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Abstract

Motivation: The discovery of relationships between gene expression measurements and pheno-

typic responses is hampered by both computational and statistical impediments. Conventional

statistical methods are less than ideal because they either fail to select relevant genes, predict

poorly, ignore the unknown interaction structure between genes, or are computationally intract-

able. Thus, the creation of new methods which can handle many expression measurements on

relatively small numbers of patients while also uncovering gene–gene relationships and predicting

well is desirable.

Results: We develop a new technique for using the marginal relationship between gene expression

measurements and patient survival outcomes to identify a small subset of genes which appear

highly relevant for predicting survival, produce a low-dimensional embedding based on this small

subset, and amplify this embedding with information from the remaining genes. We motivate our

methodology by using gene expression measurements to predict survival time for patients with

diffuse large B-cell lymphoma, illustrate the behavior of our methodology on carefully constructed

synthetic examples, and test it on a number of other gene expression datasets. Our technique is

computationally tractable, generally outperforms other methods, is extensible to other pheno-

types, and also identifies different genes (relative to existing methods) for possible future study.

Availability and Implementation: All of the code and data are available at http://mypage.iu.edu/

�dajmcdon/research/.

Contact: dajmcdon@indiana.edu

Supplementary information: Supplementary material is available at Bioinformatics online.

1 Introduction

A typical scenario in genomics is to obtain expression measurements

for thousands of genes from microarrays or RNA-Seq which may be

relevant for predicting a particular phenotype. Such studies have

been useful in relating specific genetic variations to a wide variety of

outcomes such as disease specific indicators (Lesage and Brice,

2009; Barrett et al., 2008; Burton et al., 2007; Sladek et al., 2007);

drug or vaccine response (Saito et al., 2016; Kennedy et al., 2012);

and individual traits like motion sickness (Hromatka et al., 2015) or

age at menarche (Elks et al., 2010; Perry et al., 2014). In these scen-

arios, researchers are interested in the accurate prediction of the

phenotype and the identification of a handful of relevant genes with

a reasonable computational expense. With these goals in mind,

supervised linear regression techniques such as ridge regression

(Hoerl and Kennard, 1970), the lasso (Tibshirani, 1996), the

Dantzig selector (Candes and Tao, 2007) or other penalized meth-

ods are often employed.

However, because phenotypes tend to be the result of groups of

genes, which perhaps together describe more complicated biomech-

anical processes, rather than individual polymorphisms, recent

approaches have tried to account for this group structure.

Techniques such as the group lasso (Yuan and Lin, 2006) can pre-

dict the response with sparse groupings of coefficients as long as the

groups are partially understood ahead of time. In contrast, unsuper-

vised methods such as principal components analysis (Hotelling,

1957; Jolliffe, 2002; Pearson, 1901) are often used directly on the

genes when no phenotype is being examined (Alter et al., 2000;

Sladek et al., 2007; Wall et al., 2003). Finally, modern approaches

developed specifically for the genomics context such as supervised

gene shaving (Hastie et al., 2000), tree harvesting (Hastie et al.,
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2001), and supervised principal components (Bair and Tibshirani,

2004; Bair et al., 2006) have sought to combine the presence of a re-

sponse with the structure estimation properties of eigendecomposi-

tions from unsupervised techniques to obtain the best of both. It is

this last set of techniques that most closely resemble the approach

we present here. We give a more detailed discussion of supervised

principal components next, before motivating our method with an

example.

Notation: We will use bolded letters M to indicate matrices, cap-

ital letters to denote column vectors, such that Mj is the jth column

of the matrix M, and lower case letters mi to denote row vectors

(a single subscript) or scalars (mij being the i, j element of M). We

will use the notation MA to mean the columns of M whose indices

are in the set A and ½k� ¼ f1; . . . ;kg. Finally, for a matrix M, we

write the singular value decomposition (SVD) of M ¼ UðMÞKðMÞV
ðMÞ> and define M

†

to be the Moore-Penrose inverse of M. In the

case only of the design matrix X discussed below, we will use the

more compact decomposition X ¼ UKV>.

1.1 Supervised eigenstructure techniques
The first technique for extending unsupervised principal compo-

nents analysis to the case where a response is available is principal

components regression (PCR, Hotelling, 1957; Kendall, 1965).

Instead of regressing the response on all the available covariates as

in ordinary least squares (OLS), PCR first performs an eigendecom-

position of the empirical covariance matrix and then regresses the

response on the subset of principal components corresponding to

the largest variances. Defining Y 2 Rn to be the centered response

vector, and X to be the n�p centered design matrix, write the

(reduced) SVD of X as X ¼ UKV>: For some integer d � p, the

principal components regression estimator is given as the solution to

bCPCR ¼ argmin
C
jjY �U½d�K½d�Cjj22;

which has the closed form representation

bCPCR ¼ ððU½d�K½d�Þ>U½d�K½d�Þ�1ðU½d�K½d�Þ>Y ¼ K�1
½d�U

T
½d�Y:

Since this solution is in the space spanned by the principal compo-

nents, it is easy to rotate the estimate back onto the span of X:bbPCR :¼ V½d�bCPCR ¼ V½d�K
�1
½d�U

T
½d�Y. Then any elements of bbPCR which

are identically zero imply the irrelevance of those genes for predict-

ing the phenotype while the columns of V>½d� can be interpreted as

indicating groupings of individual genes.

Principal components regression performs well under certain

conditions when we believe that there are natural groupings of cova-

riates (linear combinations) which are useful for predicting the re-

sponse. However, Lu (2002) and Johnstone and Lu (2009) show

that the empirical singular vectors U½d� are poor estimates of the

associated population quantity (the left singular vectors of the ex-

pected value of X) unless p=n! 0 as n!1. In particular, when

p� n, as is common in genomics where the number of gene expres-

sion measurements is much larger than the number of patients, PCR

will suffer.

To avoid this flaw in PCR, various approaches have been pro-

posed. Hastie et al. (2000) proposed a method called ‘gene shaving’

that is applicable to both supervised (given a phenotype) and un-

supervised (only gene expressions) settings. In the supervised setting,

it works by computing the first principal component and ranking

the genes using a combined measure that balances the principal com-

ponent scores and the marginal relationship with the response.

Those genes with lowest combined scores are removed and the

process is repeated until only one gene remains, resulting in a nested

sequence of clusters containing fewer and fewer genes. Then one

chooses a cluster along this sequence, orthogonalizes the data with

respect to the genes in that cluster, and repeats the entire process

again, iterating until the desired number of clusters has been re-

covered. This procedure is somewhat computationally expensive as

well as requiring both the cluster sizes and the number of clusters to

be chosen.

An alternative with somewhat similar behavior is supervised

principal components (SPC, Bair and Tibshirani, 2004; Bair et al.,

2006). SPC avoids the high-dimensional regression problem by first

selecting a much smaller subset of useful genes which have high mar-

ginal correlation with the phenotype (in contrast to gene shaving,

which uses the marginal correlation and the covariance between

genes). By screening out most of the hopefully irrelevant genes, we

can return to the scenario where p<n. In follow-up work, Paul

et al. (2008) show that, if a small marginal correlation with the re-

sponse implies irrelevance for prediction, then SPC will find any

truly relevant genes and predict the phenotype accurately. They also

suggest using lasso or forward stepwise selection after SPC to further

reduce the number of genes. However, if some genes have small

marginal relationship with the response but large conditional rela-

tionship, they will be erroneously ignored by SPC. It is this last prop-

erty that our method attempts to correct. We now illustrate that the

screening step of SPC is likely to remove important genes in typical

applications before discussing how our procedure avoids suffering

the same fate.

1.2 A motivating example
To motivate our methodology in relation to previous approaches,

we examine a dataset consisting of 240 patients with diffuse large

B-cell lymphoma (DLBCL, Rosenwald et al., 2002) in some detail.

Each patient is measured on 7399 genes, and her survival time is re-

corded. Previous approaches rely on the assumption that a small

marginal correlation between the response variable, in this case pa-

tient survival time, and the vector of expression measurements for a

particular gene is sufficient for guaranteeing the irrelevance of that

particular gene for prediction. To make this assumption mathemat-

ically precise, suppose y ¼ x>bþ �; where y is the response, x is a

vector of gene expression measurements, and � is a mean-zero error.

Then, the assumption can be stated mathematically as

Covðxj; yÞ ¼ 0) bj ¼ 0. While reasonable under some conditions,

this assumption is perhaps too strong for many gene expression

datasets. Very often, individual gene expressions are only predictive

of phenotype in the presence of other genes. We can rewrite this as-

sumption using the population covariance matrix between genes,

Covðx;xÞ ¼ Rxx, and the vector-valued covariance between gene ex-

pressions and phenotype, Covðx; yÞ ¼ Rxy. Then, using the popula-

tion equation for b allows us to rewrite the assumption as

ðRxyÞj ¼ 0) bj ¼ ðR�1
xx RxyÞj ¼ 0: (1)

In words, we are assuming that the dot product of the jth row of the

inverse covariance matrix with the covariance between x and y is

zero whenever the jth element of Rxy is zero.

To examine whether this assumption holds, we can estimate

both R�1
xx and Rxy using the DLBCL data and imagine that these esti-

mates are the population quantities for illustration. To estimate Rxy,

we use the standard covariance estimate, but set all but the largest

120 values equal to zero, corresponding to a sparse solution. For the

case of R�1
xx , estimating large inverse covariance matrices accurately

is impossible when p� n unless we assume some additional
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structure. If most of the entries are 0 [a necessary condition for (1)

to hold], methods like the graphical lasso (glasso, Friedman et al.,

2008) or graph estimation (Meinshausen and Bühlmann, 2006) have

been shown to work well. We use the graph estimation technique

for all 7399 genes in the dataset at 10 different sparsity levels rang-

ing from 100% to 99.2%. For visualization purposes, Figure 1

shows the first 250 genes for one estimate of the inverse covariance

that is 97.5% sparse.

To assess the validity of (1), Table 1 shows the sparsity of the

full inverse covariance matrix, the percentage of non-zero regression

coefficients, and the percentage of non-zero regression coefficients

which are incorrectly ignored by the assumption (the false negative

rate). In all cases, Rxy is about 98% sparse. Even with an extremely

sparse inverse covariance matrix, the false negative rate is at least

25% meaning that 25% of possibly relevant genes are ignored by

the analysis. If the sparsity of R�1
xx is allowed to increase only

slightly, the false negative rate increases to over 95%.

1.3 Our contribution
For a similar computational budget, our method outperforms exist-

ing approaches by taking advantage of all the data. Our method

does not require that the set of non-zero regression coefficients be a

subset of the non-zero marginal correlations.

Suppose that M 2 Rp�p is a symmetric, non-negative definite ma-

trix; that is, for all vectors a 2 Rp, a>Ma � 0 and M> ¼M. To ap-

proximate the matrix M, we fix an integer ‘	 p and form a

sketching matrix S 2 Rp�‘. Then, we report the following approxi-

mation: M 
 ðMSÞðS>MSÞ
†

ðMSÞ>. The details behind the forma-

tion of the matrix S control the type of approximation.

In the simplest case, which we employ here, we take S ¼ ps;
where p 2 Rp�p is a permutation of the identity matrix and

s ¼ ½I‘;0�> 2 Rp�‘ is a truncation matrix. While many alternative

sketching matrices, mostly based on random projections, have been

proposed, this method is the only one necessary to develop our re-

sults. Without loss of generality, divide the matrix M into blocks

M ¼
M11 M>

21

M21 M22

" #

so that we can (implicitly) construct the matrix F Mð Þ 2 Rp�‘ as

F Mð Þ :¼MS ¼
M11

M21

" #
:

Because

M 
 ðMSÞðS>MSÞ
†

ðMSÞ> ¼ FðMÞðS>MSÞ
†

FðMÞ>;

we can approximate the eigendecomposition of M using the SVD of

FðMÞ. If we decompose F ¼ UðFÞKðFÞVðFÞ>; where we have sup-

pressed the dependence of F on M when F is an argument for clarity,

then the resulting approximation to the eigenvectors of M is VðMÞ

 FVðFÞKðFÞ

†

¼ UðFÞ: Likewise, the approximate eigenvalues of M

are given the singular values KðFÞ.
Homrighausen and McDonald (2016) show that this approxima-

tion is more accurate than the one based on M11 for performing a

principal components analysis. As previous techniques for principal

components regression (like SPC) are based on M11 rather than F, it

is possible that by using F, we will have better results. As we will

see, this intuition turns out to be true under some conditions which

were suggested in Section 1.2. In particular, for essentially the same

computational budget, our procedure outperforms previous proced-

ures if some genes have small marginal correlations with the pheno-

type but are, nonetheless, important for predicting the phenotype

conditional on the presence of other genes. Furthermore, even if the

assumption in (1) is true, our procedure is not much worse than

existing approaches.

In Section 2, we discuss exactly how to implement our method-

ology. We examine the behavior of our procedure in Section 3. In

Section 3.1, we state an explicit model for the data-generating

mechanism in order to be clear about the conditions under which

our procedure works well. Section 3.2 uses a number of carefully

constructed simulations to show when our technique works well,

and when it doesn’t. In Section 4, we examine our procedure on

four genetics datasets, including the one discussed above. We find

that our methods slightly outperform existing techniques on three

of them, suggesting that the motivation is sound. Finally, in

Section 5, we give conclusions and discuss some avenues for future

work.

Fig. 1. A sparse estimate of the inverse covariance of gene expression meas-

urements for the first 250 genes from the DLBCL dataset. The estimate has

97.5% of the off-diagonal elements equal to 0. Darker colors represent inverse

co-variances of larger magnitude

Table 1. This table shows properties of the coefficients of the linear model corresponding to 10 different estimates of the inverse covariance

matrix, from complete sparsity on the left (a diagonal matrix) to still more than 99% sparsity on the right

Sparsity of R�1
xx 1.0000 0.9999 0.9998 0.9995 0.9991 0.9984 0.9975 0.9963 0.9946 0.9922

% Non-zero b’s 0.0162 0.0216 0.0287 0.0418 0.0618 0.0843 0.1193 0.1803 0.2645 0.3699

False Negative Rate 0.0000 0.2500 0.4340 0.6117 0.7374 0.8077 0.8641 0.9100 0.9387 0.9562

Note: The second row is the number of non-zero population regression coefficients corresponding to each inverse covariance matrix. The bottom row shows

the percentage of non-zero regression coefficients which are incorrectly ignored under the assumption on the relationship between marginal correlations and re-

gression coefficients.
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2 Methods and computations

We now give the details of our methodology. For clarity, we assume

that the design matrix X and the response Y are already centered.

Let T be a p-dimensional vector denoting standardized regression

coefficient estimates i.e. for any j 2 f1;2; . . . ; pg, tj is the coefficient

estimate of standardized univariate regression between response Y

and covariate Xj. We use standardized regression so that the coeffi-

cient estimates are comparable across disparate covariates. Note

that tj is also the marginal correlation between the response Y and

covariate Xj.

For some threshold t�, we separate X into two matrices XA and

XAc , where A ¼ fj : jtjj > t�g. We assume jAj ¼ ‘. The hope is that

XA contains many of the genes that are most predictive of the

phenotype under study. Ideally, high marginal correlations will sug-

gest relevant predictors to be emphasized in the decomposition, but

unlike other methods, we will also use those genes in the set Ac. We

now focus on Xnew ¼ ½XA; XAc � and note that it has the same range

as X. Therefore, we will use the approximation technique discussed

in Section 1.3 to try to estimate the eigendecomposition of Rxx using

sample quantities. Because X>newXnew is symmetric and positive def-

inite, write

F ¼ X>newXA ¼
X>AXA

X>Ac XA

 !
;

and decompose F ¼ UðFÞKðFÞVðFÞ. For some integer d 2 f1; . . . ; ‘g,
we define

bV ½d� ¼ U½d�ðFÞ;

bK½d� ¼ K½d�ðFÞ1=2; and

bU ½d� ¼ Xnew
bV ½d�bK�1

½d� :

Now, we have estimates for the principal components bU ½d�bK ½d�.
Therefore, just as with principal components regression, we can re-

gress Y on the estimated principal components to produce estimated

coefficients in principal component space:

bCAIMER ¼ argmin
C
jjY � bU ½d�bK ½d�Cjj22 ¼ bK�1

½d�
bUT

½d�Y:

Then the coefficient estimates for linear regression in the space

spanned by Xnew are given by

bbAIMER ¼ bV ½d�bCAIMER ¼ bV ½d�bK�1

½d�
bUT

½d�Y: (2)

Because our methodology uses marginal regression to select a small

number of hopefully relevant predictors before ‘amplifying’ their

eigenstructure information with the F matrix, we refer to our tech-

nique as ‘Amplified, Initially Marginal, Eigenvector Regression’

(AIMER).

Unlike previous approaches, the solution given by (2) is not

sparse: with probability 1, ðbbAIMERÞj 6¼ 0; 8j. However, most of the

coefficients will be small. We therefore threshold the estimates to

produce our final estimator:bbAIMERðbÞ :¼ bbAIMER1ðb;1ÞðjbbAIMERjÞ; (3)

where b � 0, and 1AðwÞ is the indicator function, which returns the

value one for every element of w 2 A and zero otherwise. We sum-

marize this procedure in Algorithm 1. As with SPC, the computa-

tional burden of our method is dominated by the SVD. We use an

SVD of F while SPC uses the SVD of XA. However, since the SVD is

cubic in the smaller dimension, in both cases the computation is

OðjAj3Þ. Thus, to leading order, both methods require the same

amount of computation.

Algorithm 1: Amplified, Initially Marginal, Eigenvector

Regression (AIMER)

Input: centered design matrix X, centered response Y, thresh-

olds t�;b� � 0, integer d

1 Compute marginal correlation tj between Xj and Y for all j;

2 Set A ¼ fj : jtjj > t�g;
3 Set Xnew ¼ ½XA; XAc �;;
4 Define F ¼ X>newXA;

5 Decompose F ¼ UðFÞKðFÞVðFÞ>;

6 Set bV ½d� ¼ U½d�ðFÞ;
7 Set bK ½d� ¼ K½d�ðFÞ1=2;

8 Set bU ½d� ¼ Xnew
bV ½d�bK�1

½d� ;

9 Calculate bb ¼ bV½d�bK�1

½d�
bUT

½d�Y;

10 Set bbðb�Þ :¼ bb1ðb� ;1ÞðjbbjÞ;
Output: coefficient estimates bbðb�Þ
To make predictions given a new observation x�, we simply cen-

ter it using the mean of the original data, reorder its entries to con-

form to Xnew, multiply by the coefficient vector in (3), and add the

mean of the original response vector.

3 Experimental analysis

To examine the performance of our method, we set up a number of

carefully constructed simulations under various conditions. We first

discuss the generic data model we assume, a latent factor model,

which is amenable to analysis via SPC or AIMER.

3.1 Data model
Consider the multivariate Gaussian linear regression model

y ¼ x>bþ r1� (4)

with y the response, x 2 Rp a column vector of gene expression

measurements, b ¼ ðb1; . . . ; bpÞ> the coefficients, � a random

Gaussian distributed error with zero mean and variance 1, and

r1 > 0. We further assume that x � Npð0;RxxÞ has a Gaussian dis-

tribution with mean vector 0 and covariance matrix Rxx. We will as-

sume that b is sparse, in that most of its elements are exactly 0

indicating no linear relationship between the associated gene and

the response. Finally, the design matrix X and the response vector Y

include n independent observations of x and y, respectively.

Model for X.

As Rxx is symmetric and positive (semi-) definite, we can decom-

pose it as

Rxx ¼ V Rxxð ÞL Rxxð ÞVT Rxxð Þ

¼ V1 � � � Vp

� � l1 0

. .
.

0 lp

0BB@
1CCA

V>1

..

.

V>p

0BB@
1CCA;

where V1; . . . ;Vp are orthonormal eigenvectors on Rp and l1 � � � �
� lp � 0 are eigenvalues. We assume that there is some 1 � G � p

such that the eigenvalues can be separated into two groups, one of

which includes relatively large eigenvalues and the other relatively

small eigenvalues, that is, lk ¼ kk þ r2
0 for 1 � k � G and lk ¼ r2

0

for k>G where k1 � � � � � kG > 0, and r2
0 > 0:
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Then, because X is multivariate Gaussian, we can write X as

X ¼ UGKGVT
G þ r0E

¼ U1 � � � UGð Þ

ffiffiffiffiffi
k1

p
0

. .
.

0
ffiffiffiffiffiffi
kG

p

0BB@
1CCA

V>1

..

.

V>G

0BB@
1CCAþ r0E

where latent factors U1; . . . ;UG are independent and identically dis-

tributed (i.i.d.) Nnð0; IÞ vectors, and the noise matrix E is n�p with

i.i.d. N(0, 1) entries independent of U1; . . . ;UG.

Model for Y.

We assume that Y is a linear function of the first K � G latent

factors in UG plus additive Gaussian noise: Y ¼ UKHþ r1Z; where

H is the coefficient vector, r1 > 0 is a constant, and Z is distributed

Nnð0; IÞ, independent of X. Note that the expectation of Y is zero

and that this is a specific form of (4).

Implication of the model.

Under this model for X and Y, the population marginal covari-

ance between each gene Xj and the response Y can be written as

Rxy ¼

Cov X1;Yð Þ

..

.

Cov Xp;Y
� �

0BBB@
1CCCA ¼ VKKKH:

Therefore, the population ordinary least squares coefficients of re-

gressing Y on X (b in (4)) can be written as

b ¼ R�1
xx Rxy ¼ VKL�1

K KKH (6)

We will define the set B :¼ fj : ðRxyÞj 6¼ 0g and the set

A :¼ fj : bj 6¼ 0g. We note that for K¼1, it is always the case that

A ¼ B. By manipulating the parameters in H, L, and K, we can cre-

ate a number of scenarios for testing AIMER against alternative

methods.

3.2 Experiments
We present results under five different experiments. For each of the

simulations which follow, we generate datasets with n¼200 and

p¼1000. We use half (n¼100) to estimate the model and test our

predictions on the other half. We repeat this process 100 times for

each combination of parameters. Throughout, we use r0 ¼
ffiffiffiffi
:1
p

 :3

and r1 ¼ :1. The matrix U is generated with i.i.d. standard Gaussian

entries, while the matrix V is constructed by hand to have the cor-

rect number of orthogonal components.

The first experiment is designed to be favorable to AIMER. The

second is designed to be favorable to SPC. The third examines the

extent to which the assumption that A ¼ B is beneficial to SPC over

AIMER. The fourth examines the impact of using incorrect numbers

of components, while the fifth uses cross validation on all the tuning

parameters.

Simulation 1: Favorable conditions for AIMER.

In this simulation, we create data which is amenable to AIMER

at the expense of the conditions for SPC, that is we use B 
 A. We

set parameters in the data model as K ¼ G ¼ 3 and choose k1 ¼ 10;

k2 ¼ 5; and k3 ¼ 1. In order to achieve B 
 A, we set h1 ¼ h2 ¼ 1

and solve (5) for h3 so that some corresponding elements of Rxy will

be zero. We make the first 15 elements of b non-zero, five corres-

ponding to each of the three principal components. Thus, the first

10 genes have non-zero population marginal correlation and the re-

maining 990 have zero marginal correlation. In this scenario, SPC

should find the first 10 important genes, but AIMER will find the re-

maining five important genes as well.

In order to focus on the relationship between performance and

the condition B 
 A, we examine the methods for a fixed computa-

tional budget and choose t� to select the same 50 most predictive

genes. We examine SPC, SPC with lasso, AIMER(b¼0), and

AIMER. We use the first three principal components for regression

in all the methods. For SPC with lasso and AIMER, we choose the

remaining tuning parameters via 10-fold cross-validation. We also

give results for OLS on the first 15 genes. This is the oracle estima-

tor, the best one could hope to do with foreknowledge of the pre-

dictive genes.

Figure 2 shows the classification performance using a receiver

operating characteristic (ROC) curve for SPC with lasso and

AIMER in the left panel (the remaining panels are for the next two

simulations). Examining the figure, it is easy to see that SPCþ lasso

identifies the first 10 genes easily, but AIMER is able to capture all

15 predictive genes at a low cost of false positive identifications.

A more detailed analysis is given in the first row of Figure 3. Panel

1a shows the ability of each method to estimate the b coefficients of

three different factors. Coefficient estimates for the five genes in

Fig. 2. Receiver operating characteristic (ROC) Curve for Simulations 1–3. The x-axis is the false positive rate while the y-axis is the true positive rate. The curves

present averages across 100 replications. SPC is limited to only 50 selected genes, and so its false positive rate is bounded. The dashed line indicates its best

case theoretical performance were it allowed to continue to select further genes
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factor 1 by AIMER are slightly more accurate, and no more vari-

able, than SPCþ lasso. Furthermore, AIMER is better at estimating

those b’s associated with factor 2, and much better at those associ-

ated with factor 3 (these are assumed zero in SPC). Panel 1b exam-

ines the mean square error (MSE) of estimation as the average

squared difference between the true coefficients and their estimates

for all 1000 genes. The overall estimation accuracy of AIMER

(b¼0) is worse because of the inclusion of so many useless genes (it

estimates all 1000), however, by thresholding with AIMER, accur-

acy is improved and exceeds that of SPC with and without lasso. In

panel 1c, we show the MSE for prediction, the average squared dif-

ference between predicted values and the actual observations, for a

Fig. 3. Estimation and prediction performance of SPC and AIMER in the first three simulations. The left panel shows the estimates of the regression coefficients,

the middle panel shows the mean squared error (MSE) of estimation for all 1000 genes, and the right panel shows prediction MSE on the held-out data. The

boxes indicate variability across 100 replications. The dashed black horizontal lines indicate the true values of b
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test set. This MSE is smaller for AIMER than for SPC much of the

time, but the variance across simulations is large.

Simulation 2: Favorable conditions for SPC.

This simulation compares the performance of SPC and AIMER

under conditions which are more favorable to SPC. In particular, we

choose parameters such that A ¼ B. While AIMER is likely to per-

form worse because it will tend to include irrelevant genes, it is not

too much worse. Most of the parameters are the same as in

Simulation 1, except that K ¼ G ¼ 2; k1 ¼ 10, k2 ¼ 1; h1 ¼ h2 ¼ 1,

and we use the first two principal components to do regression.

Therefore, 10 out of 1000 genes are truly predictive of the response,

and all 10 have non-zero marginal correlation with the response (the

rest have Rxy ¼ 0). Looking again at Figure 2, both SPCþ lasso and

AIMER can identify all 10 predictive genes at a small price of false

positives. Examining Figure 3, we see that the estimation accuracy

of SPC/SPCþ lasso is better than that of AIMER as expected, and

the MSE of prediction for AIMER is about twice that of SPC/

SPCþ lasso. The estimation MSE (panel 2b) of AIMER is compar-

able to that of SPC.

Simulation 3: Slight perturbations.

In this simulation, we adjust only h2 ¼ 3, rather than 1 as in

simulation 2, thereby maintaining the condition that A ¼ B.

However, in this case AIMER works much better than SPC/

SPCþ lasso. Figures 2 and 3 show that AIMER can easily identify

all the predictive genes, has more precise coefficient estimates, and

has much smaller MSE for prediction. The reason is that, even

though A ¼ B, the marginal correlations for some predictive genes

are very small. Therefore, those genes are more difficult for SPC to

identify, but AIMER can compensate.

For one further comparison, Table 2 shows the average (stand-

ard deviation in parentheses) number of predictive genes selected in

each of the first three simulations. AIMER selects the smallest num-

ber of coefficients in most cases.

Simulation 4: Choosing the number of components.

In the previous simulations, we used the correct number of prin-

cipal components, though such a choice is unlikely to be possible

given real data. In this simulation, we examine the impact choosing

the number of components has on estimation accuracy. We use simi-

lar parameter settings as Simulation 1 except with K ¼ G ¼ 2 rather

than 3 (we maintain the condition that B 
 A). We then use all the

methods with 1, 2 and 3 components. We also adjust the values of

k1 in a range from 5 to 50. As we can see in Figure 4, using two com-

ponents reduces MSE for AIMER(b¼0) and AIMER across all val-

ues of k1 relative to using only one component, while using more

than two components has little impact. With only one component,

SPC performs better than AIMER, likely due to smaller variance for

a similar bias, but using two or three components leads to large

gains for AIMER. In practice, it is worthwhile to try several num-

bers of components and use cross-validation to decide which works

best.

Simulation 5: The screening threshold.

In previous simulations, we choose t� so that variable screening

by the marginal correlation would always select exactly 50 genes.

Thus, we could compare methods based on their ability to use the

same amount of information. In reality, it may be better to choose

the threshold t� using cross validation. In this simulation, we use the

same conditions as in the previous simulation with k1 ¼ 10. It is still

not appropriate to have more genes than patients, so we allow the

number of selected genes to be anything less than the number of pa-

tients (100). We further use 10-fold cross-validation to choose the

best threshold.

As shown in Figure 5, allowing t� to be chosen rather than fixed

leads to improved results for AIMER relative to SPC/SPCþ lasso.

The prediction MSE decreases and fewer genes are selected.

4 Performance on real data

We now illustrate our methods on four empirical datasets in gen-

omics that record the censored survival time and gene expression

measurements from DNA microarrays of patients with four different

Table 2. Average final number of predictive genes in Simulations 1,

2 and 3

Simulation 1 2 3

True # 15 10 10

SPC 50 (0) 50 (0) 50 (0)

SPCþlasso 31 (9.011) 39 (3.636) 46 (2.665)

AIMER (b ¼ 0) 1000 (0) 1000 (0) 1000 (0)

AIMER 39 (9.225) 21 (12.750) 16 (7.558)

Note: The standard deviation is shown in parentheses.

Fig. 4. Prediction MSE averaged across 100 replications for each method for different numbers of components (Simulation 4). We also allow k1 to vary between 5

and 50
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types of cancer. The first dataset comes from Rosenwald et al.

(2002) and contains 240 patients with diffuse large B-cell lymphoma

(DLBCL) and 7399 genes. The second dataset has 4751 gene expres-

sion measurements of 78 breast cancer patients (Van’t Veer et al.,

2002). The third consists of 86 lung cancer patients measured on

7129 genes (Beer et al., 2002), and finally, we analyze a dataset con-

sisting of 116 patients with acute myeloid leukemia (AML, Bullinger

et al., 2004) and 6283 genes.

Since the survival times for some patients are censored and right-

skewed, we use log ðsurvival timeþ 1Þ as the response. A Cox model

would be more appropriate, but this transformation is enough to il-

lustrate our methodology. In order to assess our method using lim-

ited data, we randomly select half of the data as the training set and

let the rest be in the testing set, then estimate each model using the

training half and predict the held out data. We repeat this procedure

for 10 random splits and report the average error. We use 10-fold

cross-validation on the training set to choose all tuning parameters

(t�; b�, d and k where appropriate), mimicking the procedure of a

real data analysis.

We apply seven methods on each dataset: (i) PCR; (ii) lasso; (iii)

ridge regression; (iv) SPC; (v) SPCþ lasso; (vi) AIMER(b¼0) and

(vii) AIMER. We use the R packages pls (Mevik and Wehrens,

2007) to perform PCR and glmnet (Friedman et al., 2010) to per-

form lasso and ridge. For PCR, SPC, SPCþ lasso, AIMER(b¼0)

and AIMER, we allow the number of components d to be chosen be-

tween 1 and 5.

Our results are shown in Table 3. For each dataset, we show the

MSE on the testing set, the number of selected genes, and the num-

ber of principal components used (if relevant), averaged across the

10 random training-testing splits. We do not show results for PCR

because it is uniformly awful. The results in Table 3 are largely con-

sistent with the conclusions we derive from simulations. AIMER

and SPCþ lasso tend to select a similar number of genes, though

AIMER has better prediction error on three of the four datasets.

Interestingly, the genes selected by SPCþ lasso, lasso and AIMER

rarely overlap, suggesting that to identify genes for further study,

one should try all three methods. The online Supplementary

Material lists the genes identified by AIMER for each dataset. In the

case of DLBCL, we also list any previous research relating the se-

lected genes to lymphoma.

The Lung Cancer data is rather odd in that AIMER(b¼0) has

better performance than AIMER. This anomaly is likely because, in

contrast with the other datasets, the lung cancer expression meas-

urements have not been scaled relative to a control group. We tried

two transformations using only the treatment group to approximate

such a scaling, but, while the performance of our method becomes

comparable to SPC following transformations, it remains slightly

worse. Without a control group, it is difficult to explain this out-

come with any certainty. A comparison of these alternative trans-

formations with our results in Table 3 is contained in the online

Supplementary Material.

As seen in the table, ridge regression is sometimes the best of all

the methods. Previous experience suggests that ridge regression is

dominant if the genes are highly correlated or when there is not a

particularly predictive set of genes. However, the fact that ridge

does not screen out unimportant genes is a barrier to its applications

in genomics. On the other hand, AIMER approaches or exceeds the

small prediction error of ridge regression while also selecting a small

number of predictive genes, making it a better candidate for solving

these types of problems.

Fig. 5. Performance of each method when we allow t� to be chosen by cross validation rather than fixed to choose 50 genes (Simulation 5)

Table 3. The MSE on the test set, the number of selected genes and the number of principal components used (d if relevant), each averaged

across the 10 random training-testing splits

DLBCL Breast cancer Lung cancer AML

Methods MSE # genes d MSE # genes d MSE # genes d MSE # genes d

lasso 0.6805 20 0.6285 9 0.8159 22 1.9564 6

ridge 0.6485 7399 0.6407 4751 0.7713 7129 1.9234 6283

SPC 0.6828 41 3 0.6066 16 2 0.8344 19 3 2.4214 24 2

SPCþlasso 0.6780 31 3 0.6029 14 2 0.8436 9 4 2.3980 22 2

AIMER(b ¼ 0) 1.1896 7399 2 2.6531 4751 1 0.9444 7129 1 12.4014 6283 1

AIMER 0.6518 28 4 0.6004 31 3 1.0203 13 1 1.8746 36 4

Note: Bolded values indicate the best predictive performance for each type of method (with and without structure learning) for each dataset.
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5 Discussion

High-dimensional regression methods help in predicting future sur-

vival time and identifying possibly predictive genes for diseases.

However, the large number of genes, the limited access to patients,

and the complex covariance structure between genes make the prob-

lem both computationally and statistically difficult. In both simula-

tions and analysis of actual gene expression datasets, AIMER has

comparable or slightly improved prediction accuracy relative to

existing methods and finds small numbers of actually predictive

genes, all while having a similar computational burden. On the

other hand, there are some issues which warrant further

exploration.

A major benefit of SPC is that it comes with theoretical guaran-

tees under certain assumptions. While our methodology is intended

to work when these assumptions don’t hold, we do not yet have

comparable guarantees. However, the simulated experiments in this

paper have suggested how we might derive such results in a more

general setting.

For the real data examples in this paper, we applied a simple

monotonic transformation to the response variable, however, ex-

tending our methods to Cox models, which are more appropriate,

and other generalized linear models for predicting discrete traits is

highly desirable. It may also be useful to examine other eigenstruc-

ture techniques such as Locally Linear Embeddings or Laplacian

Eigenmaps to produce non-linear predictors. Finally, using other

matrix approximation techniques may yield improved performance

or be more amenable to theoretical analysis.
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