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Designing exotic many-body states of atomic
spin and motion in photonic crystals
Marco T. Manzoni1, Ludwig Mathey2,3 & Darrick E. Chang1

Cold atoms coupled to photonic crystals constitute an exciting platform for exploring

quantum many-body physics. For example, such systems offer the potential to realize strong

photon-mediated forces between atoms, which depend on the atomic internal (spin) states,

and where both the motional and spin degrees of freedom can exhibit long coherence times.

An intriguing question then is whether exotic phases could arise, wherein crystalline or other

spatial patterns and spin correlations are fundamentally tied together, an effect that is atypical

in condensed matter systems. Here, we analyse one realistic model Hamiltonian in detail. We

show that this previously unexplored system exhibits a rich phase diagram of emergent

orders, including spatially dimerized spin-entangled pairs, a fluid of composite particles

comprised of joint spin-phonon excitations, phonon-induced Néel ordering, and a fractional

magnetization plateau associated with trimer formation.
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R
ich phenomena in condensed matter arise when quantum
spin systems couple to phonons or orbital degrees of
freedom of the underlying crystal lattice. Perhaps the

most famous example is the spin-Peierls model1–4, wherein the
spin interaction leads to a lattice instability resulting in a ground
state of singlet pairs and a bond-ordered density wave. Motivated
by this emergence of new physics, it is tempting then to consider
the most extreme limit of coupling between spin and motion—
where the spin-carrying particles are completely free to move,
and the spin-dependent forces thus dictate the properties of
the emergent spatial order. Such a material would constitute
a novel ‘quantum crystal’ that has not existed before, in which
the emergent spatial patterns and spin properties are intricately
locked together, and where driving one would automatically
affect the properties of the other.

One possible route toward realizing such a material
involves the new experimental platform consisting of cold atoms
coupled to photonic crystal structures. Photonic crystals5 are
periodic dielectric structures in which the propagation of light
can differ significantly from uniform media. An important
feature of photonic crystals is the appearance of photonic band
gaps, where strong interference in scattering from the periodic
dielectric yields a complete absence of propagating modes within
some bandwidth. Nominally, an excited atom whose transition
frequency resides in the gap would not be able to spontaneously
emit; instead, it has been shown that an atom-photon bound state
can form, in which the atom becomes dressed by a localized
photonic cloud6–10. The tight spatial confinement associated with
this photon yields large dispersive forces on proximal atoms
that depend on the atomic internal ‘spin’ states, which thus
realizes the required spin-dependent forces to possibly observe
the phenomena described above.

In this paper, we first describe the key features of atoms
coupled to photonic crystals. While this interface in principle
enables the realization of many different Hamiltonians9–11,
we focus on one model where atoms are trapped in a weak
one-dimensional external potential, and where a short-range
spin-dependent force can be made sufficiently strong to exceed
the external potential. To understand the emergent orders of this
system, we begin by treating the motion of the atoms classically
and their spins quantum mechanically. We find an effect
reminiscent of the spin-Peierls transition, in which the atoms
spatially dimerize and realize a high degree of entanglement
within each dimer. We then proceed to a fully quantum model.
Using density matrix renormalization group (DMRG), we find
a rich variety of quantum phases beyond the spin-Peierls state,
such as a state where spin and phonon excitations form
composite particles, phonon-induced Néel ordering, and spatial
trimers associated with magnetization plateaus. While here
we study a specific model to create correlated spin-orbital
quantum matter, more generally this work suggests that
spin-orbital coupling can be a dominant phenomenon in all
hybrid systems of atoms and photonic crystals. Similar
considerations could also apply to a number of other atomic
systems where spatially-dependent spin interactions can be
realized, including polar molecules12–14, Rydberg atoms15, ion
chains16–18, and atoms in high-finesse cavities19.

Results
Atoms coupled to photonic crystal waveguides. Photonic
crystals5 are periodic dielectric structures in which the
propagation of light can differ significantly from uniform media
(Fig. 1a). The dispersion relation in such structures consists in
general of different bands, between which can appear bandgaps—
frequency regions in which the light cannot propagate inside the

crystal (Fig. 1b). Particularly rich phenomena are predicted to
arise when an atomic transition is driven by a laser at a frequency
within the bandgap. A specific example is illustrated in Fig. 1a,
where two identical atoms are coupled to an ‘alligator’ photonic
crystal waveguide (PCW), which consists of two separate
waveguides whose modes hybridize with one another. Atoms
have recently been coupled to such a structure in experiments
described in refs 20–23. Here, the atoms are assumed to have
three relevant electronic levels, with two ground (or metastable)
states #j i, "j i connected by a common excited state ej i. The
transition between ground state "j i and excited state ej i is
globally driven by an external laser with frequency oL and
Rabi frequency OL, while the transition between ground state
#j i and ej i is coupled to the guided modes of the waveguide. In

principle, an atom in state "j i could Raman scatter a pump
photon into the waveguide and flip to state #j i. However, when
the frequency osc¼oLþom�ok of that scattered photon lies
within the bandgap (see inset of Fig. 1b), it is unable to propagate
and instead forms a bound state of length L around the atomic
position. A second atom nearby in state #j i can subsequently
absorb that photon, resulting in an effective spin flip interaction
between the two atoms9. The effective spin Hamiltonian,
generalized to many atoms, takes the form

Hint¼ J
2

X
i;j

f xi; xj
� �

sþi s�j þ h:c
� �

; ð1Þ

with f xi; xj
� �

¼ e� xi � xjj j=LE xið ÞE xj
� �

. s� ¼ #j i "h j denotes the
spin lowering operator from "j i to #j i, and conversely for sþ .
J and L are the strength and characteristic length of the
interaction respectively, which are tunable through the laser
parameters oL, OL. E(xi)¼ cos kxi, with k¼p/a (where a is the
lattice constant of the PCW), is the Bloch function associated
with the electric field at position xi. A more detailed microscopic
derivation of the effective Hamiltonian (1) based on ref. 9 is
provided in Supplementary Note 1 (also see Supplementary
Fig. 1). Here, we will assume that the atoms are tightly trapped in
the transverse directions such that the position along x is the only
dynamical variable. Absent any motional effects (i.e., if f is
constant), equation (1) corresponds to the ‘XX’ spin model in
1D24.

The possibility to tune J, L and even the type of spin interaction
makes the atom-photonic crystal interface a promising candidate
for the simulation of many-body spin models with long-range
interactions, when atoms are trapped at fixed positions9–11.
Beyond photonic crystals, there are also a number of other propo-
sed approaches to realize spin models with atoms14,16–18,25–27.
Here, our goal is to investigate phenomena that can occur when
motion is included as well. In particular, if one treats the position
variables xi as dynamical degrees of freedom, the Hamiltonian in
equation (1) should be regarded as a spin-dependent potential,
wherein the forces experienced by the atoms can depend on the
spin correlations. As these forces originate from the dispersive
forces associated with photons confined to the nanoscale, their
magnitude can be comparable to or much larger than those
associated with conventional optical trapping forces9, implying
that the physics of spin-motion coupling can become prominent
in such systems. For example, using an electronic transition
in a typical alkali atom, J can approach the GHz scale, as
compared to BMHz scales for the excited state spontaneous
emission rate and external trap frequencies (see Supplementary
Note 1 for details). In emphasizing the role of spin correlations on
motion, we also extend previous ideas involving self-organization
of atoms in cavities or waveguides due to optical forces, where the
atoms are treated essentially as classical dielectric particles with
no internal degrees of freedom28–33.
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Classical motion. We propose a realistic experimental setup,
which highlights the interplay of spin and motion. Atoms
interact via the Hamiltonian of equation (1), and are separately
trapped by an external, spin-independent optical lattice
Htrap¼VL

P
i sin2 ktrxi (this could originate from optical fields in

another guided band far from the atomic resonance). Peculiarly,
this lattice traps atoms at the nodes of the Bloch function,
and thus nominally hides the atoms from the PCW interaction.
Despite not being a fundamental requirement to see spin-motion
coupling, we assume that the trapping wavelength is such
that atoms are localized around even nodes of the Bloch wave
functions, i.e., ktr¼ k/2¼p/(2a), where a is the length of the unit
cell of the PCW, as pictured in Fig. 2a. It can be readily shown
that within our model, trapping atoms at every site would yield
a phase transition with discontinuous change in the atomic
positions.

We consider the Hamiltonian in the case of one atom per
trapping site and an external magnetic field that can polarize the
atoms with energy h along z:

H¼HtrapþHintþHmagn¼VL

2

X
i

sin2kdi=2þ

J
2

X
i 6¼ j

f xi; xj
� �

sþi s�j þ h:c
� �

þ h
X

i

sz
i ;

ð2Þ

where di denotes the displacement of atom i from the bottom of
its external well. In the present section we treat the atomic
position classically, while investigating the case of quantum
motion in the next section. We assume that the coupling strength
J is positive. For simplicity, in equation (2) we also ignore the
self-interaction term (i¼ j), which can be compensated by an
external potential.

To study the many-body ground state of Hamiltonian (2)
without any assumption about the spatial configuration is very
difficult. Furthermore, for L=a � 1 the long-range character of
the interaction makes the spin model relatively difficult, even for
fixed positions. As a consequence, we restrict our attention to the
case LBa, for which we can make a nearest-neighbor
approximation. We can get an intuition of the possible ground

state configuration of a system of many atoms by considering
how just two atoms in neighboring sites interact. If the
atoms remain at the bottom of their trapping wells, the function
f(x1, x2)¼ 0 as these positions coincide with nodes of the Bloch
functions. However, the PCW interaction energy would become
negative, if the two atoms were to form a triplet state,
Tj i¼ "#j iþ #"j ið Þ=

ffiffiffi
2
p

(or a singlet for Jo0), and simultaneously
displace toward each other to form a spatial dimer. Such a process
would become energetically favourable overall for a certain ratio
of J/VL. Motivated by this simple case we make an ansatz that the
spatial configuration of the many-body ground state consists of
dimerized pairs. In particular, we assume that xi¼ 2iaþ (� 1)id,
where d represents the displacement from the trap center,
as pictured in Fig. 2a. This is reminiscent of the lattice instability
that creates entangled dimers in the spin-Peierls model1, but with
the substantial difference that our system becomes non-
interacting in the absence of dimerization (as the atoms are at
the nodes). In the following, we treat d as a variational parameter
and proceed to solve the spin ground state exactly.

The nearest-neighbor spin Hamiltonian can be mapped to
a chain of spinless fermions through standard Jordan-Wigner
transformation34, with the presence/absence of a fermion on
a site corresponding to spin up/down, respectively. Because of the
staggered spatial configuration, it is natural to define a unit
cell j consisting of a pair of dimerized atoms (labelled L,R). Two
different spin couplings JS;W dð Þ¼J sin2kd e� 2a� 2dð Þ=L then
characterize the interaction between atoms within the same
dimer, and between consecutive atoms R,L in neighboring dimers,
respectively (see Fig. 2a). The Hamiltonian then reads

HðdÞ¼NVL

2
sin2kd=2�

X
j

JSðdÞ cyL;jcR;jþ h:c:
� �

þ

JWðdÞ cyR;jcL;jþ 1þ h:c:
� �

þ 2h cyL;jcL;jþ cyR;jcR;j� 1
� �

;

ð3Þ

where c(L,R),j are fermion annihilation operators for site j. Just
as in the standard Jordan-Wigner transformation, this two-spin
per-site Hamiltonian can be exactly or numerically diagonalized

|e〉

a b

| ↓〉 | ↑〉

ΩL, �L

�+

�sc

ΩL

�q

�sc

Bandgap

q

�–

Figure 1 | Atoms interacting with a photonic crystal waveguide. (a) Schematic rendering of the ‘alligator’ photonic crystal waveguide20 with two atoms

trapped. The atomic transition "j i� #j i is globally driven by an external laser with Rabi frequency OL. In principle, an atom originally in "j i can Raman

scatter a laser photon and flip to state #j i. However, when the frequency of the scattered photon osc lies within a bandgap (see b), this photon becomes

bound around the atom (illustrated by the pink cloud). It can be subsequently absorbed by another atom initially in state #j i, resulting in a flip to state "j i.
(b) Illustration of the dispersion relation (frequency oq versus Bloch wavevector q) of the guided modes. The scattered photon frequency osc is aligned to a

bandgap where no guided modes exist.
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by moving to Fourier space, as we describe in Supplementary
Note 2.

By minimizing the ground-state energy of H(d) with respect
to d we find the optimal spatial configuration (within the ansatz).
In Fig. 2b we plot the resulting value of d as a function of the
interaction strength J and of the magnetic field h (in units of VL).
In the J� h plane one can clearly distinguish a critical value
of the spin interaction strength, Jcrit(h), above which a phase
transition occurs from a non-interacting to a dimerized state. The
increase in spin entanglement with dimerization can be
quantified by taking the two-particle reduced density matrix
r2S of atoms within a dimer, and calculating its overlap with the
triplet state, TSðdÞ¼ Th jr2S Tj i. We plot TS(d) in Fig. 2c for zero
magnetic field. For d¼ 0 this quantity tends to the value in the
conventional XX spin model, TS(0)¼ (1/2þ 1/p)2E0.67, while
for large values of d and small L it tends to 1. Similarly, defining
an analogous quantity TW(d) between consecutive atoms in
neighboring dimers, we find a decrease in correlation with
increasing dimerization.

Quantum motion. We now consider a quantum description of
motion and spins, which is relevant, e.g., if the motion is initially
cooled to its ground state. We keep the assumption of tight
trapping of the atoms around the minima of the external
potential, such that tunneling of atoms between sites can be
neglected. We then proceed by projecting the Hamiltonian of
equation (2) onto the lowest two motional bands, and denote by
aj ii and bj ii the associated Wannier functions localized around

site i, as shown in Fig. 3a (see Supplementary Note 3). This
represents the minimal model in which spin and motion can
couple, since superpositions of states aj i and bj i yield spatial
wave-functions that are displaced from the site centers. We have
also performed calculations involving a third band to verify
that the conclusions made from the two-band approximation
do not qualitatively change (see Supplementary Note 4 and
Supplementary Fig. 2). Within the two-band approximation, it

will be convenient to introduce a set of pseudo-spin operators on
each site, ~sz¼ bij i bih j � aij i aih j, etc., to represent the motional
degree of freedom.

The overall Hamiltonian can thus be expressed in terms
of these operators as

H ¼
X

i

D~sz
i þ hsz

i þ 2g ~sx
i ~sx

iþ 1�
2a

2LZ0
Zaþ Zbð Þ ~sx

i � ~sx
iþ 1

� ���

þ Zb� Zað Þ ~sx
i ~sz

iþ 1� ~sz
i ~sx

iþ 1

� �	

sþi s�iþ 1þ h:c
� �

:

ð4Þ

The terms proportional to D and h describe the energy
arising from the band and magnetic field, respectively,
while the remainder describes the spin-motion coupling.
Here g¼Je� 2a=LZ2

0=2 is a scaled coupling constant, with
Z0¼

R
dx sin kx waðxÞwbðxÞ and Za;b¼ 1=2að Þ

R
dx x sin kx w2

a;bðxÞ
(wa,b being the Wannier functions of states aj i and bj i). In the
following we take L¼ 2a and the ratio between the trapping
lattice depth VL and the recoil energy ER to be 20, for which
numerical evaluation of the Wannier functions yields Z0E0.54,
ZaE0.06 and ZbE0.16. The terms between brackets contain the
dependence of the spin interaction on the motional state of the
atoms and have a simple physical explanation. The dominant
~sx

i ~sx
iþ 1 term has largest amplitude when both atoms sit in

an equal superposition of states aj i and bj i (i.e., the wave-
function is maximally displaced from the center), which
reflects that the atoms are trapped at nodes of the PCW. The
other terms, which are smaller, originate from the exponentially
decaying interaction and are responsible for spatial dimerization.
It is interesting to note that this Hamiltonian constitutes
an extreme case of spin-orbit coupled systems, as neither an
orbital kinetic energy nor a motion-independent spin interaction
appear.

We study the phase diagram of Hamiltonian (4) in the g� h
plane by means of a finite-size density matrix renormalization
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Figure 2 | Spin-motion coupling in the limit of classical motion. (a) Schematic 1D representation of the model, with atoms (green) trapped in an external

potential (blue). The photonic-crystal mediated interaction is modulated by the standing wave of the Bloch modes (red), while the external potential

creates trapping sites centred around the nodes. The arrows represent the displacement from the trapping sites to a dimerized configuration. (b) Spatial

dimerization d (in units of the lattice constant a), as a function of the interaction strength J and the magnetic field energy h (in units of the external trap

depth VL). (c) Triplet fraction of the reduced density matrix for two atoms within a dimer (TS, blue solid curve), and consecutive atoms in different dimers

(TW, red dashed), as a function of dimerization d, at zero magnetic field (h¼0).
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group (DMRG) algorithm35. The resulting phase diagram for
0rg,hr2D is shown in Fig. 3b for N¼ 62 atoms, where we
can clearly distinguish at least six phases. The procedure by
which these phases are numerically demarcated is discussed in
detail in Supplementary Note 3, while in the main text we
describe the salient physical properties of each phase. First, for
sufficiently large magnetic fields h4hcrit(g), with hcrit(0)¼ 0, the
spins are fully polarized and thus the spin-motion coupling has no
effect. The many-body state is thus separable, with each atom
residing in the lowest motional band, cj i¼ a; #j i�N (‘P’ phase in
Fig. 3b).

Along the g-axis up to gcrit we have a Néel ordered phase ‘N’,
where the magnetization per atom Mz¼1=ð2NÞ

P
ihsz

i i is zero
and the Néel order parameter F¼ð1=NÞ

P
ið� 1Þihsz

i i has a
finite value, as shown in Fig. 3c. This phase also extends to finite
values of h with a lobe-like shape. The existence of this phase can
be predicted analytically in the weak coupling regime, i.e., for g/
2D small, such that the high-energy excitations associated with
populating the upper band can be effectively integrated out. In
particular, through a Schrieffer-Wolff transformation36 on
equation (4) one obtains the following effective Hamiltonian

acting only on the spin degrees of freedom:

Heff ;wc¼�NDþ
X

i

h sz
i þ J1 sz

i s
z
iþ 1� 1

� �

þ 2J2 sþi� 1s
�
iþ 1þs�i� 1s

þ
iþ 1

� �
:

ð5Þ

Here J1¼ g2(1þ 4w2)/2D, J2¼ g2w2/D and w¼ Za/(Z0L).
Hamiltonian (5) describes a nearest neighbor anti-ferro-
magnetic (AF) Ising model with an additional XX term
coupling next-nearest neighbors, with all such terms mediated
by virtual phonons. For example, the spin-motion term in
equation (4) proportional to ~sx

i ~sx
iþ 1 enables a fluctuation where

two consecutive atoms, anti-aligned in their spins, jump to the
higher band and exchange their spins, before returning to the
original state (see Fig. 3d). This process results in a lower energy
for the anti-aligned configuration and produces the longitudinal
sz

i s
z
iþ 1� 1

� �
term in (5). For zero magnetic field, given that

J1 � J2 the ground state exhibits AF ordering along z (FE1), as
illustrated in Fig. 3c. On the other hand, for h4hcrit(g) all spins
are in state #j i. Intuitively, one can expect that the transition from
Néel ordering to polarized occurs with all #j i spins in the Néel
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Figure 3 | Model and phase diagram for quantum spin-motion coupling. (a) Representation of the truncated basis states for over a few sites. The blue

arrow indicates the spin, while the two levels represent the motional states aj i and bj i, separated by an energy difference 2D. (b) Ground state phase

diagram obtained studying a system of 62 atoms with open boundary conditions with a DMRG algorithm. We identify unambiguously five phases: a

paramagnetic phase (P), a Néel ordered phase (N), a dimerized phase of triplets (D), a spin-motion fluid phase (SMF) and a phase of trimers (T). There is

an additional phase corresponding to a charge density wave with quasi-long-range order, labeled as SMF(CDW), and whose boundary with a set of still

unknown phases U is not well understood. The continuous line is the border of the paramagnetic phase obtained analytically in the weak coupling regime

(see text), the dashed line corresponds to h¼ �Dþ 2g. The 10 red stars indicate parameters (g, h) where the correlations in Fig. 5c are evaluated. (c)

Surface plot of the magnetization per atom Mz, with the phases of (b) indicated. Inset: contour plot of the order parameters |F| and |DT|. (d) The virtual

process (for g � D) of two atoms exchanging the spin excitation by jumping to the motional state bj i and returning to the original state, which gives rise

to the effective Ising interaction term of Hamiltonian (5).
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phase remaining fixed (subchain ‘A’), while the "j i spins
(subchain ‘B’) ‘melt’ and then re-configure pointing downward.
One can thus make an ansatz where subchain A acts as an
effective magnetic field for B. Thus, subchain B satisfies an XX
model with Heff ;wc

B ¼
P

i h� 2J1ð Þsz
i þ 2J2 sþi s�iþ 1þ s�i sþiþ 1

� �
,

which has two phase transitions to polarized phases
(for subchain B) at h¼ 2(J1±J2). It follows that for
ho2(J1� J2) the total system (A and B) is in the Néel phase,
while for h42(J1þ J2) it is in the P phase. In between the two
phases the subchain melts under the effective XX model. Since
J2 � J1, in the g� h plane this transition region is too narrow to
quantitatively match the DMRG results to the XX model
predictions, although the effective theory gives correctly
the boundary between N and P at hcrit(g)Eg2/D for g � D
(solid line in Fig. 3b).

The Néel order extends to values of g=D\1 where the
low-energy description of (5) is no longer accurate, and
decreases discontinuously to zero with the onset of a new
phase of dimerized triplets (labelled ‘D’ in Fig. 3b). This
phase is characterized by zero magnetization and a non-zero
spin triplet dimer order parameter, defined as
DT¼ 1=Nð Þ

P
ið� 1Þi Th jri;iþ 1 Tj i with Tj i being the spin triplet

state and ri,iþ 1 the two-site spin reduced density matrix (Fig. 3c).
It also has a non-zero spatial dimer order parameter, defined
as Dx¼ð1=NÞ

P
ið� 1Þi ~sx

i

� �
. The entangled dimerized structure

is evident in Fig. 4a, where we plot the triplet fraction in the
two-particle density matrix, Th jri;iþ 1 Tj i and the displacement
~sx

i

� �
in a part of the chain for (g, h)¼ (1.7, 0.2)D. Also, we

can observe that ~sx
i

� �

 

� 1. Thus, the two-band approximation
for the atomic motion is technically violated since the displace-
ment from the trap center is saturated. However, in
Supplementary Note 4, we present calculations involving a third
motional band, which allows for a greater maximum displace-
ment of atoms. These calculations exhibit a slower onset
of saturation with increasing g and no appearance of new phases
(at least within the range of parameters considered). Together,

this suggests that an exact calculation involving all bands,
although directly unfeasible, would produce a result similar to
the previously discussed case of classical motion, with a steadily
increasing degree of dimerization and triplet fraction with
increasing g.

For simultaneously large values of g and h, there is a spin-
motion fluid phase (‘SMF’) where the system is gapless and the
magnetic field strongly polarizes the spins, such that Mz is
close to � 1/2. This phase corresponds with good approxi-
mation to the ground state of the XX Hamiltonian
H þ¼

P
iðDþ hÞtz

i þ 2g tþi t�iþ 1þ h:c:
� �

. Here tz
i is the Pauli

matrix with eigenstates +j i¼ a; #j i and *j i¼ b; "j i, while t� are
associated raising and lowering operators. Thus, this phase
corresponds to a dilute fluid of composite flips of spin and
motion. The existence of this phase can be understood by noting
that for large magnetic field, the system is only dilutely populated
by
spins pointing up. Thus the terms in equation (4) proportional
to Za,b that are responsible for dimerization can be neglected. The
structure of the remaining Hamiltonian connects naturally the
states +j i directly to *j i, in the form of Hþ (see Supplementary
Note 3 for details). The locking between spin and motional
correlations can be observed in Fig. 4b, where the expectations
values of sz

i and ~sz
i obtained with DMRG are plotted for a

representative point in the phase. The oscillations of sz
i

� �
and

~sz
i

� �
are due to the open boundary conditions in a finite system

and are observable also in a pure XX model. In Fig. 4c the
magnetization curve predicted by Hþ is compared with the
numerical result from the DMRG study of the full Hamiltonian
for g¼ 1.6D, showing good agreement, while in Fig. 3b the
predicted boundary with the ‘P’ phase hcrit(g)E�Dþ 2g is
represented by a dashed line.

For � 1=4tMzo0, Hþ no longer serves as a good
description for the ground state. Most of this region consists of
a set of phases ‘U’ whose origin is not completely understood yet.
However, for strong interactions g=D\1, the system qualitatively
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iþ 1) and displacement h~sx
i i (black solid line) of the ground state for (g, h)¼ (1.7, 0.2)D, belonging to the dimerized (‘D’) phase. Only atoms 24–36 are

shown for clarity. (b) hsz
i i (black solid line), h~sz

i i (red dashed line) along the chain for the ground state at (g, h)¼ (1.18, 1.4)D belonging to the spin-motion

fluid (‘SMF’) phase. The state contains 4 atoms flipped to "j i along the direction of the magnetic field. The blue dotted line is htz
i i calculated for the ground

state of the model Hamiltonian Hþ . (c) Magnetization curve for g¼ 1.6D as a function of h. The red dashed line is the magnetization predicted by Hþ for
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appears to behave as an interacting Luttinger liquid for the t
particles. Numerical evidence is shown in Fig. 5a, where the two-
point correlation functions CX

ij 	 hX þi X �j i� hX þi ihX �j i are
plotted for various X¼t; s; ~s, for a representative set of values
(g, h)¼ (1.74, 1.38)D. In particular, if t behaves as a Luttinger
liquid, then the long-range decay of interactions is predicted to
have a power law form of Ct

ij�ð� 1Þ j� ij j j� ij j� 1=2K (ref. 37).
The inset of Fig. 5a plots the absolute value jCt

ijj on a log-log scale,
which confirms an approximate power law decay. On the
other hand, correlations of the other degrees of freedom exhibit
more erratic behavior. Similar observations hold for the density
correlation functions DX

ij 	 hXz
i Xz

j i� hXz
i ihXz

j i (Fig. 5b). We fit
the Luttinger parameter K (ref. 37) from the numerical data,
taking the ten (g, h) values indicated by red stars in Fig. 3b across
the SMF to U boundary. These fits are performed on
the points |i� j|44 of Ct

ij, in order to reduce the influence of
short-range corrections, which exist even for an ideal Luttinger
liquid37. The inset of Fig. 5a shows the best fit (red dashed line)
for (g, h)¼ (1.74, 1.38)D, while the fitted values of K for all ten
chosen (g, h) points are plotted in Fig. 5c. We have also
simultaneously plotted x, the sum of the squares of the residuals
between the best linear fit on a log-log scale and the numerical
data. We note that while the choice of region of exclusion of
|i� j|r4 in taking the fit is somewhat arbitrary, modifying this
region (or excluding no points at all) does not change the
qualitative conclusions. The decrease below K¼ 1 is indicative of
the formation of a charge density wave phase with quasi-long-
range order, i.e., algebraic decay of the correlation functions. We
thus denote this part of the phase diagram as SMF(CDW). The
precise boundary of this phase and the nature of the transition to
neighboring phases is still not completely understood.

Approaching Mz-� 1/6 we notice that not only the fitted
value of K tends to zero but also the quality of the fit decreases
rapidly, as indicated by the increase in the residual error x. This
indicates a change of the decay of the correlation function from
polynomial to exponential. This is in agreement with the fact that

the decrease in K is also known to facilitate the possibility of
phases with spontaneously broken symmetry, which is observed
in our system as well. At Mz¼ � 1/6 (one third of the maximum
magnetization), we observe indeed the presence of a plateau
in the magnetization curve (Figs 3c and 4c), for values of
g sufficiently large. In this region the ground state assumes
a trimerized configuration, as shown in Fig. 5d, where sz

i

� �
; ~sz

i

� �
and the displacement ~sx

i

� �
are plotted. While we are not able to

predict the appearance of such a plateau in our model from
first principles, we note that all of its features are consistent
with the conditions of ref. 38. In particular, our Hamiltonian
allows for a gapped phase with spontaneously broken symmetry
in the ground state with spatial periodicity n¼ 3, provided
that the quantization condition n(S� |Mz|)¼ integer is satisfied
(here S¼ 1/2 is the total spin). Such a gapped phase should be
accompanied by a magnetization plateau.

Discussion
The platform of cold atoms coupled to photonic crystals offers
fascinating opportunities to create quantum materials in which
spin and motion interact strongly with one another. We have
analysed in detail the ground state properties of one experimen-
tally feasible setup, but there exist many exciting avenues
for future research. The field of interfacing atoms and photonic
crystals is still new and rapidly developing, which makes it
difficult to say precisely how the ground state or nearby states can
be probed and prepared, but we briefly describe some of the
possibilities here. First, it has already been demonstrated that
tightly focused optical tweezers can be used to controllably
position single atoms nearby nanophotonic structures and couple
the atom to the optical mode39. Separately, there have been
spectacular experiments to create arrays of up to B102 atoms in
individual optical tweezers40–42, and demonstrated capabilities in
such systems for motional ground-state cooling and spin
readout40. An optical tweezer array applied to nanophotonic
systems could then be a promising route toward both
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Figure 5 | Correlation functions of charge density wave and trimer phases. (a) Correlation functions CX
ij 	 hXþi X�j i� hXþi ihX�j i with X equal to

t (black solid line), ~s (red dashed line) and s (blue dotted line) at (g, h)¼ (1.74, 1.38)D, in the SMF(CDW) region of the phase diagram. The value of i¼ 29

is taken fixed in the bulk of the chain and j is ranging from 30 to 44. Inset: jCt
ijj plotted on a log-log scale (black curve), as is the best fit to a Luttinger liquid

power-law decay for the points |i� j|44 (red dashed line). (b) As in (a) but for the density correlation functions DX
ij 	 hXz

i Xz
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i ihXz
j i. (c) In blue: value

of the fitted Luttinger parameter K as a function of the magnetization, obtained by fitting the long-range part of the Ct
ij correlation function for the

(g, h) values marked by stars in Fig. 3b. In red: sum of the squares of the residuals x of the fit. (d) hsz
i i (black solid line), h~sz

i i (red dashed line) and hsx
i i

(blue dotted line) along the chain for the ground state at (g, h)¼ (1.7, 1.1)D, where the ground state belongs to the trimer (‘T’) phase.
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deterministic positioning of atoms and single-site resolution.
Absent single-site measurements, there are a number of global
measurements that could be applied to yield signatures of the
various phases. For example, it has also been theoretically and
experimentally shown28,43–45 that different atomic spatial
patterns can give rise to very different global reflection and
transmission spectra for a weak guided probe field. Similar to free
space, a guided mode could also be used to efficiently read out
global spin properties46. In terms of preparation of the ground
state, one likely possibility would be through adiabatic evolution
(given that the atomic ‘spin’ states are internal states that do not
readily thermalize). Here, the atoms would be initially optically
pumped to a separable state (such as #j i�N ), which corresponds
to the ground state of a single-particle Hamiltonian Hs. The
system could then adiabatically evolve through a Hamiltonian
H(t)¼Hs(t)þHint(t), where the single-particle Hamiltonian is
gradually turned off while the PCW interactions are turned on.
Understanding the fidelity of this process requires a more
thorough investigation of the excitation spectrum, which itself
should exhibit non-trivial properties, including the possibility of
signatures of fractional spin47.

The strong coupling between spin and motion more broadly
invites a number of other intriguing questions. For example, it
would be interesting to understand the transport properties when
spin and motion strongly hybridize. Moreover, it would be highly
interesting to consider models without an external lattice
potential, and investigate whether the spin interaction alone can
produce full spin-entangled crystallization. One might also
consider models where the spin part of the interaction already
exhibits non-trivial character, such as frustration or topology.
Finally, in terms of applications, it would be interesting to explore
whether specially engineered spin-motion Hamiltonians can give
rise to useful many-body spin states (such as squeezed states for
metrology), when the spin interaction alone is incapable of
producing such states.

Methods
Density matrix renormalization group. The density matrix renormalization
group (DMRG) algorithm is a well-established numerical method for ground state
studies of one-dimensional systems35. It consists of approximating the exact
ground state GSj i¼

P
i1 ;::;iN

ci1 ;::;iN i1; ::; iNj i of a finite-size system of N sites with
local dimension d with a matrix product state (MPS), i.e., a state of the form

GSj iMPS¼
X

i1 ;::;iN

A 1½ 

i1

A 2½ 

i2
::A N½ 


iN
i1; ::; iNj i; ð6Þ

where the matrices A have maximum dimension D. The DMRG algorithm finds
the matrices fA k½ 


ik
g for which hHi is minimum. This is obtained in an iterative way

by optimizing a single matrix in every step, keeping constant all the others and
shifting one site at every step. In 2N steps the system has been ‘swept’ once. The
level of approximation can be determined by the relative energy difference dE after
a sweep. In general for a gapped Hamiltonian, with D¼ 100–1000 the energy
converges in a few sweeps and one obtains an extremely good approximation of the
ground state.

In our numerics we take D¼ 100 and the precision on the total energy
dE¼ 10� 7 with a maximum number of sweeps equal to 6. For the points in which
convergence is not reached within six sweeps D is increased to 140 and additional
sweeps are performed. We span the g� h plane with a resolution of 0.02D.

Data availability. The data that support the findings of this study are available
from the corresponding author on request.
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41. Barredo, D., de Léséleuc, S., Lienhard, V., Lahaye, T. & Browaeys, A. An
atom-by-atom assembler of defect-free arbitrary 2D atomic arrays. Preprint at
https://arxiv.org/abs/1607.03042 (2016).

42. Endres, M. et al. Cold matter assembled atom-by-atom. Preprint at https://
arxiv.org/abs/1607.03044 (2016).

43. Chang, D. E., Jiang, L., Gorshkov, A. V. & Kimble, H. J. Cavity QED with
atomic mirrors. New. J. Phys. 14, 063003 (2012).

44. Corzo, N. V. et al. Large Bragg reflection from one-dimensional chains
of trapped atoms near a nanoscale waveguide. Phys. Rev. Lett. 117, 133603
(2016).

45. Sørensen, H. L. et al. Coherent backscattering of light off one-dimensional
atomic strings. Phys. Rev. Lett. 117, 133604 (2016).

46. Hammerer, K., Sørensen, A. S. & Polzik, E. S. Quantum interface between light
and atomic ensembles. Rev. Mod. Phys. 82, 1041–1093 (2010).

47. Okunishi, K. & Tonegawa, T. Fractional Sz excitation and its bound state
around the 1/3 plateau of the S¼ 1/2 Ising-like zigzag XXZ chain. Phys. Rev. B
68, 224422 (2003).

Acknowledgements
The authors acknowledge A. M. Rey, J. Alicea, G. Refael, and H. J. Kimble for stimulating
discussions, and the Centro de Ciencias de Benasque ‘Pedro Pascual’, where this work
was initiated. MTM thanks the Hamburg Institut für Laserphysik, for their hospitality in
an extended research visit. The authors thank Jutho Heageman for writing the DMRG
code used and making it available to them through the Ghent Tensor Network Summer
School. This work was supported by Fundacio Cellex, CERCA Programme/Generalitat de
Catalunya, ERC Starting Grant FOQAL, MINECO Plan Nacional Grant CANS,
MINECO Explora Grant NANOTRAP, MINECO Severo Ochoa Grant SEV-2015-0522
and ‘la Caixa-Severo Ochoa’ PhD Fellowship.

Author contributions
L.M. and D.E.C. conceived the initial idea to investigate spin-motion coupling in
photonic crystals. M.T.M. performed the analytical and numerical calculations. All
authors contributed to the design of the project, analysis of results, and preparation of the
manuscript. D.E.C. supervised the project.

Additional information
Supplementary Information accompanies this paper at http://www.nature.com/
naturecommunications

Competing financial interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

How to cite this article: Manzoni, M. T. et al. Designing exotic many-body
states of atomic spin and motion in photonic crystals. Nat. Commun. 8, 14696
doi: 10.1038/ncomms14696 (2017).

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This work is licensed under a Creative Commons Attribution 4.0
International License. The images or other third party material in this

article are included in the article’s Creative Commons license, unless indicated otherwise
in the credit line; if the material is not included under the Creative Commons license,
users will need to obtain permission from the license holder to reproduce the material.
To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

r The Author(s) 2017

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms14696 ARTICLE

NATURE COMMUNICATIONS | 8:14696 | DOI: 10.1038/ncomms14696 | www.nature.com/naturecommunications 9

https://arxiv.org/abs/1607.03042
https://arxiv.org/abs/1607.03044
https://arxiv.org/abs/1607.03044
http://www.nature.com/naturecommunications
http://www.nature.com/naturecommunications
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/4.0/
http://www.nature.com/naturecommunications

	title_link
	Results
	Atoms coupled to photonic crystal waveguides
	Classical motion

	Figure™1Atoms interacting with a photonic crystal waveguide.(a) Schematic rendering of the ’alligatorCloseCurlyQuote photonic crystal waveguide20 with two atoms trapped. The atomic transition |   |    is globally driven by an external laser with Rabi freq
	Quantum motion

	Figure™2Spin-motion coupling in the limit of classical motion.(a) Schematic 1D representation of the model, with atoms (green) trapped in an external potential (blue). The photonic-crystal mediated interaction is modulated by the standing wave of the Bloc
	Figure™3Model and phase diagram for quantum spin-motion coupling.(a) Representation of the truncated basis states for over a few sites. The blue arrow indicates the spin, while the two levels represent the motional states | a   and | b  , separated by an 
	Figure™4Correlation functions of dimerized and spin-motion fluid phases.(a) Spin triplet fraction  T | i,i1 | T   (red dashed line with dots between i and i+1) and displacement   i^x    (black solid line) of the ground state for (g, h)=(1.7, 0.2)Delta, be
	Discussion
	Figure™5Correlation functions of charge density wave and trimer phases.(a) Correlation functions Cij^X ,, Xi^ Xj^    Xi^    Xj^    with X equal to tau (black solid line),   (red dashed line) and sgr (blue dotted line) at (g, h)=(1.74, 1.38)Delta, in the S
	Methods
	Density matrix renormalization group
	Data availability

	PeierlsR. E.Quantum Theory of SolidsClarendon1955PytteE.Peierls instability in Heisenberg chainsPhys. Rev. B10463746421974CrossM. C.FisherD. S.A new theory of the spin-Peierls transition with special relevance to the experiments on TTFCuBDTPhys. Rev. B194
	The authors acknowledge A. M. Rey, J. Alicea, G. Refael, and H. J. Kimble for stimulating discussions, and the Centro de Ciencias de Benasque ’Pedro PascualCloseCurlyQuote, where this work was initiated. MTM thanks the Hamburg Institut für Laserphysik, fo
	ACKNOWLEDGEMENTS
	Author contributions
	Additional information




