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Abstract

Background: The effects induced by administering the anticonvulsant lamotrigine, the preferential
inhibitor of neuronal nitric oxide synthase 7-nitroindazole and the precursor of NO synthesis L-
arginine, alone or in combination, on an experimental model of partial complex seizures (maximal
dentate gyrus activation) were studied in urethane anaesthetized rats. The epileptic activity of the
dentate gyrus was obtained through the repetitive stimulation of the angular bundle and maximal
dentate gyrus activation latency, duration and post-stimulus afterdischarge duration were
evaluated.

Results: Either Lamotrigine (10 mg kg!) or 7-nitroindazole (75 mg kg') i.p. administration had an
anticonvulsant effect, significantly reducing the number of animals responding to angular bundle
stimulation. On the contrary, i.p. injection of L-arginine (I g kg'') induced an aggravation of the
epileptiform phenomena, demonstrated by the significant augmentation of the duration of both
maximal dentate activation and afterdischarge. Furthermore, the injection of lamotrigine and 7-
nitroindazole in combination significantly increased the anticonvulsant effects induced by the same
drugs separately, either reducing the number of responding animals or decreasing both maximal
dentate gyrus activation and afterdischarge durations. On the contrary, the combined treatment
with L-arginine and lamotrigine did not modify the maximal dentate gyrus activation parameters
suggesting an adversative effect of L-arginine-increased nitric oxide levels on the lamotrigine-
induced anticonvulsant action.

Conclusion: The present results indicate that the nitrergic neurotransmission exerts a significant
modulatory role in the control of the development of paroxystic phenomena in the maximal
dentate gyrus activation model of epilepsy. Finally, our data suggest a functional relationship
between the nitric oxide system and the anticonvulsant effect of lamotrigine which could be
enhanced by reducing nitric oxide levels and, conversely, dampened by an increased nitrergic
activity.
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Background

Nitric oxide (NO) is a gaseous messenger synthesised
from the oxidation of L-arginine by three different iso-
forms of NO synthase (NOS): the neuronal (nNOS) and
endothelial isoforms are calcium activated, on the con-
trary the inducible isoform is activated by a calcium inde-
pendent enzyme. NO acts on the soluble guanylyl cyclase
(sGC), increasing the cellular concentration of cyclic gua-
nosine monophosphate (cGMP), which is able to modu-
late several cellular functions as normal and pathological
excitability, neuronal plasticity etc. [1]. In the central nerv-
ous system (CNS), NO acts as unconventional neuro-
transmitter; in fact, it contributes to the release of other
neurotransmitters (e.g. glutamate, GABA, dopamine etc.),
and participates to the synaptic plasticity, axonal elonga-
tion and other cellular functions [2]. Furthermore, NO
has been involved in several neurological disorders as
ischemia, trauma, neurodegenerative diseases etc., show-
ing a particular functional relevance in the pathophysiol-
ogy of neurotoxic and neuroprotective processes [3].

Within the disorders of CNS, NO has been also consid-
ered to play a fundamental role in the genesis and the
spreading of the epileptiform hyperactivity [4]. In particu-
lar, several experimental researches have demonstrated
the functional involvement of NO in both pro-convulsant
and anticonvulsant phenomena but no definitive conclu-
sions are still available [5,6]. Such heterogeneity of the
responses to the pharmacological manipulation of the
NO system could be related to the different models of
experimental epilepsy used [7]. Furthermore, some excita-
tory effects could be attributed to the modifications of the
cerebral blood flow induced by changes of NO levels
[8,9]. Moreover, the functional interaction between NO
and glutamate systems has been considered as a further
possible source of the cited variability. In fact, NO is able
to interact with the redox site of the N-methyl-D-aspartate
(NMDA) receptor to glutamate, decreasing the respon-
siveness to glutamate agonists, particularly in all the con-
ditions characterised by an "overactivity" of the glutamate
receptor complex [10-13]. On the other hand, an abnor-
mal increase in the activation of NMDA and non-NMDA
receptors, as shown in the epileptogenesis and/or in the
excitotoxic phenomena, is strictly linked to the produc-
tion of NO and/or its related molecules [3]. Finally, it has
been hypothesised that glial cells could constitute a fur-
ther source of NO which exerts a neuroprotective action
against NMDA-induced neurotoxicity [14]. In the last dec-
ade several researches have evaluated the interaction
between the nitrergic system and some antiepileptic drugs
(AEDs) with the aim to increase the efficacy of the anti-
convulsant therapy. The activity of different AEDs seems
to be strictly linked to a significant reduction of nNOS
activity [15-18]. Interestingly, several experimental data
have demonstrated the existence of a functional interac-
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tion between the second generation anticonvulsant lamo-
trigine (LTG) and the nitrergic system, although the
observed effects are not univocal. The action of LTG,
which shows a particular efficacy in human partial epi-
lepsy, is characterised by the blockade of sodium voltage-
gated channels, reducing high frequency firing of somatic
action potentials and decreasing an excessive, potentially
neurotoxic, glutamate release [19-21]. Furthermore, LTG
is able to reduce NO release but, in the mouse model of
maximal electroshock seizure, the combination between
7-NI and LTG was neutral in relation to a possible increase
of the anticonvulsant effect [22,23]. On the contrary, it
has been proposed that NO-mediated mechanisms are
involved in the anticonvulsant efficacy of LTG [24].

In the present study, with the aim to clarify the functional
interaction between the nitrergic neurotransmission and
the LTG-induced anticonvulsant effect, we used an exper-
imental model of partial complex epilepsy, the maximal
dentate gyrus activation (MDA) which reproduces a com-
mon human epilepsy [25]. In particular, we have exam-
ined the effects of the anticonvulsant LTG administered
alone or in combination with drugs modulating the NO
neurotransmission. We have modified the level of endog-
enous NO through the administration of 7-Nitroindazole
(7-NI), a preferential inhibitor of neuronal NOS using a
dose (75 mg kg1) which is able to reduce in several brain
areas the nNOS activity within the range of 60 and 80%
[26] and L-arginine, a precursor of the synthesis of NO.
The time of onset and the duration of the ictal events were
evaluated together with the analysis of the characteristics
of dentate gyrus (DG) evoked responses to angular bundle
(AB) stimulation.

Results

Once the MDA was elicited, the values for all the follow-
ing parameters of the MDA were analysed: i) the onset of
the MDA was considered as the time from the beginning
of AB stimulation to the midpoint of the shift of the DC
potential; ii) the total duration of the MDA was measured
from the midpoint of the shift of DC the potential to the
point at which the evoked paroxystic activity abruptly
ceased; iii) the afterdischarge (AD) duration was meas-
ured from the end of AB stimulation to the end of the epi-
leptiform activity (Figure 1A). The comparisons of the
above cited parameters in DC- and AC-coupled traces did
not show any significant difference Figure 1A).

The time course of MDA parameters (onset, MDA and AD
durations) in control animals (n = 10) was monitored for
at least 2 hours after the threshold intensity of stimulation
was attained. The repetitive stimulations were not able to
significantly alter the MDA parameters during all the
observation period. Furthermore, in another group of ani-
mals i.p. injection of an adequate volume of vehicle

Page 2 of 10

(page number not for citation purposes)



BMC Neuroscience 2007, 8:47

A

=
| :
;Latem:yé | \ |
e—l N e
: AD
-
E
i
.
E
i

20 ms

Figure |

Maximal dentate gyrus activation and evoked popula-
tion spike parameters. A: Measurements of latency and
duration of maximal dentate gyrus activation (MDA) and
afterdischarge (AD) during and after a 400 pA, 20 Hz stimu-
lus train of the angular bundle (AB) for 10 sec. The record-
ings were amplified using low level DC (A) and a wide band
AC (B) pre-amplifiers respectively. B: An average of five
evoked responses in the dentate gyrus to the stimulation of
the ipsilateral angular bundle. The amplitude of the popula-
tion spikes (PS amp) was measured as illustrated in the figure,
considering the mid-point between the dashed lines as the
top of the PS. Calibration are indicated on the figure.
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(Dimethylsulfoxide - DMSO or saline) (n = 5 rats of each
vehicle) did not cause any sort of modification of the
three MDA parameters along the following 120 min of
experimental observation.

Effects of 7-Nitroindazole, L-arginine and LTG
administration alone and in combination on the number of
responding animals

The administration of 7-NI caused a reduction in the
number of animals responding with MDA to the stimula-
tion, starting 40 min after the drug administration with a
maximum at the 50t - 70th min (-60 %, chi square =
8.571, DF = 1, P = 0.0034). Furthermore, the systemic
administration of LTG induced a significant reduction in
the number of animals responding to the stimulation ses-
sions, starting at the 60 min with a maximum 70 min
after the LTG administration (-70 %, chi square = 10.769,
DF = 1, P = 0.001). A significant and more prolonged
decrease in the number of animals responding to the stim-
ulations was also observed after 7-NI and LTG co-admin-
istration, starting at the 50t min after drugs
administration and maintained along the observation
period, with a maximum at 60t and 70t min (-70 %, chi
square = 10.769, DF = 1, P = 0.001). Moreover, no signif-
icant variation in the number of animals responding to
the stimulation was noted under L-arginine alone or in
combination with LTG. The Figure 2 shows all the varia-
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Figure 2

Effects of 7-Nitroindazole, L-arginine and Lamotrig-
ine administration alone and in combination on the
number of responding animals. The bars indicate the
number of animals responding with a typical MDA activity to
the angular bundle stimulation after each drug treatment. In
abscissa the progressive number of train of stimuli applied
every |0 min is indicated. The chi-square test was used to
compare the animals responding and not responding to the
electrical stimulation. The differences were considered mar-
ginally and highly significant at the level of P < 0.05 (*) and P <
0.005 (**) respectively.
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tions in the number of responding animals for each phar-
macological treatment.

Effect of 7-Nitroindazole, L-Arginine and LTG
administration alone and in combination on time of onset,
MDA and AD duration

A) Latency (Figure 3) - 7-NI administration caused a
moderate, not statistically significant increase of MDA
latency with a maximum 50 min after drug injection. Fur-
thermore, the co-administration of 7-NI and LTG caused
a not significant decrease of MDA time of onset, more
marked in the first 40 min after the drug treatment. LTG
and L-arginine alone or in combination failed to induce
significant modifications in MDA time of onset. When
comparing the effects induced by 7-NI alone and in com-
bination with LTG a statistically significant difference was
highlighted during the first 30 min after drug administra-
tion. Furthermore, statistically significant differences were
evidenced between the effects induced by LTG alone and
in combination with 7-NI along all the observation
period.

B) MDA and AD durations (Figures 4 and 5 respectively)
- 7-N1 did not cause significant variations of MDA and AD
mean duration. In contrast, the systemic administration
of 7-NI and LTG in combination caused a significant
decrease of the MDA duration with a maximal inhibitory
effect 60 min after drug administration (D%: - 72,14;
from 21.54 + 7.19 sec to 6.00 + 5.43 sec; P = 0.0015). At
the same time, 7-NI and LTG significantly decreased the
duration of the AD; in particular, the maximal effect was
highlighted 60 min after the drug injection (D%: -86,30;
from 16.57 + 5.55 sec to 2.27 + 3.08 sec; P < 0.001). The
comparative analysis between the treatments showed dif-
ferences statistically significant between 20t and 70t
min. LTG treatment alone failed to induce significant
modifications in the two parameters considered. L-
arginine induced a progressive increase in the duration of
the MDA, between 20t and 70t min after drug adminis-
tration. In particular, the major efficacy of L-arginine treat-
ment was evidenced 60 min after drug injection (D%: +
58.63; from 17.55 + 4.91 sec to 27.84 + 4.67 sec; P <
0.001). Furthermore, the systemic treatment with L-
arginine caused, between 20% and 70% min after drug
administration, a clear increase of the AD duration, with a
maximum at the 60t min (D%: + 93.25; from 12.65 +
4.33 secto 24.45 + 4.10 sec; P < 0.001). The comparative
evaluation between LTG and L-arginine treated rats
showed significant differences in the duration of MDA
and AD particularly between the 30th and 70th min. Fur-
thermore, the systemic co-administration of L-arginine
and LTG did not cause any significant modification of
MDA and AD durations. The comparison between L-
arginine alone and in combination with LTG showed sig-
nificant differences starting at 50" min after the drug
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Figure 3

Effects of 7-Nitroindazole, L-arginine and Lamotrig-
ine administration alone and in combination on MDA
latency. Effects of 7-Nitroindazole (75 mg kg ! i.p.), L-
arginine (I g kg'!'i.p.) and Lamotrigine (10 mg kg-! i.p.) admin-
istration alone and in combination on MDA latency (n = 10
rats for each treatment). In abscissa the progressive number
of train of stimuli applied every 10 min is indicated. Asterisks
between lines (-*-) indicate a significant difference between
the two treatments (P < 0.05).
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Figure 4

Effects of 7-Nitroindazole, L-arginine and Lamotrig-
ine administration alone and in combination on MDA
duration. Effects of 7-Nitroindazole (75 mg kg'i.p.), L-
arginine (I g kg-'i.p.) and Lamotrigine (10 mg kg!i.p.) admin-
istration alone and in combination on MDA duration (n = 10
rats for each treatment). In abscissa the progressive number
of train of stimuli applied every 10 min is indicated. Asterisks
along graph lines (*) indicate a significant difference versus
control values (P < 0.05). Asterisks between lines (-*-) indi-

cate a significant difference between the two treatments (P <
0.05).

http://www.biomedcentral.com/1471-2202/8/47

AD duration

100

-100
100 .;:,

Duration (% of control)

1 2 3 4 5 6 7
Number of stimuli

[0 7-NI O 7-NI+LTG A LTG [l L-Arg @ L-Arg+LTG|

Figure 5

Effects of 7-Nitroindazole, L-arginine and Lamotrig-
ine administration alone and in combination on AD
duration. Effects of 7-Nitroindazole (75 mg kg ' i.p.), L-
arginine (I g kg-' i.p.) and Lamotrigine (10 mg kg-' i.p.) admin-
istration alone and in combination on AD duration (n = 10
rats for each treatment). In abscissa the progressive number
of train of stimuli applied every 10 min is indicated. Asterisks
along graph lines (*) indicate a significant difference versus
control values (P < 0.05). Asterisks between lines (-*-) indi-
cate a significant difference between the two treatments (P <
0.05).
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administration for both MDA and AD duration. Compar-
isons between 7-NI- vs. LTG - and LTG- vs. LTG + L-Arg -
induced effects were not significant.

Finally, the evaluation of the evoked responses to a single
electrical shock showed significant differences between
each pharmacological treatment, paralleling the ones evi-
denced by MDA parameters, as reported in the table 1.

Discussions and conclusion

The functional involvement of NO in the genesis and the
spreading of the seizures as well as in the excitotoxic phe-
nomena has been widely investigated in the last years but
clear and definitive conclusions are not still available [27].
In this regard, a lot of experimental researches have dem-
onstrated that NO can act as an anticonvulsant or a pro-
convulsant agent depending on the seizure model
employed, the type and the dose of drugs used in order to
modify cerebral NO levels, the animal strain etc. [28,29].
In fact, NO could exert an anticonvulsant/neuroprotective
effect in the induction and/or the propagation of seizures
but, at the same time, it could facilitate the seizure main-
tenance, particularly in the later phases of the epileptic
discharge and in the subsequent establishment of the neu-
ronal damage [30-32]. In the context of these discrepant
results, it has been showed that NO can activate two dif-
ferent metabolic pathways which could constitute a fur-
ther basis of the extreme variability of the functional
effects reported in the literature. In fact, NO can act on tar-
get cells through the classical cGMP cascade, which is
responsible for the modulation of different ion channels
[33]. On the other hand, more recent experimental obser-
vations have revealed that NO is also able to S-nitrosylate
the ion channels showing an alternative modality to mod-
ulate cell excitability [33]. Furthermore, several experi-
mental and clinical data have also showed a significant
increase of nNOS activity in different models of epileptic
disorders due to the augmentation of glutamate release
and/or the suppression of GABA A receptor activity
[18,34]. For all these reasons, NO is considered to have a
controversial but, at the same time, a fundamental role in
the induction and/or the propagation of the paroxystic
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activity showing a key functional interplay role between
the excitatory glutamate and the inhibitory GABA activi-
ties [27,35].

In previous researches, we have highlighted the functional
involvement of the nitrergic neurotransmission in the
modulatory action of the normal excitability in several
neural structures as the hippocampus, the neocortex and
different subcortical nuclei in the rat [36-39]. Our experi-
mental data together with pre-clinical and clinical studies
have revealed a functional link between NO and hyperac-
tivity phenomena particularly in the hippocampus, which
is characterised by an extreme susceptibility to the epilep-
tic seizures [40-42]. Furthermore, recent studies have,
also, provided experimental evidences on the potential
adjuvant role exerted by manipulating the NO system in
the modulation of the anticonvulsant efficacy of several
AEDs [15-18]. Among the AEDs, LTG, with a broad thera-
peutic spectrum on partial epilepsy, shows a co-operative
effect with nNOS inhibitors in in vitro studies [24] but, in
contrast, its anticonvulsant efficacy is not significantly
modified by the co-administration with 7-NI in in vivo
model of epilepsy [22,23]. In the present study, we have
explored the possible modulatory role of drugs affecting
the NO transmission on LTG anticonvulsant action
exerted on the MDA experimental rat model of human
partial epilepsy. This model is an example of excitatory re-
entrant loop which is involved in the excitatory normal
brain function and in the genesis and the spreading of the
epileptiform activity as well [25]. In this study we have
found that either the preferential nNOS inhibitor, 7-NI, or
the anticonvulsant LTG cause a significant reduction of
the number of responding animals to AB stimulation. In
addition to this effect, the combined treatment with 7-NI
and LTG is also able to decrease MDA and AD durations.
This additive effect could be due to the combination of
the direct inhibition of nNOS induced by 7-NI treatment
together with the indirect reduction of NO release follow-
ing the LTG-induced decrease of glutamate level in the
synaptic cleft and the consequent reduction of NMDA
receptor activation [43]. On the contrary, L-arginine
induces an aggravation of the epileptiform phenomena,

Table I: Effect of 7-Nitroindazole, L-arginine and LTG administration alone and in combination on the amplitude of evoked responses

measured at the maximum of the effect.

Treatment Control value Test value D% F(1.18) P

7-NI 18.70 + 2.40 410 1.19 -78.00% 295.14 <0.0001
7-NI + LTG 19.1 £2.02 1.40 £ 0.51 -92.67% 717.45 <0.0001
LTG 19.40 +3.13 1.70 + 0.82 -91.23% 298.37 <0.0001
L-Arg 19.70 + 2.66 2470 + 3.46 +25.38% 13.06 0.002
L-Arg +LTG 19.1 £4.88 13.7 + 6.66 -28.27% 4.26 0.054

Values are expressed as mean * standard deviation. Test values are compared to control values. D%: percent difference between test and control
values. Control and post-pharmacological treatment values were statistically analysed using an ANOVA test followed by Bonferroni post-hoc test.
F: variance ratio. Differences were considered statistically significant when P was less than 0.05.
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as evidenced by the increase of the duration of both MDA
and AD, with no influence on the number of responding
animals. The not significant effect caused by the treatment
with 7-NI or LTG alone on MDA parameters could be due
to the significant number of animals which were not
responsive to the AB stimulation. This finding constitutes
an interesting advance in comparison with our previous
experimental data reported in a recent paper which indi-
cate that 7NI, at a lower dose (50 mg kg!), shows a mod-
erate anticonvulsant activity only reducing MDA and AD
durations [44]. Otherwise, the co-administration of LTG
and L-arginine demonstrates adversative reciprocal
effects, indirectly supporting the hypothesis that the
increased NO activity could act as pro-convulsant [44,45].
On the other hand, the reversal effect exerted by L-
arginine on the LTG-induced reduction of the number of
responding animals is likely due to the functional balance
between L-arginine-induced increased NO synthesis and
LTG-induced reduction of NO levels based on the inhibi-
tion of glutamate release [24,43]. Furthermore, the com-
parative analysis between all the pharmacological
treatments, alone or in combination, shows a significant
increase of the anticonvulsant effect induced by the com-
bined 7-NI-LTG treatment vs 7NI alone as well as the
antagonistic effects induced by L-arginine and LTG.
Finally, the DG evoked population spike data, in 7-NI, L-
arginine and LTG treated-animals (alone or in combina-
tion), revealed modifications in the amplitude strictly
consistent with the changes induced in MDA parameters
by the same pharmacological tests. In particular, it is pos-
sible to highlight the homogeneous response (decrease of
the amplitude) caused by the administration of 7-NI and
LTG, alone or in combination. On the contrary, the treat-
ment with L-arginine alone caused an increase of the spike
amplitude, while under the combined treatment with LTG
the spike amplitude was reduced in comparison with con-
trol and L-arginine alone and increased with respect to 7-
NI and/or LTG-treated animals.

In the context of a suggested NO-mediated pro-convul-
sant role, our present experimental results are in agree-
ment with other research data which indicate that the
nitrergic tone could play a crucial functional role in the
proneness to the epileptogenic phenomena also poten-
tially modifying the anticonvulsant efficacy of some antie-
pileptic drugs [46,47]. On the other hand, the co-
operative relationship between 7-NI and LTG suggests an
action on a common target, represented by the enhanced
glutamate activity; in fact, the increased nNOS activity,
strictly related to the type and the severity of seizures,
causes an additional release of glutamate in a retrograde
or anterograde modality [34,45,48]. 7-NI and LTG could
co-operate through several mechanisms at pre- and post-
synaptic levels, decreasing the excessive glutamate release
and preventing, when administered in combination, the
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activation of neurotoxic cascade associated with an irre-
versible brain damage.

It could, therefore, be concluded that the pharmacological
manipulation of the nitrergic neuromodulatory system is
able to modify the susceptibility and the development of
discharge in this experimental model of partial complex
seizures. Furthermore, the present study provide electro-
physiological evidences for a marked influence of the
nitrergic neurotransmission on the anticonvulsant action
of LTG. In particular, it could be hypothesised an effect on
the overactivity of the excitatory glutamatergic system as
evidenced by the enhanced anticonvulsant action of 7-NI
and LTG and by the opposite effect due to L-arginine and
LTG co-administration. In fact, LTG and 7-NI are both
able to inhibit seizure activity in the DG and when co-
administered the protective action is significantly potenti-
ated. Although long-term studies are essential before
using NO-related drugs to increase the therapeutic action
of the AEDs, it is possible to hypothesise a functional
interaction between NO inhibitors and AEDs in the inhib-
itory control of the depolarization and the development
of the epileptic activity in the brain.

Methods

Animals and surgical procedures

Male Wistar rats, weighing 180-200 g on arrival, were
housed at constant temperature of 21°C and a 12 h light/
dark cycle, lights on at 8.00 a.m. Thereafter the rats were
anaesthetised with urethane (1.2-1.4 g kg! intraperito-
neally, i.p.). The trachea was cannulated and the skull
exposed. The animals were positioned in a stereotaxic
apparatus (David Kopf Instruments, Tujunga, CA, U.S.A.)
and the body temperature was maintained at 37-38°C
using an heating pad. Hearth rate and pupil diameter were
monitored during all the experimental session. A craniot-
omy was performed to expose a wide area of the right cer-
ebral cortex; then the dura was reflected. A stimulating
depth electrode was placed in the AB on the right side
(coaxial bipolar stainless steel electrode: external diameter
0.5 mm; exposed point 25-50 pm) according to the ster-
eotaxic co-ordinates of the Atlas of Paxinos and Watson
1986 [49]. (AB: 1 mm anterior to the interaural line; 3-5
mm dorsal to it and 4.4 mm lateral to the midline). A
glass recording electrode, filled with 1% fast Green in 2 M
NaCl, was stereotaxically placed in the DG on the right
side (DG: 6 mm anterior to the interaural line; 3.0 mm
ventral to cortical surface and 1.8 mm lateral to the mid-
line). The animal was grounded through a subcutaneous
Ag/AgCl wire in the scapular region. The bioelectric activ-
ity of the structure examined was amplified, recorded and
printed out on the strip chart of an eight channels poly-
graph Grass model 7B and then processed by a software
package provided by DataWave Technologies (Longmont,
CO, US.A).
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Maximal dentate gyrus activation and ictal events
identification

In order to obtain stable and repetitive MDA responses
and to avoid their progressive increase in the duration, we
modified the technique originally described by Stringer
and Lothman, 1989 and 1992 [10,25] which employs var-
iable stimulation train durations strictly related to the
beginning of the MDA response. In fact, in the present
work, 10 sec duration trains of 20 Hz stimuli were given
through the AB stimulating electrode. Individual stimuli
consisted of 0.3 msec biphasic pulses. The stimulus inten-
sity was initially below that necessary to elicit any
response and, then, increased in 100 pA steps until maxi-
mal dentate activation occurred (threshold intensity). Fur-
thermore, we used a stimulus intensity 100 pA higher
than the threshold intensity for the following stimula-
tions. In every case the stimulation intensity varied from
300 pA to 600 pA. The paroxystic activity induced in the
dentate gyrus was simultaneously sent to both a low level
DC and a wide band AC pre-amplifiers. MDA was defined
by a negative shift of the extracellular potential in DC-cou-
pled recordings as well as by the presence of bursts of pop-
ulation spikes of 20-40 mV in both DC- and AC-coupled
traces (Figure 1A). A stimulus train was administered
every 2 min until a MDA appeared and then every 10 min
for up to 2 hours. Furthermore, single stimuli were given
to the ipsilateral AB in order to record evoked potentials
in the DG with the aim to compare the amplitude before
and after drug administration (Figure 1B).

Drug treatment

The following chemicals: DMSO, L-arginine and 7-NI
were purchased from Sigma Chemical Co. (Sigma, St.
Louis, MO, USA). LTG was generously provided by Glaxo-
Smith & Kline (Verona, Italy). The experimental study was
performed on three groups of animals: in the 15t (controls,
n = 10 rats) and 2ndgroup (vehicle treated, n = 10 rats), the
animals were studied for a period of about 120 min in
order to verify possible modifications of MDA parameters
due to the repetitive stimulations and/or the vehicle treat-
ment. In the 31 group (treated rats: n = 50, 10 for each sin-
gle or combined pharmacological treatment), the animals
received i.p. injections of 7-NI (75 mg kg, dissolved in
15% DMSO and made up to final volume by addition of
0.9% NaCl, administered in a volume of 1 ml/100 g body
weight) or L-arginine (1 g kg1, dissolved in 0.9% NaCl,
injection volume 1-2 ml), and/or LTG, an anticonvulsant
able to reduce the glutamate release through the inhibi-
tion of voltage-gated Na+ channels (10 mg kg1, dissolved
in 30% DMSO and made up to the final volume by addi-
tion of 0.9% NacCl). It is noteworthy that 7-NI, L-arginine
and LTG show pharmacokinetic and pharmacodynamic
profiles compatible with the simultaneous co-administra-
tion [50-52]. In fact, 7-NI and L-arginine are capable to
significantly modify brain NO levels in a range of 0.5-4.5
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hours [53] and LTG is able to cause the reduction of gluta-
mate release in a range of 0.5-4.0 hours [54]. Each phar-
macological treatment was performed after five
consecutive stable MDA responses (considered as base-
line).

Statistical analysis

For each studied parameter, the data from all animals
were averaged (mean + S.D.) on the basis of the time
elapsed from the first stimulation inducing a stable MDA
(number of stimulus). The time course of response
parameters in control animals was analysed using a one-
way repeated measures ANOVA. The last MDA response
mean values before drugs administration were considered
as the control values for statistical comparisons. Pre- and
post-pharmacological treatment parameters (latency,
MDA and AD durations, evoked potentials amplitude)
were statistically analysed using an ANOVA test followed
by Bonferroni post-hoc test. It was not possible to use a
repeated measures ANOVA due to the presence of some
not responding animals following each drug treatment.
Further statistical comparisons were made between differ-
ent drug treatments (7NI vs 7Ni+LTG or LTG; L-arginine
vs L-arginine+LTG or LTG; LTG vs 7-NI or L-arginine).
Finally, the chi-square test was used to compare the
number of animals responding and not responding to the
electrical stimulation after each drug treatment. Differ-
ences were considered statistically significant when P was
less than 0.05.

Histology

At the end of each experiment, recording and stimulating
electrode positions were marked through iontophoretic
Fast Green injection and small electrolytic lesion respec-
tively. Then, the animals were killed with an overdose of
pentobarbital and perfused with 10% buffered formaline.
The brains were removed for histological examination:
30-50 pum serial coronal sections were cut and stained by
using Nissl thyonine or Nissl cresyl violet methods, or
both.

All animal use procedures were in strict accordance with
European Communities Council Directive (86/609/EEC),
with the Italian Health Ministry guidelines (D.L. 116/
1992) and with Animals Scientific Procedures Act 1986.
All efforts were made to minimise the number of animals
employed and to reduce their suffering.
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