2005). Increased JH
signaling also downregulated vitellogenin (Pinto et al., 2000). It
has been suggested that the antagonism between these two key
signals is important for regulating the transition to foraging, and
thus longevity (Amdam and Omholt, 2003).

Honey bees have two ILP genes and two INR genes (Ament
et al., 2008). Queens have lower IIS signaling levels than workers,
and nurse bees have lower levels than foragers (Corona et al., 2007;
Ament et al., 2008). This is consistent with the idea that reduced
IIS extends lifespan in other organisms, but IIS also usually corre-
lates with nutrition levels and it seems to work oppositely in honey
bees (Ament et al., 2008). This unique regulatory mechanism may
have evolved to maintain survival of bees with high levels of stored
nutrients in order prevent loss of those resources by the colony as
a whole (Munch and Amdam, 2010).
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SALMON
The Pacific Salmon of the genus Oncorhynchus are semelparous
and usually die immediately after spawning. In the period leading
up to sexual maturation and spawning they undergo a series of
degenerative changes that resemble the effects of aging in other
vertebrates. Most organs including kidney, liver, spleen, heart, and
digestive tract degenerate; arteriosclerotic lesions develop in the
arteries; the thymus involutes and immune functions are lost;
neurodegeneration occurs, and amyloid aggregates are deposited
in the brain (Robertson and Wexler, 1960; Robertson et al., 1961;
Maldonado et al., 2000, 2002). Unlike most species, this senescence
process in salmon is generally accepted as being evolutionar-
ily “programmed” due to its high degree of stereotypy (Austad,
2004a).

It is believed that elevated levels of corticosteroid hormones
are responsible for many of the degenerative changes in salmon
(Mcquillan et al., 2003). The interrenal gland, the teleost fish
homolog of the adrenal gland, undergoes hyperplasia, and cor-
ticosteroid levels become elevated fivefold or more during mat-
uration and spawning (Hane and Robertson, 1959; Robertson
and Wexler, 1960). Implantation of pellets infused with corti-
sol in young fish caused the same degenerative changes to occur
prematurely (Robertson et al., 1963). Some Chinook salmon can
mature without ever migrating out to sea, and most of these can
survive a round of spawning and return to repeat the process.
It was shown that the iteroparous salmon that do not die after
spawning did not exhibit the same elevations in corticosteroids
as semelparous members of the same species (Barry et al., 2001).
When the gonad was removed from salmon before maturation,
interrenal hyperplasia was prevented and lifespan was extended
(Robertson, 1961). Gonadectomy prevented hypersecretion of
corticosteroids, and this was rescued in gonadectomized fish by
injections of androgens (Fagerlund and Donaldson, 1969). Sex
steroids can directly regulate corticosteroid secretion in salmon
(Mcquillan et al., 2003). Based on these results, it is believed that
gonadal sex steroids regulate programmed death in salmon. It is
interesting that androgen and corticosteroid signaling also seem
to regulate post-mating programmed death of males in some
species of dasyurid marsupials (Mcdonald et al., 1986; Mcallan,
2006).

The GH–IGF axis promotes growth and is nutritionally reg-
ulated in fish including salmon (Duan, 1998; Beckman et al.,
2004), but there have so far been no studies directly linking IGF
signaling to aging in salmon. However, it is interesting to note
that IGF promotes synthesis of sex steroids in salmon gonads
(Maestro et al., 1997) and stimulates release of gonadotropins
luteinizing hormone (LH) and follicle stimulating hormone (FSH;
Furukuma et al., 2008). In salmon, in the year before spawning,
a period of rapid body growth and gonadal development takes
place during which plasma IGF positively correlates with body
size and Estradiol levels (Campbell et al., 2006). Increased plasma
IGF levels were found in salmon with more advanced gonadal
development, suggesting that IGF may be involved in linking the
timing of body growth and sexual maturation in preparation for
spawning (Onuma et al., 2010). The evidence is consistent with
the idea that IGF signaling promotes sexual maturation and sex
steroid synthesis, which in turn promotes aging-like programmed

post-spawning death by inducing hypersecretion of glucocorti-
coids. The major lesson from these studies in salmon is that,
at least in this species, endocrine signaling systems may actively
promote a programmed aging process. While most other species
including humans almost certainly do not undergo this sort of
stereotyped programmed aging process, there may still be paral-
lels. For instance, sex steroid-induced glucocorticoid secretion is
involved in age-related thymic involution even in mammals (Chen
et al., 2010).

NAKED MOLE RAT
The naked mole rat, Heterocephalus glaber, is a mammal that is
approximately the same size as a mouse but lives about 10 times
longer; the oldest reported naked mole rat lived 28.3 years (Buf-
fenstein and Jarvis, 2002). Naked mole rats live in burrows and
eat giant tubers that they find underground. They have a reduced
threat from predators and seem to have evolved increased lifespan
as a result (Buffenstein, 2005). It was thought that their extended
lifespan might be due to higher resistance to oxidative stress, but it
was shown that young naked mole rats actually have higher levels
of oxidative damage than young mice (Andziak et al., 2006). Inter-
estingly, naked mole rats are also extremely resistant to cancer, and
tumors have never been observed in them (Seluanov et al., 2009).
In naked mole rat colonies, one female and between 1 and 3 males
breed, but mating is repressed in all other colony members. There
is no difference in lifespan between breeders and non-breeders,
and breeding continues until death (Buffenstein and Jarvis, 2002).
However, in related species of mole rats, breeders have been shown
to live considerably longer than non-breeders (Dammann and
Burda, 2006; Dammann et al., 2011).

Information on endocrinology in naked mole rats is still limited
(Edrey et al., 2011). Naked mole rats are somewhat insulin resistant
and glucose intolerant (Kramer and Buffenstein, 2004). Increased
insulin sensitivity has been proposed as a major mechanism of
life extension. Naked mole rats have also been found to have very
low thyroid hormone levels relative to other rodents (Buffenstein
et al., 2001). They also show a low metabolic rate compared with
mice. Since they live underground, they do not receive sunlight
and are unable to synthesize vitamin D, but they are nevertheless
able to regulate calcium levels (Buffenstein et al., 1994). In mice,
the anti-aging hormone klotho inhibits vitamin D induced apop-
tosis, and klotho knockout mice have severe vitamin D toxicity
(Kuro-O et al., 1997; Medici et al., 2008). Comparative studies of
naked mole rats should provide insights into the endocrinology of
aging in the future.

HUMANS AND OTHER PRIMATES
A number of endocrine signaling changes occur during normal
aging in humans. In females one of the most significant changes is
menopause, after which estrogen levels are greatly reduced (Lind-
say et al., 1996). Menopause occurs at an average age of 51, and
the timing of menopause (early or late) was found to be pre-
dictive of lifespan (Snowdon et al., 1989; Jacobsen et al., 1999).
Hormone replacement therapy can reduce mortality rates in post-
menopausal women younger than 60 (Salpeter et al., 2009). Most
mammals exhibit a similar cessation of ovulation with aging, but
interestingly, menstrual cycles continue basically up until death in
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our closest relative the chimpanzee (Lacreuse et al., 2008). Male
testosterone levels decrease with age after puberty, and this has
been termed “andropause” (Tenover, 1994; Feldman et al., 2002).
Testosterone replacement therapy may have a number of benefi-
cial effects in elderly men (reviewed in Bain, 2010). In males, the
FSH and LH levels increase with advancing age (Morley et al.,
1997; Feldman et al., 2002). In females, mean FSH and LH lev-
els increase before menopause and then increase even further
following menopause (Chakravarti et al., 1976; Lee et al., 1988;
Lenton et al., 1988). Thyroid hormones decline in both sexes
(Hesch et al., 1977; Mariotti et al., 1995). Basal levels of glu-
cocorticoids generally do not change (Jensen and Blichert-Toft,
1971) but cortisol may increase somewhat (Van Cauter et al.,
1996). Basal levels of aldosterone decrease (Flood et al., 1967).
Basal levels of glucagon are unchanged in the elderly but the
liver’s sensitivity to it may change (Simonson and Defronzo, 1983).
Growth hormone secretion (Rudman et al., 1981; Ho et al., 1987),
and total serum IGF-1 levels go up during puberty and then
fall with increasing age (Johanson and Blizzard, 1981; Poehlman
and Copeland, 1990; Brabant et al., 2003; Veldhuis et al., 2005).
About 99% of serum IGF is bound to IGFBPs, and levels of free
IGF-1 decrease with age but free IGF-2 remains stable with age
(Frystyk et al., 1994; Juul et al., 1997). By a different method,
serum free IGF-1 was also found to increase (Janssen et al.,
1998).

A number of studies have found that certain inflammatory
cytokines, such as interleukin-6 (IL-6) and tumor necrosis factor
alpha (TNFα), are elevated in healthy elderly people (Wei et al.,
1992; Ershler et al., 1993; Hager et al., 1994; Ferrucci et al., 2005),
but some studies have found conflicting results (Peterson et al.,
1994; Beharka et al., 2001). Elevated levels of TNFα have been
implicated in promoting the apoptosis of myocytes that leads to
aging-related sarcopenia (Carbo et al., 2002; Visser et al., 2002; Pis-
tilli et al., 2006; Schaap et al., 2009). One source of higher levels of
inflammatory mediators may be adipose tissue, which increases in
quantity and redistributes to different locations in older humans
and mice (Morin et al., 1997; Wu et al., 2007; Kuk et al., 2009;
Koster et al., 2010). Adipose tissue also secretes a number of other
endocrine signaling molecules (reviewed in Galic et al., 2010), and
some of these may be involved in controlling the sensitivity of tis-
sues to the action of insulin (Xu et al., 2003; Menzaghi et al., 2007;
Serrano et al., 2009; Lim et al., 2010). The prevalence of insulin
resistance increases with age in humans, monkeys, and rodents
(Narimiya et al., 1984; Fraze et al., 1987; Lane et al., 1995; Gomez-
Perez et al., 2011). Insulin resistance eventually develops into type
two diabetes (Groop, 1999), which also increases in prevalence
with age (Cowie et al., 2006).

One of the biggest endocrine changes found in human aging
is the 5- to 10-fold decrease in levels of dehydroepiandrosterone
(DHEA), a steroid secreted by the adrenal glands (Orentreich et al.,
1992; Ravaglia et al., 1996). Higher levels of this hormone have
been linked with better health outcomes and one study has found a
correlation between higher levels of DHEA and increased longevity
in males (Enomoto et al., 2008). Treatment of elderly people with
DHEA resulted in beneficial effects including improvement of
insulin sensitivity and reduction of inflammatory cytokines (Weiss
et al., 2011).

Understanding human aging is the ultimate goal of most aging
research, but theories are difficult to test directly in humans. For
instance, it is still unclear whether caloric restriction affects lifes-
pan in humans, but there is evidence that even short term caloric
restriction provides many of the health benefits seen in other
animals, and protection from aging-related diseases such as ather-
osclerosis (Fontana et al., 2004; Fontana and Klein, 2007). Studies
of caloric restriction in rhesus monkeys have shown reduced can-
cer rates, delayed immune system senescence, other beneficial
health effects, and extended longevity (Mattison et al., 2003; Mes-
saoudi et al., 2006; Colman et al., 2009). Hormonal changes in
humans subjected to caloric restriction include an increase in cor-
tisol (Fichter et al., 1986), and reductions of thyroid hormones
(Roth et al., 2002; Fontana et al., 2006), leptin (Bergendahl et al.,
2000; Chan et al., 2003), insulin (Fontana et al., 2004; Weiss et al.,
2006), and testosterone in men (Cangemi et al., 2010). It is note-
worthy that GH, IGF, and DHEA levels did not change with caloric
restriction in humans (Smith, 1996; Walford et al., 2002; Heilbronn
et al., 2006). However when protein intake is restricted in humans,
IGF levels were decreased (Fontana et al., 2008).

There is conflicting evidence regarding IGF signaling and aging
in humans. Recently a number of studies have found association
between polymorphisms in genes encoding IGF pathway compo-
nents and longevity. These include the IGF-1 receptor and down-
stream signaling components such as PI3K, AKT, and FOXO3a
(Bonafe et al., 2003; Kuningas et al., 2007; Suh et al., 2008; Willcox
et al., 2008; Anselmi et al., 2009; Li et al., 2009; Pawlikowska et al.,
2009). A variant of the human klotho gene may also be associated
with human longevity (Arking et al., 2002). In women, combina-
tions of polymorphisms in IIS pathway genes that were expected to
decrease signaling were associated with increased longevity (Van
Heemst et al., 2005). In addition polymorphisms in the IGF-1R
that were associated with longevity have been shown to be hypo-
morphic (Suh et al., 2008; Tazearslan et al., 2011). These results
agree with the findings in animal models that IIS signaling and
its downstream signaling pathway promote aging. Humans with
mutations in the growth hormone receptor who have reduced IGF-
1 levels can survive to old age (Laron, 2005). However, humans
with hypopituitarism and deficiencies in growth hormone who are
not treated with growth hormone have reduced lifespan (Besson
et al., 2003). Patients with acromegaly (excessive growth hor-
mone and IGF-1 levels) also have reduced lifespan, especially when
untreated (Bates et al., 1993).

A large number of studies over the last decade have looked for
associations between serum IGF-1 levels in humans and risk of
dying from all-causes over a subsequent follow-up period. Some
of these have found no association between serum IGF-1 levels and
risk of all-cause mortality (Laughlin et al., 2004; Saydah et al., 2007;
Kaplan et al., 2008; Hu et al., 2009; Yeap et al., 2011). However,
some studies did find that lower levels of serum IGF-1 (Cappola
et al., 2003; Roubenoff et al., 2003; Friedrich et al., 2009), or serum
IGF bioactivity (Brugts et al., 2008), were associated with greater
all-cause mortality risk. At least one study also found that higher
IGF-1 levels were associated with greater all-cause mortality risk
(Andreassen et al., 2009), and two studies found greater risk for
subjects with both low and high levels (Van Bunderen et al., 2010;
Friedrich et al., 2011). Based on these results, it is still unclear
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whether infusions of IGF would be beneficial or detrimental in
older people.

ATHEROSCLEROSIS AND CARDIOVASCULAR DISEASE
Cardiovascular disease, which includes heart attack, stroke, and
heart failure is by far the most common aging-related cause of
death in elderly humans (Xu et al., 2010). Incidences of CVD
increase exponentially with age (Driver et al., 2008). The underly-
ing cause of most CVD is atherosclerosis, a disease of the arteries
in which complex lipid-containing inflammatory lesions called
atheromatous plaques form beneath the endothelial cell lining.
Treatments (drugs and diets) that reduce plasma low density
lipoprotein (LDL) levels protect against atherosclerosis in humans
(Gould et al., 1998) even in people who already have extremely low
LDL levels (Leeper et al., 2007). Atherosclerosis does not occur in
rodents unless they are fed an “atherogenic” high fat, high choles-
terol diet (Armstrong and Heistad, 1990), and animals normally
have much lower LDL levels than the average for humans (Mills
and Taylaur, 1971). Mice are particularly resistant to atheroscle-
rosis, but apolipoprotein E (ApoE) and LDL receptor (LDLR)
knockout mice, which have massively elevated LDL levels, do
develop atherosclerosis early in life (Plump et al., 1992; Zhang et al.,
1992; Ishibashi et al., 1994). Humans who are deficient in the LDL
receptor, which removes LDL from the blood, are also extremely
prone to atherosclerosis at an early age (Mabuchi et al., 1986).
LDL particles are actively transported through the endothelial cell
layer to the subendothelial matrix (Vasile et al., 1983; Ishibashi
et al., 1994) where they bind to negatively charged proteoglycan
molecules, and accumulate (Skalen et al., 2002; Tabas et al., 2007;
Nakashima et al., 2008). The aggregated LDL particles eventually
provoke a complex inflammatory response involving recruitment
of immune cells, leading to further plaque development (reviewed
in Galkina and Ley, 2009).

The arteries change with age and become more susceptible to
atherosclerosis (reviewed in Lakatta et al., 2009). The changes
include a thickening and stiffening of the extracellular matrix-
rich inner layer of the artery wall (the intima) and an increase in
the number of vascular smooth muscle cells in this zone (Virmani
et al., 1991; Orlandi et al., 1993; Nagai et al., 1998; Li et al., 1999;
Wang et al., 2003, 2007a). Atherosclerosis preferentially occurs at
sites of thickened intima (Orlandi et al., 2000; Nakashima et al.,
2007). In mice, rabbits, and monkeys, when young and old ani-
mals were fed atherogenic diets, the older animals developed more
advanced and more severe atherosclerosis than the younger ones
in the same time period (Clarkson et al., 1969; Spagnoli et al., 1991;
Orlandi et al., 2000; Collins et al., 2009). The progression of ather-
osclerosis in humans is accelerated in the premature aging diseases,
Werner syndrome and Hutchinson–Gilford Progeria, despite a lack
of elevated LDL or other risk factors (Cohen et al., 1987; Gordon
et al., 2005; Hennekam, 2006; Cao et al., 2007; Olive et al., 2010)
and in a mouse model of premature aging (Fenton et al., 2004).

Insulin-like growth factor 1 signaling seems to be involved
in regulating the rate of the underlying aging process, and this
may promote the arterial remodeling that increases susceptibility
to atherosclerosis. In recent years, some association studies have
found that higher levels of IGF-1 are associated with increased
risk of CVD (Fischer et al., 2004; Kawachi et al., 2005; Schneider

et al., 2008; Andreassen et al., 2009). However, some studies have
shown the opposite result, that lower levels of IGF-1 predict higher
risk of CVD (Juul et al., 2002; Vasan et al., 2003; Laughlin et al.,
2004; Johnsen et al., 2005; Friedrich et al., 2009). Some studies
also found no association between IGF-1 levels and CVD (Saydah
et al., 2007; Yeap et al., 2011); one found that both high and low
levels showed increased risk of CVD (Van Bunderen et al., 2010).
Humans with a genetic polymorphism in the promoter of the
IGF-1 gene that resulted in an average of 18% less IGF-1 in their
serum were found to be at higher risk for heart attack (Vaessen
et al., 2001). Hypopituitarism and acromegaly, which cause a defi-
ciency or excess, respectively, in activity of the GH–IGF-1 axis,
both cause increased risk of CVD (Rosen and Bengtsson, 1990;
Clayton, 2003).

The role of IGF in atherosclerosis has been extensively stud-
ied. ApoE knockout mice that were engineered to have a genetic
polymorphism that results in 20% less circulating IGF-1 had an
increased atherosclerotic plaque burden compared with control
ApoE knockout mice (Shai et al., 2011). Infusion of recombinant
IGF-1 into the blood of ApoE knockout mice resulted in decreased
plaque burden (Sukhanov et al., 2007). However, overexpression
of IGF-1 in VSMCs in ApoE knockout mice did not reduce the
plaque burden but the plaques showed signs of increased stability
(Shai et al., 2010). Overexpression of IGF-1 in smooth muscle tis-
sue does cause VSMC proliferation and hyperplasia (Wang et al.,
1997). PAPP-A, which increases IGF bioavailability by cleaving
inhibitory IGFBPs, is enriched in atherosclerotic plaques, and
in the blood in people with coronary artery disease and unsta-
ble atherosclerotic plaques (Bayes-Genis et al., 2001a; Beaudeux
et al., 2003; Lund et al., 2003; Heider et al., 2010). Knockout of
PAPP-A in mice extends lifespan, as mentioned previously, and
also delays aging-related pathology, including reduced degenera-
tive cardiovascular changes (Conover et al., 2010a). Knockout of
PAPP-A in ApoE knockout mice reduced the size of their athero-
sclerotic lesions (Harrington et al., 2007), and overexpression of
PAPP-A in ApoE knockout mice increased lesion size (Conover
et al., 2010b). Overexpression of a protease-resistant form of
IGFBP-4, a major PAPP-A target (Parker et al., 1995; Bayes-Genis
et al., 2001b), inhibits smooth muscle cell growth in mice (Zhang
et al., 2002). Infusion of the protease-resistant form of IGFBP-4
into hypercholesterolemic pigs reduced the size of their athero-
sclerotic lesions, and this effect was prevented by simultaneous
infusion of IGF-1 (Nichols et al., 2007). ApoE knockout mice
that also lack IGF-2 have reduced atherosclerotic lesion size com-
pared with control ApoE knockout mice, suggesting that IGF-2
promotes atherosclerosis (Zaina et al., 2002). Constitutive IGF-
1R tyrosine kinase activity was found in VSMCs from old rats
but not young rats (Li et al., 2008). It has been suggested that
IGF-1 in the blood protects against plaque rupture by inhibit-
ing VSMC apoptosis (Conti et al., 2011). Based on the evidence
discussed above, it seems likely that IGF signaling, especially by
IGF-2, also plays a role in promoting atherosclerosis, perhaps at
the level of paracrine signaling within the arterial intima. IGF
also protects the heart by inhibiting cardiomyocyte apoptosis (Lee
et al., 1999), which normally causes an aging-related decline in
heart function even in the absence of disease (Olivetti et al.,
1997).
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There is evidence to suggest that signaling by the hormone
angiotensin II plays a role in promoting aging-related changes
in the arteries. Angiotensin II is the final and most active
product of the renin–angiotensin system whose primary role
is to regulate blood pressure (Mehta and Griendling, 2007).
Angiotensin II induces vasoconstriction by binding to and activat-
ing angiotensin type 1 receptors (AT1) on vascular smooth muscle
cells. Angiotensin signaling might play a role in aging. Knockout
of the major isoform of AT1 in mice (AT1a) increases lifespan
(Benigni et al., 2009). Long-term treatment of rats with inhibitors
that reduce angiotensin signaling protected against aging-related
changes in the cardiovascular system and also extended their lifes-
pans (Basso et al., 2007). Double knockout mice lacking both
AT1a and ApoE had significantly smaller atherosclerotic lesions
at 60 weeks of age than mice lacking only ApoE, indicating that
AT1 signaling promotes atherosclerosis progression (Eto et al.,
2008). The arterial walls of aged mice and non-human primates
contain higher levels of angiotensin-converting enzyme (ACE),
angiotensin II, and other components of the angiotensin signal-
ing pathway (Wang et al., 2003, 2007a). Treatment of young rats
with angiotensin II causes changes in their artery walls that repro-
duce changes that normally occur with aging (Wang et al., 2005).
Angiotensin II increases expression of the IGF-1R in VSMCs, and
this may be involved in the mechanism by which angiotensin II
promotes VSMC proliferation (Du et al., 1999).

CANCER
The second most common cause of death in the elderly is can-
cer (Xu et al., 2010). Rates of cancer incidence increase with
age but actually fall after the ninth decade (Driver et al., 2008).
Cancer seems to be linked to the rate of the underlying aging
process, in that processes like speciation and selective breeding
that can alter lifespan also affect the rate of cancer incidence
(Miller, 1991). Caloric restriction reduces cancer rates in mice
and non-human primates (Weindruch and Walford, 1982; Wein-
druch et al., 1986; Colman et al., 2009). C. elegans mutants with
extended longevity, including IIS mutants, have reduced growth
of germ line tumors (Pinkston et al., 2006; Pinkston-Gosse and
Kenyon, 2007). Dwarf mice, GH receptor knockout mice, and
PAPP-A knockout mice have reduced and/or delayed cancer occur-
rence (Ikeno et al., 2003, 2009; Conover et al., 2010a). Humans
with a variety of mutations that confer congenital IGF-1 defi-
ciency are protected from cancer (Shevah and Laron, 2007). A
number of association studies have found that higher serum IGF
levels correlate with higher risk for specific cancers (Chan et al.,
1998; Hankinson et al., 1998; Ma et al., 1999; Yu et al., 1999;
Probst-Hensch et al., 2001; Renehan et al., 2004; Gunter et al.,
2009), and general cancer mortality in elderly men (Major et al.,
2010). IGFs promote growth, proliferation, and protection against
apoptosis, and are directly involved in promoting tumorigene-
sis (reviewed in Pollak, 2008). High levels of insulin may also
increase the risk of cancer in humans (Pisani, 2008). Reductions
in IIS signaling seem to protect against cancer but a major ques-
tion is whether this is caused by a delay in the aging process
or simply an inhibition of tumor growth due to the reduced
availability of an important growth factor. The fact that GH-
deficient mice are resistant to chemical carcinogenesis suggests

that a reduction in the GH–IGF-1 axis may actually increase
resistance to DNA mutation (Ramsey et al., 2002). FOXO tran-
scription factors, which are inhibited by IIS signaling, have been
shown to act as tumor suppressors (Paik et al., 2007), and FoxO3a
has been shown to activate DNA repair (Tran et al., 2002). After
a tumor has already formed, many endocrine signaling systems
can be co-opted by the cancer cells to promote their own pro-
liferation; an account of all of these is beyond the scope of this
review.

THE NEED FOR NEW MODEL SYSTEMS
In the last two decades, genetic studies using very short-lived
model organisms including flies, worms, and yeast (which have
not been discussed here due to their lack of “endocrine” signaling)
have revealed a wealth of new knowledge about the molecu-
lar basis of aging. The advantage of short-lived models is that
they are amenable to “lifespan extension experiments,” that is,
experiments in which a genetic manipulation or intervention is
tested with the hypothesis that it will extend the lifespan. An
extension of maximum lifespan, coupled with a retardation of
demographic senescence, and a delay in aging-related disease
incidence, is one of the most robust ways to demonstrate the
involvement of the manipulated process or mechanism in nor-
mal aging. Conversely, when only reductions in levels of markers
associated with aging, or a reduction in lifespan is reported, it is
difficult to know whether these effects are truly due to changes in
aging rate.

Short-lived models also have the disadvantage that it is impos-
sible to know whether any given mechanism that is demonstrated
to be at work in a short-lived organism is also present in longer-
lived organisms such as humans. Many short-lived organisms are
distant from humans on the tree of life and differ in certain aspects
of their biology. One way to address this problem is to study each
process in multiple different short-lived organisms from different
phyla and confirm broad evolutionary conservation. C. elegans
and Drosophila alone may be insufficient for this due to their phyla
belonging to the same superphylum of ecdysozoa (Mallatt and
Winchell, 2002; Dunn et al., 2008). Another approach would be to
study long-lived organisms and focus on the differences between
young and old individuals. This may be necessary in order to
uncover ways to extend the lifespan of already long-lived humans.

It is clear that new model systems will be a useful addition to
aging research (see Table 1). The honey bee as a social insect and
the naked mole rat as a relatively long-lived mammal as discussed
above are now being studied more extensively (Buffenstein, 2005;
Munch and Amdam, 2010). In addition, extremely long-lived mol-
lusks (bivalves) that live hundreds of years are beginning to be
studied (Philipp and Abele, 2010). Some fish can also live more
than 200 years and continue reproduction into advanced age (De
Bruin et al., 2004; Mangel et al., 2007). Zebrafish are now being
studied as a gradually aging fish model system (Gerhard et al.,
2002). Zebrafish can live up to 4–5 years and thus, despite their
many advantages (small size, genetic tractability, etc.), they can-
not be used for the same kinds of rapid aging experiments as
Drosophila and C. elegans.

Another fish model that is gaining traction is the exception-
ally short-lived annual killifish Nothobranchius furzeri. N. furzeri
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has the advantages of being both short-lived, with a maximum
lifespan of around 3 months in the shortest-lived strain (Valdesalici
and Cellerino, 2003; Terzibasi et al., 2008), and being a verte-
brate and therefore sharing many biological features with humans
that are not shared by lower organisms (Valdesalici and Cellerino,
2003; Austad, 2004b). An initial characterization of the N. furzeri
genome has been published (Reichwald et al., 2009), and a number
of vertebrate aging genes have been cloned (Genade et al., 2005).
The appearance of aging-related biomarkers and aging pathology
have been characterized, and they suggest that the aging process
in N. furzeri follows a normal pattern but is highly accelerated
(Genade et al., 2005; Di Cicco et al., 2011).

CONCLUDING REMARKS
Our current understanding of the endocrinology of aging is still
incomplete and many open questions exist. Mutants that are defi-
cient in a particular endocrine signaling pathway throughout life
have provided most of the evidence that endocrine signaling is
involved in regulating aging. It is generally unknown whether hor-
mones actively influence the rate of the aging process or are simply
required during a certain period to stimulate a developmen-
tal progression that later influences aging. Another major open
question is, to what extent will the findings on the endocrine reg-
ulation of aging in model organisms be applicable to humans, and
will hormone replacement or modulation therapies be effective

in treating or delaying aging-related diseases? Further research
should increase our understanding of the endocrine pathways that
regulate aging and the molecular mechanisms by which hormones
affect the aging rate in different species.

A major lesson from studies in comparative endocrinology is
that IIS signaling is involved in regulating longevity in many differ-
ent species. This is logical considering its role as a highly conserved
pathway that promotes growth and is regulated by nutritional sta-
tus. IIS genes are good candidates for antagonistically pleiotropic
genes because IIS signaling usually promotes fecundity in addition
to aging. However, in many cases, aging and fecundity have been
shown to be decoupled, indicating that a simple trade-off between
reproduction and longevity is not necessarily sufficient to explain
the causes of aging. Caloric restriction promotes longevity in virtu-
ally all species that have been examined and IIS signaling is likely
at least partially involved in this phenomenon in some species.
Further studies on the comparative endocrinology of aging may
provide more evidence to link steroids and other hormones more
concretely to longevity regulation in mammals.
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