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ABSTRACT: Despite the many biological functions of RNA,
very few drugs have been designed or found to target RNA.
Here we report the results of molecular dynamics (MD)
simulations and binding energy analyses on hepatitis C virus
internal ribosome entry site (IRES) RNA in complex with
highly charged 2-aminobenzimidazole inhibitors. Initial coor-
dinates were taken from NMR and crystallography studies that
had yielded different binding modes. During MD simulations,
the RNA−inhibitor complex is stable in the crystal
conformation but not in the NMR conformation. Additionally,
we found that existing and standard MD trajectory postprocessing free energy methods, such as the MM-GBSA and MM-PBSA
approaches available in AMBER, seem unsuitable to properly rank the binding energies of complexes between highly charged
molecules. A better correlation with the experimental data was found using a rather simple binding enthalpy calculation based on
the explicitly solvated potential energies. In anticipation of further growth in the use of small molecules to target RNA, we
include results addressing the impact of charge assignment on docking, the structural role of magnesium in the IRES−inhibitor
complex, the entropic contribution to binding energy, and simulations of a plausible scaffold design for new inhibitors.

■ INTRODUCTION
RNA performs a vast array of functions in biological systems,
including genetic encoding, regulation, and catalysis,1−3 and yet
very few small-molecule drugs that target RNA exist.4 This may
be the result of many factors, including the relatively recent
discovery of RNA’s many biological roles and the difficulty in
preventing RNA degradation during experiments, particularly
by ribonucleases.5,6 Likewise, computational investigations of
RNA−ligand binding are comparatively rare (a PubMed search
of “protein binding simulations” as of January 2014 yielded
7633 results, and a search of “rna binding simulations” yielded
488 results).7,8 In order to address this paucity, the current
study reports the results of molecular dynamics (MD)
simulations on a specific RNA−ligand system and aims to
provide a more reliable foundation for future studies involving
highly charged RNA−ligand complexes such as those described
here.
The target of this research is the domain IIa RNA sequence

from the hepatitis C virus internal ribosome entry site (HCV
IRES).9 Experimental structures exist for the unbound (or free)
structure10,11 and also of the RNA in complex with 2-
aminobenzimidazole inhibitors.12,13 These RNA−inhibitor
complexes are attractive structures to study because they
involve a relatively short RNA sequence bound to druglike
molecules. This contrasts with typical structures that are often
larger and more complex, such as RNA or riboprotein
molecules in complex with aminoglycosides.14,15 Moreover, a
distinct structural difference between the free and bound HCV

IRES is observed, and this is most notably characterized by the
loss of a critical bend in the RNA upon ligand binding that
explains the inhibition mechanism.16 Biologically, the structure
is of interest because of both the high degree of sequence
conservation in IRES elements and its importance in HCV
genome translation and viral replication.17 Rather than using
the 5′ cap-dependent mechanism to initiate translation at the
ribosome, as is typical in eukaryotes, the HCV IRES element is
responsible for recruiting the 40S ribosomal subunits. Thus, the
development of inhibitors of the IRES machinery could be
useful in treating hepatitis C virus infections.
The 2-aminobenzimidazole inhibitors used in the exper-

imental structures were developed by Isis Pharmaceuticals, Inc.
using a structure−activity relationship (SAR) by mass
spectrometry guided approach. These RNA binding inhibitors
were confirmed to reduce HCV RNA levels in a viral RNA
replication assay.18 As part of the exploration of SARs, a
number of different derivatives were synthesized and binding
constants estimated (those studied in this work are described in
Figure 1 and Table 1). This provides a series of related
inhibitors studied by the same laboratory with equivalent and
comparable experiments that can be investigated by simulations
to assess biomolecular simulation protocols. There are some
drawbacks to this experimental data set, including the
following: (1) the protonation state of the inhibitor upon
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binding is unknown; (2) several inhibitors were synthesized as
mixtures of enantiomers or diastereomers, and the experimental
binding data published do not distinguish the effects from
individual stereoisomers; and (3) the errors in the binding
measurements were not reported. These challenges do not
preclude computational assessment. For example, the proto-
nation states can be estimated with reasonable accuracy using
pKa estimation software (see Methods), and such calculations
suggest that the inhibitors are all fully protonated in solution at

physiological pH as depicted in Figure 1. With regard to
stereochemistry, it is very easy to perform separate calculations
on each of the enantiomers and diastereomers and, as an
approximation, to report the mean value for comparison with
experimental data for the mixture. The lack of error analysis in
the experimental results, however, does suggest the use of
caution when making certain conclusions on the basis of a
comparison of the experimental and computational results.
The available experimental structures of the RNA−inhibitor

complexes derived from NMR data12 and X-ray crystallog-
raphy13 exhibit distinctly different binding modes. These
differences cannot easily be attributed to the identity of the
two different inhibitors used in the separate investigations, as
they differ by only a single −CH2− group (J4 for NMR and J5
for X-ray; see Figure 1). The differences also cannot be
attributed to the slight change in RNA sequence in the NMR
structure versus the crystal structure, as the sequence changes
are found only at the ends of the molecule, as shown and
discussed in Figure 2A. Rather, the differences must lie in either
the experimental conditions or the structure refinement
procedures used in the two experimental methods. The NMR
structure can be described as an open conformation with
stacking contacts formed below the inhibitor. Contacts to the
RNA binding site are formed by both dimethylamino arms of
the inhibitor: one to the phosphate group of G5 and one to the
junction of the C11:G33 base pair (Figures 2B and 3A).
Hydrogen-bonding contacts between the benzimidazole ring
donor sites and the RNA are not observed. In contrast, the
crystal structure is characterized by a compact binding site in
which stacking interactions are formed both above and below
the inhibitor. Both dimethylamino groups of the inhibitor
interact with the RNA phosphate backbone, and two critical
hydrogen bonds are formed between the benzimidazole ring
and residue G33 (Figures 2C, 3B, and 4). Dibrov et al.13

suggest that these hydrogen bonds explain the observation that
the C11G:G33C base pair mutant does not bind the
benzimidazole inhibitors.
In addition to the differences in the conformations of the

NMR and crystal structures, there are potentially conflicting
reports regarding the cation requirements necessary for the
formation of the inhibitor-bound complex. Magnesium is
observed at core positions in both the unbound and bound
crystal structures.11,13 It has also been found that removal of
magnesium from the Förster resonance energy transfer (FRET)
binding assay of the crystal structure yields an approximately
30-fold decrease in binding affinity.13 Although these findings
are consistent with the well-known relationships between RNA
structure and cation binding,19,20 they should not be
interpreted to suggest that coordinated magnesium exclusively
performs the stabilization role.21 A variety of RNA tertiary
structures are known to form in moderate levels of monovalent
salt,22 and magnesium is known to compete with monovalent
cations in stabilizing RNA.23 In the case of the HCV IRES
domain IIa RNA, although the addition of magnesium stabilizes
the unbound solution structure,10 no changes were observed in
the NMR spectra of the bound complex upon addition of
magnesium to a solution with a relatively high monovalent salt
concentration.12 Also, the first reported dissociation constants
for the benzimidazole inhibitors were determined in the
absence of magnesium with modest levels of ammonium
acetate.18 These values (Table 1) are comparable to those
determined by FRET assays using the crystallography construct
with magnesium. Additionally, a fluorescence binding assay of

Figure 1. Structures of previously identified inhibitors,18 which are
studied further in this work, that bind to the HCV IRES subdomain
IIa. Twelve stereochemically distinct inhibitors can be derived from
the six structures shown here. The protonation states used in the
simulations are as depicted. The locations of the stereocenters in J3, J4,
and J5 are indicated by a ● symbol on the chiral carbon. We refer to
the identity of the stereoisomer by adding R or S to the name
designator (i.e., J3R, J3S, J4R, J4S, J5R, and J5S). The two carbon
stereocenters of the J6 diastereomers are indicated with the ● and ■

symbols, and denoted by appending R or S to J6 in that respective
order (J6●■): J6RR, J6RS, J6SR, and J6SS. Note: the J4 inhibitor was
used in the NMR study,12 whereas the J5 inhibitor was used in the
crystallography study.13

Table 1. Experimental Dissociation Constants (μM) and the
Corresponding Binding Free Energies (kcal/mol)
Determined Previously by Mass Spectrometry18

inhibitor KD (μM) ΔGbinding (kcal/mol)a

J1 >100.00 −5.45b

J2 17.00 −6.50
J3 3.50 −7.44
J4 1.70 −7.87
J5 0.86 −8.27
J6 0.72 −8.37

aThe free energy of binding was calculated according to the relation
ΔG = RT ln KD at 298.15 K. bThe exact dissociation constant is not
known for J1, and thus, −5.45 kcal/mol represents the lower bound
for the binding energy.
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the NMR sequence conducted in 0.15 M KCl and 0.15 M NaCl
using the J4 inhibitor (Figure 1) yielded a dissociation constant
of 2.4 μM,12 which is in the equivalent range as the value
determined by a FRET assay for the crystal sequence bound to
the J5 inhibitor in 2 mM Mg2+ (EC50 = 3.4 μM).13

The goal of this work is to validate the computational
methods we plan to employ for HCV IRES inhibitor discovery
and/or optimization. As an initial step in this process, we report

results that attempt to answer the following questions: (1)
Which of the two published IRES−inhibitor structures is best
supported by MD simulations? (2) Can MD simulations
further inform whether the magnesium ions identified in the
crystal structure are required for inhibitor binding? (3) Is the
MM-GBSA/MM-PBSA method sufficiently accurate to predict
the relative order of binding affinity of several 2-amino-
benzimidazole inhibitors? (4) Is there a significant difference in

Figure 2. Despite similar sequences, the reported conformations of the inhibitor-bound HCV IRES domain IIa determined by NMR analysis and X-
ray crystallography differ. (A) Secondary structure diagrams of the domain IIa constructs used in the NMR12 and crystallography13 studies. The
hairpin sequence from the NMR study was used for all of the simulations in this study. The residues colored in red show the portions of the RNA
that are identical in the two published structures. (B, C) Representative models depicting the global structures of the NMR ensemble and the crystal
structure, respectively. In each structure, the RNA backbone is emphasized with heavier width, and the inhibitor is highlighted in green. The
structural orientations were chosen to emphasize the global differences in the binding conformations.

Figure 3. Stereoviews (wall-eyed) of the inhibitor binding conformations observed in (A) the experimental NMR ensemble and (B) the crystal
structure. The inhibitor is highlighted in green.
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docking results when using the partial charges assigned by the
rigorous RED method24 versus the more approximate AM1-
BCC method?25,26 (5) Do the MD simulations of various 2-
aminobenzimidazole inhibitors suggest alternative inhibitor
scaffolds that can be validated using further MD simulations?

■ METHODS
Ligand Parametrization. All of the inhibitors in this study

were protonated at the dimethylamino and benzimidazole
positions as indicated in Figure 1. The fully protonated state at
pH 7.0 is consistent with pKa estimates by two different pKa
prediction programs, SPARC27 and Marvin Sketch (www.
chemaxon.com/products/marvin). Charge derivation was
performed in a very careful manner because of the highly
charged nature of the inhibitors: (1) A hand-built inhibitor
model was geometry-optimized at the quantum-mechanical
(QM) HF/6-31G* level consistent with the AMBER ff10 and
ff12SB force fields, after which the initial atomic charges were
determined by restrained electrostatic potential (RESP)28

charge fitting; (2) 50 ns of implicit-solvent generalized Born
(GB) MD using the Hawkins, Cramer, and Truhlar model29

was performed at 400 K to sample relevant inhibitor
conformations, and the resulting trajectory was clustered30

into 20 clusters by the “averagelinkage” algorithm using
AMBER’s Ptraj program; (3) the representative structures
from clusters whose occupancies were greater than 2% were
then geometry-optimized at the QM HF/6-31G* level; and (4)
optimized structures whose energies were within ∼0.5 kcal/mol

of the minimum-energy structure were used in a multi-
conformation, multiorientation RESP fit using the RED
program24 to generate the final charges used in this study.
Enantiomers were fit simultaneously to ensure identical
charges. Bonds, angles, torsions, improper torsions, and
Lennard-Jones parameters were assigned from the general
AMBER force field (GAFF) using the Antechamber and
Parmchk programs.31,32 Some torsion and improper torsion
parameters were modified because the default parameters did
not maintain planarity at C2 of the 2-aminobenzimidazole ring.
MOL2 files with GAFF atom types and charges as well as
“frcmod” files with the modified torsion parameters are
provided in the Supporting Information (SI). All of the QM
calculations were performed using Gaussian 09 (www.gaussian.
com), and all of the MD simulations were performed using
AMBER12.33

In addition to the more detailed approach to generate high-
quality atom charges discussed above, we were interested in the
performance of more approximate charge parametrization
methods. To test this, we performed molecular docking studies
(discussed below) using both the RESP charges from the above
procedure and AM1-BCC25,26 charges produced by AMBER’s
Antechamber program. In the latter case, charges were
determined separately for each inhibitor stereoisomer studied.

Initial RNA−Inhibitor Conformations. Experimentally
determined atomic-resolution structures exist for HCV IRES
RNA complexed with the J4R and J4S inhibitors (NMR
structures) and also for the J5R inhibitor (crystal structure). To
facilitate comparisons between the MD simulations, the crystal
structure duplex was converted into a hairpin of identical
sequence to the NMR structure. To accomplish this, the 3′
dangling bases were removed, the C:G base pair at the base of
the lower stem was converted to a G:C base pair, and a UUCG
tetraloop was added to the opposite stem (Figure 2A). With the
exception of J4R and J4S bound in the NMR conformation and
J5R in the crystal conformation, binding poses for the inhibitors
in our test set were not available. In preliminary MD
simulations, we noticed that the flexible portions of the
inhibitor scanned the nearby RNA contacts on a short (ns)
time scale, suggesting a dynamic binding mode. While the core
aromatic ring atoms of each inhibitor are presumed to bind
identically, the best pose for the flexible regions is not obvious.
Thus, we chose the following procedure to eliminate bias in
building the initial poses. In order to generate a diverse set of
binding conformations for the inhibitors in Figure 1, the 20
representative conformations of each inhibitor identified by
clustering during the charge derivation procedure were root-
mean-square (RMS)-fit to the benzimidazole core atoms of the

Figure 4. Schematic of the crystal structure binding site in the plane of
the J5 inhibitor. Residue labels are numbered according to the NMR
hairpin sequence (Figure 2A). Critical contacts are indicated by
colored dotted lines, and the colors correspond to the distances
depicted in SI Figure S2.

Table 2. MD Simulations Performed in This Work

simulation set system contents no. of ligands tested no. of ligand poses total no. of simulations simulation length (ns)e

NMR1 RNA,a ligand,c K+, Cl−, TIP3P 12 1 12 232
CRY1 RNA,b ligand,c K+, Cl−, TIP3P 12 1 12 218+
CRY2 RNA,b ligand,c K+, Cl−, TIP3P 12 20 240 2
MG RNA,b J5R, Mg2+, K+, Cl−, TIP3P 1 1 1 232
RDC RNA,b J4R, K+, Cl−, TIP3P 1 1 1 5
NOV RNA,b ligand,d K+, Cl−, TIP3P 4 1 4 70
LIG ligand,c K+, Cl−, TIP3P 12 1 12 594+

aRNA receptor in the NMR conformation. bRNA receptor in the crystal conformation. cThe 12 ligands are those described in Figure 1. dThe four
ligands are those described in Figure 11. eSimulation length represents the simulation time for each simulation (the product of the total number of
simulations and the simulation length yields the aggregate time). “+” indicates that the stated time is the minimum from among the simulation set.
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existing experimental structure, either NMR or crystal. For the
NMR structure, the first model from the Protein Data Bank
2KU0 ensemble12 was used as the reference structure. This
procedure resulted in the generation of 20 “NMR-like” RNA−
inhibitor conformations and 20 “crystal-like” RNA−inhibitor
conformations for each of the 12 stereochemically distinct
inhibitors. The selection of these conformations as initial
structures for the various simulation sets in this work is
described in the following section. The simulation that included
magnesium used the exact coordinates from the crystal
structure for all of the atoms of the J5R inhibitor, magnesium,
and RNA, except for the necessary sequence modifications to
the RNA helix termini required to match the NMR sequence.
In the case of the novel ligands, a single inhibitor conformation
was chosen and RMS-fit to the benzimidazole core atoms in the
experimental crystal structure.
Simulation Sets. As described in Table 2, several sets of

simulations were performed. For RNA−inhibitor studies, two
strategies were employed: single long simulations and multiple
short simulations. For the single long simulation sets (NMR1
and CRY1), a single initial structure was selected from the 20
initial conformations for each of the 12 inhibitors on the basis
of the minimum GB energy of the complex. For the multiple
simulation set (CRY2), all 20 initial conformations were used.
In a few cases, bad initial conformations with severe atom
overlap were replaced with good conformations.
Construction of Solvated Models. The domain IIa RNA

was parametrized using AMBER’s ff12SB force field, which
includes a recent update of the backbone and χ torsion
parameters.34−36 The initial RNA−inhibitor conformations
were first minimized for 2500 cycles using the steepest-descent
algorithm in implicit GB solvent, and the resulting geometries
were solvated. All of the simulations described in Table 2 were
performed in TIP3P water37 with net-neutralizing potassium
ions and an additional ∼200 mM KCl as parametrized by Joung
and Cheatham.38 The number of waters added was chosen to
yield a periodic truncated octahedron with an approximately 12
Å minimum water shell between the solute and the box edge. In
order to facilitate energetic comparisons of inhibitors, the
numbers of solvent atoms for the systems in each simulation set
were made to be identical using an in-house Perl script coupled
to AMBER’s LEaP program. In the case of the J1 inhibitor,
which has a net charge of +2 rather than +3, direct energetic
comparisons with the other inhibitors were not performed.
Following solvation, the monovalent ion positions were
randomized with AMBER’s Ptraj program using the “random-
izeions” command to remove bias from the initial ion
placement. In the case of the MG simulation (Table 2), the
crystallographic magnesium ions and water molecules were
included using the magnesium parameters of Allneŕ, Nilsson,
and Villa39 in addition to 200 mM KCl.
Molecular Dynamics Simulations. All of the solvated

simulations used a similar minimization, heating, and
equilibration procedure: (1) the entire system was minimized
for 1000 steps using the steepest-descent algorithm followed by
1000 steps of conjugate-gradient minimization while 25 kcal
mol−1 Å−2 positional restraints were enforced on the RNA and
inhibitor benzimidazole core atoms; (2) the system was heated
from 10 to 150 K at constant volume with the Langevin
thermostat over the course of 100 ps with 25 kcal mol−1 Å−2

positional restraints on the RNA and benzimidazole core
atoms; (3) further heating from 150 to 298 K and initial
equilibration were performed using constant pressure and the

Langevin thermostat over the course of 100 ps with 5 kcal
mol−1 Å−2 positional restraints on all of the solute atoms; and
(4) final equilibration at 298 K was performed for 2 ns using
constant pressure and the Langevin thermostat with 0.5 kcal
mol−1 Å−2 positional restraints on the RNA and benzimidazole
core atoms. Production simulations were performed at 298 K at
constant pressure using the weak-coupling algorithm for the
thermostat and barostat.40 The pressure relaxation times were 1
ps for the initial equilibration step, 5 ps for the final
equilibration step, and 10 ps for production. For heating and
both equilibration steps, a collision frequency of 2 ps−1 was
used for the Langevin thermostat. For production, the time
constant of heat bath coupling was 10 ps using the weak-
coupling algorithm. For all heating, equilibration, and
production steps, the time step was 2 fs, the direct space sum
used a cutoff of 8.0 Å, and SHAKE was applied to all bonds
involving a hydrogen atom.41 The default particle-mesh
Ewald42 settings (which correspond to a grid spacing of ∼1
Å and a direct space tolerance of 10−6) were used to determine
long-range charge interactions. Coordinates were recorded
every picosecond during production simulations. With the
exception of the simulation performed with residual dipolar
coupling (RDC) restraints, all of the production simulations
were unrestrained and performed using either the CPU or GPU
version of the PMEMD program in AMBER12.33 A single
simulation of the crystal conformation with the NMR RDC
restraints enforced was performed using AMBER’s Sander
program (the use of RDC restraints is not yet implemented in
the faster PMEMD program). A short minimization was
performed on the equilibrated, solvated structure to best fit the
RDC alignment tensor. The relative weighting of the alignment
restraint was chosen to be 0.08 kcal/Hz2, which represents an
empirical determination of the largest value that did not
produce simulation instability (e.g., integration errors).

Energy Analysis. MM-GBSA and MM-PBSA are well-
known postprocessing techniques for computing binding
energies from simulation trajectories.43−45 In this work, MM-
GBSA and MM-PBSA analyses were performed with the
MMPBSA.py program in AMBER12 using the single-trajectory
approach. For MM-GBSA, the Hawkins, Cramer, and Truhlar
GB model29 was used for implicit solvation with a salt
concentration of 200 mM approximated using Debye−Huckel
screening. For MM-PBSA, the following options were used: a
level-set-based dielectric model, a two-term nonpolar solvation
free energy term based on a cavity and dispersion
calculation,46,47 an ionic strength of 200 mM, a solvent probe
of 1.4 Å, a grid spacing of 0.25 Å, and a value of 6.0 for the ratio
between the longest grid dimension and the solute. Radii for
inhibitors were chosen from a set of optimized radii to best
match the atom types present.46 For MM-GBSA, all of the
frames from the trajectory were used, but for MM-PBSA only
every 100th frame was used for computational efficiency
reasons. Solute entropy estimates were calculated separately
(see below) and were not included in the MM-GBSA/MM-
PBSA values.
In addition to the MM-GBSA/MM-PBSA framework of

energy analysis, we also calculated relative binding enthalpies
that included the full explicit solvent effects. The instantaneous
enthalpy for any given simulation frame is defined as

= + +H U E pVpot K

where Upot is the potential energy, EK is the kinetic energy, p is
the pressure, and V is the volume. When the binding enthalpy
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was computed, the kinetic energy and pressure−volume terms
were assumed to be negligible because of the use of the
thermostat and barostat. Thus, the relative binding enthalpy
was calculated by subtracting the solvated-inhibitor mean
potential energy (obtained using simulations of the free ligands
in explicit solvent, denoted as LIG) from the solvated RNA−
inhibitor mean potential energy (obtained from the CRY1 and
CRY2 simulations):

Δ = ⟨ ⟩ − ⟨ ⟩− ‐H U Ubind RNA lig lig free

The inhibitor J1 was excluded from these calculations because
its net charge differs from those of the other inhibitors, which
complicated direct comparisons because of differences in the
numbers of counterions.
We also performed two types of entropy analysis. In both

cases, only the inhibitor entropy was considered, and entropy
changes were computed by subtracting the entropy of the free
inhibitor from that of the complexed inhibitor. The RNA−
inhibitor and free-inhibitor conformations were taken from the
CRY1 and LIG simulation sets, respectively. The first method,
quasi-harmonic analysis,48 was computed using AMBER’s Ptraj
program. The second method, first-order configurational
entropy analysis based on bond/angle/torsion probability
distribution functions, was computed using the ACCENT
program developed by Gilson and co-workers.49 Both methods
ignore rotational and translational contributions to the entropy.
Because of the accumulative nature of these values and the
difficulty we had in converging them, error bars are not given
for the entropy estimates, and the data are not used in
combination with the other energetic analyses presented here.
Finally, unbound-inhibitor solvation enthalpies were esti-

mated by subtracting gas-phase average potential energies from
either GB implicit solvation energies or from potential energies
of explicitly solvated trajectories. Although one could compute
the gas-phase energies from solvated trajectories by stripping
the solvent, we performed 100 ns gas-phase simulations for

each of the 12 inhibitors represented in Figure 1 in order to
ensure the independence of these values.

Error Analysis. Two approaches were used to estimate the
error, depending on the simulation set. For the single long
simulation sets, a previously described reblocking procedure
was used.50 Briefly, a data set plotting the standard error of the
mean (SEM) versus increasing block size was computed. Given
sufficient sampling, the plot plateaus at a value that corresponds
to the SEM. The data can be fit with a trend line to predict this
value, but the fit is not always accurate because of specific
assumptions about the type of correlation in the data. To be
conservative, we used the maximum value observed in the plot.
An example of this error analysis is given in SI Figure S1. For
the multiple short simulation set (CRY2), we considered the
average values from the 20 separate simulations to be
independent, uncorrelated data points and computed the
SEM in the traditional way by dividing the sample standard
deviation by the square root of the number of data points (i.e.,
the number of simulations). The error combining rules were as
follows: when the difference of two mean values was computed,
the errors were added; when the average of two or more mean
values was computed, the errors were averaged.

Grid Analysis. The regions of highest magnesium ion
occupancy were determined using the “grid” command in
AMBER’s Ptraj program.51 The simulation trajectory frames
were centered, imaged, and RMS-fit using the heavy atoms of
residues 5, 11, 33, and 34 that form the binding region.
Occupancy was determined by a three-dimensional histogram
approach using a 75 Å × 75 Å × 75 Å box with 0.5 Å × 0.5 Å ×
0.5 Å resolution. The results were visualized on the average
RNA−inhibitor structure from the simulation using the UCSF
Chimera package.52 To choose the density surface contour level
to be displayed, the contour level was increased until
magnesium occupancy in the bulk solvent region was no
longer observed, thus suggesting stable binding locations.

Docking. Docking was performed on the crystal receptor
structure (modified to match the full NMR sequence; Figure

Figure 5. Plot of binding region RMSD vs simulation time, which reveals that the 12 simulations in the CRY1 simulation set (black) are much more
stable than those of the NMR1 set (red). The simulation sets contain 12 simulations, one each for the 12 inhibitor-RNA complexes (Figure 1)
bound in either the crystal conformation (CRY1) or the NMR conformation (NMR1). The atoms considered in the binding region are defined to be
the heavy atoms in residues 5, 6, 32, 33, and 34 and the inhibitor. The first frame of each production simulation was used as the RMSD reference
structure for that simulation. For clarity, the RMSD values have been smoothed with a 2500 data point running average.
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2A) using Dock 6.5.7 The top and bottom helical portions of
the receptor were excluded from consideration as they are
known not to contain the binding site. This exclusion did not
inappropriately limit docking poses to the known binding cavity
since the entire backside region of the receptor was explored for
docking. In order to include various ring pucker conformations
in some of the inhibitors, for which Dock 6.5 is not able to
search automatically, all of the inhibitor conformational clusters
whose occupancy was greater than 2% (identified during the
charge derivation procedure) where used as initial seed
structures for docking. Two schemes were used to assign
charges to the inhibitor for use during docking. The first
scheme simply used the RESP charges that were derived for use
in the MD simulations. In the second scheme, which resembles
a more typical docking procedure, charges were derived for
each inhibitor conformation using the semiempirical AM1-BCC
charge model, which can be accessed through AMBER’s
Antechamber program. The default grid-based method in Dock
6.5 was assigned as the primary scoring function. All other
settings are listed in SI Table S1.
NMR Spectroscopy. NMR data were acquired on 500 and

600 MHz Varian NMR spectrometers using RNA-optimized
pulse sequences from the standard Varian Biopack pulse
sequence library (www.agilent.com). The F1-filtered/F2-
filtered nuclear Overhauser spectroscopy (NOESY) measure-
ments were performed as described by Zwahlen et al.53 The
NMR sample conditions and data acquisition were as described
by Paulsen et al.,12 and the data were processed using standard
VNMR processing software and then visualized in SPARKY
(www.cgl.ucsf.edu/home/sparky).

■ RESULTS
MD Simulations. The NMR1 and CRY1 simulation sets

(Table 2) were intended to evaluate the simulation stability of
the two available experimental conformations in the context of
12 related inhibitors over a fairly long time scale (200+ ns).
Visual inspection of the simulation trajectories reveals a stark
contrast in the stability of the binding region. A quantitative
measure of this difference is shown in Figure 5, where the
binding region RMS deviation (RMSD) is plotted versus
simulation time using the initial conformation of each
production simulation as a reference. For all 12 simulations
in the CRY1 simulation set (shown in black) the RMSD value
is low and very steady. The small fluctuations arise from
inhibitor ring transitions and conformational searching by the
dimethylamino groups. Throughout the CRY1 simulations, all
of the critical contacts depicted in Figure 4 are maintained in
each simulation. In contrast to the CRY1 results, the NMR1
RMSD results (shown in red) reveal a high degree of
fluctuation and departure from the initial structure. A variety
of RNA−inhibitor poses are adopted during the 12 NMR1
simulations and do not point to a consensus alternative to the
original NMR pose. Much of the structural instability is due to
conformational transitions in the bulge residues 6−10. To
visualize the structural difference between the NMR1 and
CRY1 simulation sets, the final frames of each simulation were
overlaid to produce an ensemble (Figure 6). As a result of
unfolding of the bulge residues, many of the NMR1
conformations do not retain the linear RNA orientation
known to inhibit viral replication but rather adopt an “L-
shaped” conformation similar to the unbound structure (Figure
6A). Additionally, the inhibitor poses are smeared into a variety
of orientations (Figure 6C). In contrast, the CRY1 simulations

maintain the linear orientation and produce a rather tight
ensemble of structures and inhibitor poses (Figure 6B,D). We
conclude from these data that the NMR conformation is highly
unstable in the context of the force field energy landscape,
whereas the crystal conformation appears to be in an
energetically favorable minimum. Therefore, the crystal
conformation is preferred for subsequent analysis.
One of the NMR1 simulations, the complex with the J5S

inhibitor, is notable because it partially converts to the
conformation of the crystal structure. All of the critical contacts
in Figure 4 are observed, including the hydrogen bonds
between the inhibitor and G33 and the contacts between the
dimethylamino groups and the phosphate backbone (SI Figure
S2A). These distances are similar to those observed in the
CRY1 simulation set (SI Figure S2B). The only interaction that
is not formed is the base-triple interaction between residue A6
and the Hoogsteen edge of A32, which forms a “roof” above the
inhibitor. After 232 ns of simulation, the conformation of
residues 7−9 continues to restrain the flexibility of A6 in such a
way as to prevent the full formation of the base triple, although
A6 and A32 are near enough to form direct contacts. Other
simulations in the NMR1 set also partially adopt the crystal-like
binding mode, usually by forming the hydrogen bonds between
the inhibitor and G33, but none are as stable as the
aforementioned simulation with J5S. Further research, likely
involving enhanced sampling, is necessary to determine

Figure 6. (A, B) Structural ensembles made from the final frames of
the 12 simulations in the (A) NMR1 and (B) CRY1 simulation sets as
defined in Table 2. The inhibitors are highlighted in green. The
ensembles were generated by RMS fitting of residues 5, 6, 33, and 34
of each frame. (C, D) Final inhibitor position in each simulation for
the (C) NMR1 and (D) CRY1 simulation sets using the same RMS
fits as for the full ensembles.
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whether a complete transition is accessible on a reasonable time
scale.
In addition to using long simulations, we also investigated

whether using many shorter simulations with diverse initial
inhibitor conformations could produce comparable data.
Because of the instability of the NMR conformation in the
simulations, we discuss this approach only for the crystal
conformation, and we term this the CRY2 simulation set. This
simulation set is primarily used for comparisons in the energetic
analysis portion of the results, but we also wanted to determine
whether the RMSD spaces explored by the inhibitor in the two
approaches were different. SI Figure S3 compares the mean
RMSD values of the binding region, as well as the maximum
and minimum values, for the CRY1 and CRY2 simulation sets
using the same reference structure for each simulation of a
given inhibitor. For most of the inhibitors, the mean, minimum,
and maximum RMSD values are similar. Only in the case of the
weak-binding J1 inhibitor does a large difference in the
maximum RMSDs appear. These results do not guarantee
that exactly the same conformations are sampled by the two
approaches, nor does it indicate that the proportions of
conformations sampled are similar. However, the results do
indicate that long simulations do not explore RMSD space that
is significantly farther away (i.e., has higher RMSD values) than
that sampled with an ensemble of diverse short simulations.
It is important to note that the published crystal structure

contains six magnesium ions, five of which are near the binding
region.13 The authors note three specific magnesium ions that
seem particularly important structurally and also note that the
binding affinity dramatically decreases in the absence of
magnesium. We chose not to include magnesium ions in this
study, with the exception of the MG simulation (Table 2),
because previous NMR data12 and binding assays18 have
indicated that moderate levels of monovalent salt are sufficient
to stabilize the RNA. To investigate whether simulations with
magnesium differed from those without, a single 232 ns
simulation was performed using the experimental coordinates
for the J5R inhibitor, magnesium ions, crystallographic waters,
and RNA (with the necessary sequence modifications to create
a tetraloop consistent with the NMR structure). In addition to
the crystallographic magnesium ions, 200 mM KCl was
included in the bulk solvent. No changes in the ligand binding
mode were observed upon the inclusion of coordinated
magnesium ions within the RNA structure. SI Figure S4
compares the regions of highest magnesium ion occupancy with
the crystallographic locations of the magnesium ions. Although
qualitatively similar, none of the highest-occupancy locations
observed in the simulation reproduce the exact coordination
contacts observed in the crystal structure. The magnesium
coordinated to atom N7 of A6 in the crystal structure moves to
coordinate the phosphate groups of G30 and C31 in the
simulation. The magnesium coordinated to both O4 of U14
and OP1 of U9 in the crystal structure loses the interaction to
the phosphate and forms an interaction with O2 of C8 instead.
Finally, both magnesium ions located near G5 in the crystal
structure move elsewhere and are replaced, to some extent, by
potassium ions. These results, combined with the observation
of stable simulations without magnesium ions, suggest that
magnesium is not critical in simulations with moderately high
concentrations of monovalent salt (i.e., both had 200 mM
KCl). This is consistent with in vitro binding assays at relatively
high concentrations of monovalent salt with no magnesium
where high-affinity binding was detected.12,18

Our simulation results support the crystal structure as the
predominant conformation in solution. However, specific
interactions indicated by the NMR data are inconsistent with
the crystal structure, indicating that under the NMR solution
conditions alternative binding modes may be significantly
populated. In the following section, we attempt to reconcile the
NMR data with the key binding interactions identified in the
crystal structure.

Are the Differences between the NMR Data and the
Crystal Structure Reconcilable? We were first curious
whether the crystal structure was actually compatible with the
NMR data and therefore that the NMR refinement procedure
was to blame for the inconsistency in conformation. One way
to investigate this is to determine whether the NMR distance
restraints are satisfied by the crystal structure. To determine
this, the r6-averaged distances for all of the atom pairs that were
assigned NOE distance restraints were computed for the 200+
ns simulation of J4R from the CRY1 simulation set (this
inhibitor structure is identical to that of the published NMR
structure). A rotating structure with indications of NOE
violations greater than 1.0 Å is provided as a movie file in the
SI, and a list of all restraint violations is given in SI Table S3.
The results suggest that the crystal structure and several NMR
restraints are incompatible. Most of the large violations occur
between inhibitor and RNA atom pairs, with the largest being
those between the dimethylamino arms of the inhibitor and
RNA residues A6, C11, and U12. Next, we attempted to
perform MD simulations where we gently enforced the NMR
distance restraints on the crystal conformation RNA. Inevitably,
the crystal-like binding pocket conformation was destroyed,
including the hydrogen bonds between the ligand and residue
33. We also tested this same approach starting with the
conformation from the NMR1 J5S simulation (which partially
converted to the crystal conformation). The same loss of
crystal-like conformation was observed. This procedure was
further repeated, except that all of the ligand restraints to
residue A6 were removed, and again the crystal-like
conformation was lost.
From our attempts to reconcile the NMR and crystal

structures, we concluded that the two distance restraints
between the ligand and residues C11 and U12 are the key
driving forces in maintaining the NMR conformation during
the refinement procedure. To confirm this, we performed
simulated annealing using two distance restraint sets. In one
trial we included all of the NOE distance restraints, and in the
other we removed the two restraints between the ligand and
residues C11 and U12. These simulated annealing calculations
differed from the originally published approach in two ways.
First, in order to simplify the procedure, only the distance
restraints were used while torsion and RDC restraints were
ignored. Second, in the original NMR refinement, the ligand
cyclic ring was protonated on the primary amine rather than the
more favorable secondary amine. That error was corrected in
this work. The annealing results clearly confirmed that the two
restraints between the ligand and residues C11 and U12 are a
key determinant in the conformational outcome. With all of the
distance restraints included, the ligand is unable to form
hydrogen bonds with residue 33, and the resulting binding
pocket resembles that in the published NMR structure. When
these two restraints are excluded, the hydrogen bonds between
the ligand and residue 33 are clearly formed, and the binding
pocket resembles that in the crystal structure.
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In addition to the fine details of local structure, we were
interested in whether the crystal conformation was consistent
with the RDC data published with the NMR structure.12 To
test this, we performed a 5 ns simulation with RDC restraints
enforced on the crystal conformation. No significant changes in
the global structure or inhibitor binding contacts were
observed. This suggests that although significant NOE distance
violations are observed for the crystal conformation, its global
conformation is consistent with the RDC data.
Finally, we were interested in the possibility of a second

binding site. The conditions necessary to saturate the RNA−
ligand complex and minimize exchange broadening of the
NMR spectra required significant excess ligand, creating the
possibility of an RNA with multiply bound ligands. To test this,
we extracted conformations of the RNA−ligand complex from
the CRY1 J4R and J4S simulations and performed docking of a
second J4R or J4S ligand. In all cases, the best-scoring docking
pose was in a pocket near residues C11 and U12, which also
happens to be a magnesium ion binding site in the crystal
structure. The exact pose of the second ligand was dependent
on the specific receptor conformation, but the result raises the
possibility that at high concentrations a second highly charged
ligand could bind in the region near residues C11 and U12 and
produce additional NOE signals.
The base conformation of residue A6 and its relationship to

the restrained dimethylamino chain of either inhibitor J4 or J5
is another key difference between the NMR and crystal
structures. In the NMR structure, the A6H2 proton is proximal
to the dimethylamino group, while in the crystal structure the
A6H8 proton is proximal. A careful analysis of the NMR data
for selectively isotopically labeled RNA−J4 complexes appears
to uphold the original NMR report and suggests that there is a
fundamental difference between the orientations of A6 in
solution and in the solid state. SI Figure S5A shows that there
are strong NOEs from A6H2 to the methyl protons and to the
methylene protons on the dihydrofuran side chain, while the
corresponding NOEs to H6−H8 are weak. This pattern is
inconsistent with the crystal structure. The assignment of these
NOEs to A6H2 is corroborated by 1H−13C HSQC data (SI
Figure S5B,C), which show no adenosine H8 protons
resonating at 7.92 ppm. While the problematic NOEs to C11
and U12 could result from binding of a second ligand to the
RNA, the extremely weak NOE from A6H8 to the ligand is
incompatible with the crystal structure, suggesting that the
conformation at this site under solution conditions differs from
that solved by crystallography.
Taken together, at present the data suggest the following. At

least two NMR distance restraints are incompatible with the
crystal structure and may have arisen from a second binding
mode. However, the overall conformation of the crystal
structure is consistent with the RDC alignment restraints
derived from NMR analysis. The NMR NOE data involving
residue A6 indicate that its conformation in solution differs
from the form captured in the crystal. This could result from
the effect of magnesium, a second ligand, or some combination
of the two. Further work to address these issues is underway in
our laboratories.
Energy Analysis. A major goal of this study was to

determine whether energetic binding analyses of the simulation
trajectories could reproduce the experimental trends in binding
energy. This is a challenging problem because of the highly
charged ligands and the relatively tight range of KD or ΔGbinding
values estimated in the experiments. Given the instability of the

NMR1 simulation sets, we considered only simulations
performed with the crystal conformation. One of the quickest
methods for obtaining binding energy data from MD
simulations is to perform MM-GBSA/MM-PBSA analyses
using the single trajectory method. From the MM-GBSA
(Figure 7) and MM-PBSA (SI Figure S6) results for both the

CRY1 and CRY2, several observations can be made. First, the
magnitudes of the binding energies are significantly larger than
those observed experimentally. For MM-GBSA, the range of
binding energies for the various inhibitors is around −45 to
−65 kcal/mol. For MM-PBSA, the magnitude is slightly
smaller, with binding energy ranges of around −30 to −55
kcal/mol. Obviously there is a significant difference between
these values and the −5 to −8 kcal/mol range identified
experimentally (Table 1). A variety of corrections can be
considered to address this discrepancy. One explanation is that
the free energy change upon RNA reorganization that
accompanies inhibitor binding is not taken into account in
the single-trajectory approach. We performed MD simulations
and MM-GBSA analysis on the apo-RNA using the published
NMR structure10 as the initial conformation and can estimate
that this would add around +10 kcal/mol to the MM-GBSA
binding energies. An additional energetic component that we
did not include in our MM-GBSA/MM-PBSA results is the
change in solute entropy upon binding. We attempted to
estimate the conformational entropy change for the inhibitors
alone (the estimates are between 0 and 25 kcal/mol, as
discussed below), but the size of the RNA presents a challenge
to obtaining a full solute estimate. Additionally, the rotational

Figure 7. MM-GBSA binding energy results for the (top) CRY1 and
(bottom) CRY2 simulation sets. The mean values for the 20 individual
CRY2 simulations are depicted by the “×” symbols (bottom), whereas
the bar shows the overall mean value. All of the data are in units of
kcal/mol, and the specific values for both panels are given in SI Table
S4. Stereoisomers/diastereomers are grouped by color.
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and translational entropy loss upon ligand binding would likely
add in the range of 3−12 kcal/mol.54−60 Together, these
corrections are in the range of +13−47 kcal/mol and could, in
theory, bring at least the MM-PBSA results close to the
experimental ranges. However, the raw binding energies from
MM-GBSA/MM-PGBSA analyses have not only a large
magnitude but also a large spread in the values. For example,
if we exclude the results for the J1 inhibitor (because of
uncertainty about its exact experimental binding energy), the
range for MM-GBSA is ∼10 kcal/mol and for MM-PBSA
around ∼20 kcal/mol. Given the similarity of the ligands and
their binding mode with the RNA, it is unlikely that the
aforementioned corrections for receptor reorganization and
solute entropy could account for the large range in values.
Finally, even if we ignore the incorrectly large range of binding
energies, the relative trend in binding energy does not match
what is observed experimentally (Table 1). The weakest binder,
J1, can be distinguished from the other inhibitors, although less
so with MM-PBSA than MM-GBSA. As for the other inhibitors,
the computed values do not correlate well with experiment. In
particular, both MM-GBSA and MM-PBSA rank J2 as having a
binding energy equal to or lower than that of the J5
enantiomers, despite the fact that experimentally J2 is among
the weakest binders while J5 is among the strongest binders. It
is not immediately clear why the MM-GBSA/MM-PBSA results
do not match the experimental data, but this outcome may be
related to the failure of implicit solvent models to model highly
charged systems accurately. In fact, it is known that the
Hawkins, Cramer, and Truhlar GB model does not produce
accurate values for salt bridges61 and incorrectly models DNA
helices.62

Given the poor performance of these implicit models, it is
reasonable to seek an alternative calculation of the binding
energy that explicitly includes solvent contributions. We
performed a relative binding enthalpy analysis on the explicitly
solvated RNA−inhibitor systems using the total potential
energy of the explicitly solvated trajectories directly. This was
possible because all of the systems in the CRY1 and CRY2
simulation sets, with the exception of J1, had by design identical
numbers of atoms (excluding the inhibitor atoms). Likewise,
the LIG simulation set, which contained just the free inhibitors
and solvent, also contained identical numbers of solvent atoms.
Since the J1 inhibitor has a different charge and therefore a
different number of counterions, it was excluded from
consideration. The relative energetic contributions to binding
for the trivalent inhibitors (J2−J6) can be calculated by
subtracting the average potential energy of the free-inhibitor
simulations (LIG set) from the average potential energy of the
bound-inhibitor simulations (CRY1 or CRY2 set). Only the
single long simulation strategy was used for the free inhibitor
simulations (LIG) because the potential energies were tightly
converged. Confirmation of this is demonstrated by the fact
that the mean potential energies of all the enantiomers are
within the expected error of one another (SI Table S5, fourth
column). The results for the binding enthalpy are shown in
Figure 8. It should be noted that the absolute value of the
binding enthalpy is meaningless because it represents the force
field energy difference of two systems with unequal atoms (i.e.,
ligand in solution and ligand bound to RNA). However, the
relative enthalpy differences can be compared because the
relative differences between the systems are identical with the
exception of the inhibitor atoms of interest. Several
observations suggest that the relative binding enthalpy values

are a better predictor of binding free energy than the MM-
GBSA or MM-PBSA values. First, the range of binding
enthalpies is much smaller (∼6−7 kcal/mol). Second, the
binding enthalpies calculated from the CRY1 and CRY2
simulation sets are within the error of one another, except for
J6SS, which has a 0.9 kcal/mol difference between the error
bounds. This was not the case for the implicit solvent approach,
although it should be noted that the error values are larger for
calculations involving explicit solvent. Third, the binding
enthalpies are internally consistent: the four J6 diastereomers,
which contain two constrained rings, of which one each is
present in the J3 and J5 enantiomers, produce a binding trend
that can be predicted from the J3 and J5 results. The binding
enthalpy of the S enantiomer is preferred for J5, whereas the R
enantiomer is preferred for J3. Consistent with expectations,
the J6SR inhibitor has the lowest binding enthalpy. The lone
exception to this internal consistency is again J6SS of the CRY1
simulation set (the prediction is correct in the CRY2 results).
Finally, if one averages the values of the enantiomers/
diastereomers as an approximation of the experimental
conditions (where stereochemistry was not considered), the
trends match well with experiment (Figure 9). The range of the
binding enthalpies calculated from simulation is somewhat
larger than the range of binding energies from experiment (∼4
vs ∼2 kcal/mol, respectively). However, the correct trend as
well as agreement between the single long trajectory and
multiple short trajectory approaches is observed. This last
observation is critical given the small number of data points.
Two completely independent approaches produce very similar
results, suggesting that adequate sampling was obtained and

Figure 8. Relative binding enthalpies calculated using the solvated
potential energy difference (see the text) from the (top) CRY1/LIG
and (bottom) CRY2/LIG simulation sets. Data for the J1 inhibitor are
not shown because it has a different charge than the rest of the
inhibitors, which prevents a direct comparison of the results. All of the
data are in units of kcal/mol, and the specific values for both panels
are given in SI Table S5. Stereoisomers/diastereomers are grouped by
color.
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that the results accurately reflect the underlying force field
terms used to model the system.
The difference between the implicit solvation and explicit

solvation results can be highlighted by looking at cases where
the inhibitor was improperly bound to the RNA. As noted in
Methods, the initial inhibitor poses were not chosen via a
docking algorithm but rather by a simple RMS fit of the
benzimidazole core atoms. While this ensured that critical
hydrogen bonds were formed between the inhibitor and residue
G33, it did nothing to prevent unfavorable clashes of the
flexible inhibitor arms with the RNA. In nearly every initial
inhibitor conformation, potential clashes were eliminated
during the minimization step, and the resulting geometry
resembled a reasonable binding pose. However, in a few cases,
one of the inhibitor arms was improperly inserted through the
back of the binding cavity. Despite the apparent strain in the
geometry, some of these cases produced stable simulations
without integration errors or energy instability. These cases
were not included in the previously discussed energy analysis,
but they provide a useful test case in that an accurate
representation of the system energy should distinguish highly
strained systems from those with an expected binding
conformation. One such case of an improper binding mode
occurred with the J2 inhibitor. For the multiple short
simulation set CRY2, the range of mean GB total potential
energies of J2 in normal binding poses was −7891 to −7913
kcal/mol. The mean GB total potential energy of the incorrect
strained conformation was −7916 kcal/mol, suggesting that it

was actually a lower-energy conformation. The MM-GBSA
binding energy computed using this strained conformation was
−77 kcal/mol, indicating stronger binding by about 15 kcal/
mol compared with the average MM-GBSA binding value for J2
from the CRY2 simulation set. Apparently, some portion of the
implicit solvation model incorrectly modeled this interaction. In
contrast, using explicit-solvent potential energies accurately
identifies the strained J2 conformation as a high-energy outlier.
The range of mean explicit-solvent potential energies for J2
from the CRY2 simulation set was −118766 to −118790 kcal/
mol, whereas the mean explicit-solvent potential energy for the
strained conformation was −118761 kcal/mol. This trend in
which explicit-solvent potential energies more reliably predicted
strained conformations than implicit-solvent potential energies
was true for other cases of strained RNA−inhibitor
conformations as well.
In order to understand whether solvation energies played a

role in the errors of the MM-GBSA/MM-PBSA results, we
performed further analysis of the LIG simulation set (in which
the inhibitor was simulated freely in explicit solvent without
RNA). After postprocessing of the LIG trajectories to extract
the GB potential energy, a comparison of the explicitly solvated
and GB-solvated ligand potential energies was made (SI Figure
S7, top). As indicated by the trend line fit, the relative potential
energies are similar whether explicit solvent energies or GB
solvent energies are used. An RMS fit of explicit-solvation
energy values onto the implicit-solvation values reveals that the
differences between the two methods range from 0.06 to 1.60
kcal/mol. First, this shows that the MM-GBSA values are
primarily enthalpic since they are similar to the explicit results,
which are purely enthalpic. Second, it suggests that the likely
origin of the errors in the implicit solvation model is found not
in computing the solvation energy of the ligand alone but in
calculating the solvation energy of the ligand in complex with
the RNA. Similarly, when the solvation enthalpy is computed
(by subtracting the gas-phase inhibitor energies from the
solvated energies, either explicit or implicit GB), very similar
trends for the explicit and implicit solvation models are
observed (SI Figure S7, bottom). The origin of the large
difference (∼13 kcal/mol) between the solvation enthalpies for
the J2 and J3 and those for the rest of the inhibitors is unclear.
The distinguishing feature of the two sets of inhibitors is the
absence or presence of a cyclic ring connection formed on the
oxygen side of the benzimidazole group.
As a final piece of energy analysis, we note that the

experimental binding energy trends suggest that the use of ring
constraints to reduce the flexibility improves the binding
energy. Thus, it is reasonable to expect that entropic
considerations play a role in the inhibitor binding free energy.
Because of the difficulty in converging entropy estimates for
large molecules, only the inhibitor was considered in the
following entropy calculations, and the receptor entropy
contribution is assumed to be nearly identical for the inhibitors
we evaluate. Two methods were used: quasi-harmonic
analysis48 and a configurational estimate based on bond,
angle, and torsion probability distributions.49 The entropic
energy penalties upon binding of the various inhibitors based
on calculations from the CRY1 and LIG simulation sets are
given in SI Figure S8. Convergence plots for these values are
shown SI Figures S9 and S10. The convergence plots
demonstrate that the estimates are not reliably converged,
even at greater than 700 ns for the free ligands, and thus must
be interpreted very conservatively. One observation that is clear

Figure 9. (top) Stereochemically averaged relative binding energies
calculated using the solvated potential energy difference (see the text)
for the CRY1/LIG (striped bars) and CRY2/LIG (solid bars)
simulation sets. Data for the J1 inhibitor are not shown because it
has a different charge than the rest of the inhibitors, which prevents a
direct comparison of the results. (bottom) Previously reported
experimental binding energies.18 All of the data are in units of kcal/
mol, and the specific values for both the top and bottom charts are
given in SI Table S6. Color scheme follows Figures 7 and 8
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is that the quasi-harmonic estimates have a much larger
magnitude (approximately 5 to 25 kcal/mol) than the
conformational entropy estimates (0 to 5 kcal/mol). The
large values produced by the quasi-harmonic approximation are
likely due to an overestimation of the harmonic potential width
for the free inhibitors because no attempt was made to
differentiate between conformational energy minima, which
necessarily results in a wider estimated width in order to cover a
broader space. In contrast, the configurational estimate using
probability distributions distinguishes both well-width and
conformational differences. In this case, the drawback is that
individual degrees of freedom (bonds, angles, and torsions) are
assumed to be uncorrelated when only the first-order
approximation is used, as was done here. It is important to
note that neither of these estimation techniques include the
entropy loss due to changes in translational and rotational
entropy upon ligand binding, which can be estimated to add an
additional 3−10 kcal/mol.54−59 In view of the assumptions
made in the estimates and the lack of clear convergence, it is
unwise to treat these values as anything more than qualitative
observations. Given that caveat, we do find that the average
entropic penalty upon binding is smaller for the fully
constrained inhibitors (J6 diastereomers) than for the less
constrained ones (J2, J3, J4, and J5).
Molecular Docking. In order to test whether high-

throughput computational techniques could be used to predict
accurate conformations for binding between highly charged
ligands and RNA, we used Dock 6.5 to perform docking
analysis of the inhibitors shown in Figure 1 on the crystal RNA
conformation. With the exception of the weakest-binding
inhibitor considered, J1, the docking pose with the best score
for each inhibitor was consistent with the crystal structure
binding mode and formed all of the critical binding contacts
(Figure 10A,B). The J1 inhibitor binds incorrectly to a major
groove pocket on the opposite side of the correct RNA ligand
pocket. It is unclear why J1 was so poorly docked, but this may
reflect its weak binding value. Not surprisingly, the trend in
docking scores did not match the experimental binding energy
trend (SI Table S9). However, the docking results suggest that
fairly accurate binding poses can be obtained for highly charged
systems at low computational cost. Given the somewhat
elaborate procedure we used to obtain charges for the
inhibitors, we were interested in whether similar docking
results could be obtained using a more traditional approach in
which the semiempirical AM1-BCC charge model was used to
assign atomic charges to the inhibitors. The results suggest that
the more rigorous RESP approach does yield a significant
improvement in the results (Figures 10C and S11). This
consideration is likely to be more important for multivalent and
highly charged ligands such as those studied in this work.
Taken together, the results show that methods such as Dock
6.5 using reliable scoring functions can be applied to generate
reasonable binding modes. The resulting structures can then be
further explored using more detailed simulation and energetic
analyses such as those presented in this work.
Novel Ligands. Given the robustness of the crystal

conformation across simulations of all the inhibitors in Figure
1, we were interested in how well ligands with a different
scaffold could be accommodated by the binding site. We
designed four novel ligands that both exploit the known
inhibitor interactions and, in certain respects, reduce the
complexity of the ligand (Figure 11). These novel ligands have
several advantages: less positive charge, fully aromatic rings that

are less flexible, and no chiral centers. One of these ligands, N7,
was particularly stable in the receptor binding site during a 130
ns simulation (SI Figure S12). MM-GBSA analysis on that
trajectory yielded a binding energy of −61 kcal/mol, which is in
the same approximate range as those of the known inhibitors,
although our caution regarding implicit solvent models applies.
Additionally, the N2 and N3 ligands were moderately stable
and maintained most of the critical binding contacts. Visual
inspection of the simulation trajectories suggests that further
optimization of the dimethylamino arm length and orientation
would likely further improve the binding.

Figure 10. Docking results using the crystal structure receptor
conformation. (A) Overlay of the best-scoring docking poses using
RESP charges for each of the 12 stereochemically distinct inhibitors on
the crystal structure receptor RNA. The only inhibitor that did not
bind in the expected orientation was the weakest binder, J1. (B) Close-
up view of the inhibitor docking poses in the binding site (using RESP
charges). (C) Comparison of the AM1-BCC (black) and RESP (red)
charge methods. The best-scoring pose for each of the 12 inhibitors is
plotted with its corresponding RMSD value (using the experimental
crystal structure as the reference, benzimidazole core atoms only). The
outlier data point for the RESP values (red) is for the weak-binding J1
inhibitor.

Figure 11. Novel ligands investigated in the NOV simulation set.
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■ DISCUSSION

The presented results are relevant for computational drug
development targeting the HCV domain II site as well as for
research on RNA−ligand binding in general. First, we have
demonstrated that the crystal structure of the RNA−inhibitor
complex is strongly supported over the NMR conformation by
simulation using the AMBER ff12SB force field in explicit
solvent. This result highlights the need for accurate initial
structures when performing MD simulations. Because of the
rugged energy landscape of RNA, highly incorrect initial
structures will likely not reach the global minimum on tractable
time scales. Since this concern is coupled with known force
field flaws for RNA (a subject of ongoing research in our lab), it
necessitates caution when performing MD simulations. In this
case, the force field does not predict that the NMR
conformations are near a local energy minimum. The result is
a quick degradation of the initial structural contacts during the
simulation. In contrast, the crystal structure is clearly in a
minimum of the force field energy landscape and yields
extremely stable simulations that maintain fidelity in the
binding region.
It still remains unclear how best to resolve the apparent

contradictions between the NMR data and the crystal structure.
The low proton density of RNA compared with proteins
presents a challenge in the use of NMR spectroscopy for high-
resolution RNA structure determination. The addition or
exclusion of just a few atom-pair restraints can make a large
difference in the resulting structural refinement. In this case,
close contacts that would result in detectable NOEs between
RNA residue G33 and the inhibitor do not exist, so there was
no justification during the original NMR refinement to enforce
the hydrogen-bonding interactions observed in the crystal
structure. In regard to NOE distance restraints that are violated
by the crystal structure, possible explanations include the
presence of an additional inhibitor binding site near the primary
site or, alternatively, a third unidentified conformation that is
present in solution. At present, use of the crystal conformation
is recommended for simulation studies.
Even if a simulation model maintains structural fidelity, drug

development efforts require accurate estimates of relative
binding energy. Traditionally, MM-GBSA/MM-PBSA trajec-
tory postprocessing techniques have been moderately success-
ful at predicting the binding free energies of protein−ligand
systems, but studies with highly charged ligands and highly
charged receptors (e.g., RNA) are rare. As has been noted
elsewhere,63 the binding free energy is largely determined by
the difference between the desolvation energy and the energy
of the bound complex. For a highly charged ligand−receptor
interaction, both of these values will be very large, and thus,
errors in the method will dwarf the binding energy value. In this
case, the error is likely not related to insufficient sampling (our
estimated errors are reasonably small) but rather is due to an
error in the model used to describe the desolvation energy and
the energy of the bound complex. As additional evidence, we
have obtained very poor results from MD simulations of various
RNA structures when using the Hawkins, Cramer, and Truhlar
GB implicit solvent model (data unpublished). This could
explain why the binding energies calculated from the explicit-
solvent systems compare more favorably to experiment than
the binding energies obtained from implicit-solvent approx-
imations. In view of the relative success of explicit solvent in
comparison to implicit solvent for MD simulations of RNA, it is

not surprising that energetic results utilizing the former
solvation terms would produce better results. Similarly, the
charge parametrization method appears to be crucial for at least
docking studies but likely simulations as well. This is not
surprising given the large net charge of the inhibitors used in
this study; the careful procedure reported here provides a useful
framework for future charge parametrization on highly charged
ligands. The docking results suggest that methods such as Dock
6.5 with good scoring functions can accurately predict ligand
binding modes when care is taken with ligand charge
derivation.
The data suggest that the multiple short simulation approach

offers efficiency benefits over the single long simulation
approach for energetic analysis. The mean explicit-solvent
binding enthalpy values computed using the two approaches
were within the error of each other for 10 out of the 11
inhibitors considered. In the case that differed, it seemed likely
that the multiple simulation approach was correct on the basis
of the argument for internal consistency of stereochemical
binding. The aggregate simulation time for the multiple
simulation approach was only 480 ns (CRY2 set), which is
significantly less than the 2616 ns of aggregate time used for the
single simulation approach (CRY1 set). The drawback to the
multiple simulation approach is that it does not ensure binding
stability over longer time scales. The 2 ns trajectories used are
not long enough to allow large structural transitions. Thus, if
we had used only 2 ns trajectories, even 240 of them, the
difference in stability between the NMR conformation and the
crystal conformation would not have been as clear. In view of
the ongoing questions about possible differences between the
binding modes for the crystal and solution conditions, the use
of longer simulations may be justified when analyzing highly
charged RNA−ligand complexes.
Finally, we conclude that computational simulations are not

intended to replace or “compete” with experimental observa-
tions. Rather, they should aid in the evaluation of existing data
and improve the accuracy of hypotheses and predictions for
future efforts. The data presented in this work should suggest
several avenues for additional research, both experimental and
computational.
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