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Abstract

African swine fever (ASF) is an infectious disease of domestic and wild pigs of all breeds

and ages, with the acute form of the disease being characterized by high fever, hemor-

rhages in the reticuloendothelial system and a high mortality rate. Registered safe and effi-

cacious ASF vaccines are not available. The development of experimental ASF vaccines,

particularly live attenuated, have considerably intensified in the last years. There is much

variability in experimental approaches undertaken by laboratories attempting to develop first

generation vaccines, rendering it difficult to interpret and make comparisons across trials.

ASF virus (ASFV) genotyping does not fully correlate with available cross-protection data

and may be of limited value in predicting cross-protective vaccine efficacy. Recently, ASFV

strains were assigned to a respective nine groups by seroimmunotype (from I to IX): in vivo

the grouping is based on results of cross protection of pigs survived after their infection with

a virulent strain (bioassay), while in vitro this grouping is based on hemadsorption inhibition

assay (HADIA) data. Here we demonstrate the antigenic and protective properties of two

attenuated ASFV strains MK200 and FK-32/135. Pronounced differences in the HADIA and

in immunological test in animals allow us to consider them and the corresponding reference

virulent strains of the ASFV of Mozambique-78 (seroimmunotype III, genotype V) and

France-32 (seroimmunotype IV, genotype I) as useful models for studying the mechanisms

of protective immunity and evaluation of the candidate vaccines.

Introduction

African swine fever virus (ASFV) causes acute hemorrhagic fever in domestic pigs and wild

boars with a mortality rate of up to 100%. Disease control is limited due to a lack of vaccines.

Difficulties in the vaccine development are associated with a number of unique properties of

the virus. Firstly, the virus specifically targets monocytes/macrophages, and thus aggressively

intervenes in the regulation of the host’s immune response [1–3]. Secondly, the notable plastic-

ity of the viral genome is implemented in the vector transmission of the ASFV by the Ornitho-
doros soft ticks. Lastly, the virus exhibits considerable variety in phenotypic properties,
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including virulence, serotypic and immunotypic characteristics, and ability to induce hemad-

sorption [4–14]. The development of a protective immune response occurs in the natural hosts

and in domestic pigs that recover from the infection and are challenged with a homologous

isolate [15]. Currently, two non-hemadsorbing strains, OURT88/3 and NH/P68, are mainly

used as models for studying mechanisms of immunological protection and the development of

candidate ASF vaccines [16–18].

Recently, ASFV strains were assigned into nine groups by seroimmunotype (from I to IX):

in vivo the grouping is based on the results of cross protection of pigs inoculated by attenuated

ASFV strain followed by challenge with virulent strains (immunological bioassay), while in
vitro this grouping is based on the hemadsorption inhibition assay (HADIA) data [7–11].

The research on the development of protection against ASFV has led to the discovery of

attenuated strains of first eight seroimmunotypes. Despite the fact that the selected attenuated

strains met the established requirements for protection and harmlessness, they had some dif-

ferences in several biological characteristics: the duration and level of viremia and the timing

of the formation of virus-specific protection. The most extensive studies on the development

of live vaccines against ASF were conducted with the virus of seroimmunotype IV. This was

due to the fact that ASF epizootics in the 1960s–1980s in a number of European countries, in

Latin America, and in the former USSR (Odessa region) were caused by viruses of seroimmu-

notype IV [19]. Attenuated strain FK-32/135 was selected by passaging of the virulent refer-

ence strain France-32 (seroimmunotype IV, genotype I) in porcine bone marrow cells

(PBMC) culture [10, 11]. The inoculation of an attenuated FK-32/135 strain (seroimmnotype

IV) at a dose of 104.0 HAU50 created protection in pigs against other virulent ASFV isolates of

seroimmunotype IV [11]. Strain FK-32/135 was distinguishable from the majority of virulent

and attenuated ASFV strains by pronounced “loose” hemadsorption in PBMC and peripheral

blood leukocytes of swine (PBLS) cultures.

After selective passages of Mozambique-78 (seroimmunotype III, genotype V) in the

PBMC culture, the attenuated hemadsorbing strain MK-200 was obtained [10, 11]. It had

moderate reactogenicity in pigs, and caused a rise in body temperature up to 40.2 ˚C in 20% of

the pigs for 4–5 days after intramuscular administration at a dose of 106.0–107.0 HAU50. On

day 14, 90% of the pigs developed resistance to infection with the parental virulent strain

Mozambique-78 at a dose of 103.0 HAU50 [11].

Here we demonstrate the antigenic and protective characteristics of two attenuated ASFV

strains: MK-200 and FK-32/135. Pronounced differences in the reaction of hemadsorption

delay and immunological test in animals, as well as differences in genotypes, allow us to con-

sider them and the corresponding reference virulent strains Mozambique-78 and France-32 of

ASF virus as useful models for studying the mechanisms of protective immunity and evalua-

tion of the candidate vaccines.

Materials and methods

Viruses and cells

The ASFV strains were obtained from the Federal Research Center for Virology and Microbi-

ology (FRCVM) collection of microorganisms: the virulent strains Lisbon-57 (L-57), Congo-

49 (C-49), Mozambique-78 (M-78), France-32 (F-32), TSP-80, TS-7, Uganda, Stavropol 01/08,

Davis; and the attenuated strains MK-200 derived from strain M-78 (seroimmunotype III,

genotype V) and FK-32/135 derived from strain F-32 (seroimmunotype IV, genotype I) [7].

Infectivity of the ASFV was determined by titration in PBLS using four wells for each ten-

fold cultivation [20]. Results were examined by the presence of hemadsorption phenomenon

after 5–7 days. The virus titers were calculated according to the method of B.A. Kerber
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modified by I.P. Ashmarin, and were expressed in 50% hemadsorbing units per ml (HAU50/

mL) [21].

Hemadsorbtion inhibition assay (HADIA)

Following reference seroimmunotype strains of ASFV were used in the experiment: I—L-57,

II—C-49, III—M-78, IV—F-32, V—TSP-80, VI—TS-7, VII—Uganda, VIII—Stavropol 01/08,

IX—Davis. All viral strains were refreshed (1–2 passages) in primary PBLS cells cultures and

had average infectious activity of 106.5–7.5 HAU50/mL.

The following sera were used in the experiment: serotype-specific sera of I-IX serotypes

with an activity of 1:80–1:160 in HADIA, normal pig sera treated for 30 min at 56 ˚C.

Culture of primary PBLS cells was prepared in 48-well plastic micropanels (Nunc, Den-

mark) with a working volume of 1.0 mL. Wells were filled with cell suspension to achieve con-

centration of 3.0–3.5 million cells/mL. As a growth medium, 0.1% lactalbumin hydrolysate

was used on Earle’s saline solution with 10% of donor pig blood serum, the pH of the medium

was 7.60–7.65. Micropanels were placed in a CO2-incubator with 5% CO2 with a relative

humidity of 90% and incubated at a temperature of 37.0±0.5 ˚C. After 2 days, loose cells and

excess erythrocytes were removed from the micropanels. To do this, microplates were shaken

for 5–15 seconds on a shaker device (6–8 vibrations/sec) and then the suspension was

removed. Then, 0.9 mL of growth medium was introduced into the wells. Next, 0.05 mL of the

virus with an infectious titer of 104.0 HAU50/mL mixed with 0.05 mL of serotype-specific or

normal serum were added to each well. The micropanels were placed in a CO2-incubator.

HADIA was performed with the following controls: cell cultures with normal pig serum to

assess the quality of cell culture; serotype-specific sera of I-IX serotypes to control for the

absence of nonspecific hemadsorption; ASFV of reference strains I-IX seroimmunotypes for

the presence of characteristic hemadsorption.

HADIA results were taken into account after 48–72 hours with well-expressed hemadsorp-

tion (at least 2–5 cells with specific hemadsorption in the field of view of the microscope at

x400 magnification) in the virus control groups and its absence in the controls of specific sera

and cell culture. The delay in the hemadsorption of the studied isolate by one of the nine refer-

ence sera indicated that it belonged to the serotype of the virus for which this reference serum

was obtained.

Animal experiments and ethics statement

Both female and male pigs of a Large White breed three-four-month-old weighing 35–40 kg

from the Experimental Animal Preparation Sector of the FRCVM were used. Experiments

involving animals and virus were performed in accordance with the National Institutes of

Health’s Guide for the Care and Use of Laboratory Animals and were approved by the institu-

tional animal care and use and institutional biosafety committees at FRCVM. The pigs were

kept and euthanized in accordance with the protocol Guide for the Care and Use of Laboratory

Animals, AVMA Guidelines [22], and all efforts were made to minimize suffering.

Design of experiment 1

The 24 pigs were divided into 3 groups of 8. Pigs in group 1, No. 1–8, were controls, they were

not immunized. On the day 0 pigs in group 2, No. 9–16, were immunized intramuscularly

with attenuated ASFV strain MK-200 at a dose of 106.0 HAU50. The pigs from group 3, No.

17–24, were immunized intramuscularly with ASFV strain FK-32/135 at a dose of 106.0 HAU50

(Table 1).
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During the experiment on days 0, 3, 7, 14, 21 and 24 blood samples in a volume of 5 mL

were collected from the cranial vena cava of pigs into test tubes with coagulant for receiving

sera and with anticoagulant lithium heparin for determination of viremia levels. On the 24th

day post immunization pigs No. 1–4 (group 1), 9–12 (group 2), 17–20 (group 3) were infected

intramuscularly with virulent ASFV strain M-78 at a dose of 103,0 HAU50, pigs No. 5–8 (group

1), 13–16 (group 2), 21–24 (group 3) were infected intramuscularly with virulent ASFV strain

F-32 at a dose of 103,0 HAU50. During the experiment on days 24, 27, 30, 33, 36, 39 and 42

after start of experiment the blood samples in a volume of 5 mL were taken in test tubes with

anticoagulant lithium heparin for determination of viremia levels. The samples were obtained

in accordance with the established rules [23].

ASFV-inoculated pigs were monitored for body temperature and other clinical symptoms.

Design of experiment 2

Two pigs (No. 1 and 2) were intramuscularly inoculated with ASFV strain FK-32/135 at a dose

of 106.5 HAU50. Before (on day 0) and after (on day 6) the injection of the virus to the animals,

50 mL of blood was taken from each animal via jugular vein puncture. One half of the blood

volume was used for serum preparation. The second half of the blood volume was mixed with

heparin 20 U/mL and left for 1.5 hours at 37 ˚C. Then white blood was taken out and the cells

were pelleted by centrifugation at 800 g for 20 min. The pellets were resuspended to a concen-

tration of 3.0–3.5 x 106 cells/mL in 0.1% lactalbumin hydrolysate on Earl’s saline solution with

10% autologous pig blood serum (PS) or 10% fetal bovine serum (FBS). Three types of suspen-

sions of primary cell cultures were obtained: PBLS from day 0 with PS (PBLS-0-PS), PBLS

from day 6 with autologous PS (PBLS-6-PS), and PBLS from day 6 with FBS (PBLS-6-FBS).

Sera were added to 48-well plates (1.0 cm3 to each well) and cultured at 37.0 ± 0.5 ˚C in an

atmosphere with 5% CO2 and at relative humidity of 90%. After 48 hours, 8 wells of each of

the three cell cultures were infected with ASFV strains F-32 or M-78 at a dose of 10 HAU50, 8

wells from each of the cell cultures were left uninfected as controls. After another 96 hours the

accumulation of ASFV in each well was determined in HADIA in culture of primary PBLS

cells obtained from one intact donor.

Detection of virus specific antibodies

Serum samples were tested using the INgezim PPA Compac solid-phase ELISA test kit (Inge-

nasa, Spain) in duplicate. According to the kit instructions, the status of the tested sera was

expressed using coefficient of inhibition (x %).

Table 1. Design of experiment 1.

Group No. Pig No. Immunization with attenuated ASFV

strain on day 0

Challenge with virulent ASFV

strain on day 24

MK-200 FK-32/135 M-78 F-32

1 1–4 -� - + -

5–8 - - - +

2 9–12 +�� - + -

13–16 + - - +

3 17–20 - + + -

21–24 - + - +

-�—did not receive injection, +�—received injection.

https://doi.org/10.1371/journal.pone.0270641.t001
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Results

Immunobiological properties of attenuated ASFV strains MK-200 and FK-

32/135

Virulent and attenuated ASFV strains taken after long-term storage were examined for the

serotype characteristics. The results of HADIA are presented in Table 2. They confirm that

strains M-78 and MK-200 belong to seroimmunotype III, and strains F-32 and FK-32/135

belong to seroimmunotype IV.

Further, ASFV strains M-78, MK-200, F-32, FK-32/135 were characterized in the immuno-

logical bioassay. As expected, pigs No. 1–4 infected with the virulent ASFV strain M-78 devel-

oped elevated temperature in 2–3 days post infection (days post challenge) (d.p.i.) (> 40 ˚C)

(Fig 1A), then, the clinical signs started to manifest. They included: depression, lack of

appetite, redness and cyanosis of the skin, diarrhea. The signs of the disease progressively

worsened, the maximum values of body temperature were recorded at 6th d.p.i. and measured

41.5–41.8 ˚C with viremia ranging from 107.0 to 108.0 HAU50/mL (Fig 2A). The animals died

from the acute form of ASF by 8-10th d.p.i. Pigs No. 5–8 infected with the virulent ASFV strain

F-32 became ill starting 3-4th d.p.i (Fig 1A). Clinical signs corresponded to the acute form of

ASF: depression, lack of appetite, redness and cyanosis of the skin, staggering gait. Maximum

body temperature values of 41.3–41.5 ˚C were recorded on 5-9th d.p.i. Highest viremia was

recorded on 6th d.p.i. and ranged from 106.5 to 107.7 HAU50/mL (Fig 2A). Animals died on 10-

12th d.p.i.

In eight pigs, No. 9–16, inoculated with ASFV strain MK-200, no deviations from the nor-

mal clinical condition were found during the next 24 days. In the blood of these pigs from 3rd

to 24th day, the ASFV was detected in titers from 101.3 to 103.5 HAU50/mL (data not shown).

On day 24, four pigs from group 2, No. 9–12, were infected with the virulent ASFV strain M-

78. In two of them, No. 11 and 12, a slight increase of body temperature to 40.1–40.3 ˚C was

noted at 4th d.p.i. (Fig 1B). In all four pigs the maximum values of viremia were determined

from 3rd to 9th d.p.i. (Fig 2B). From 12th to 18th d.p.i, despite viremia from 102.0 to 103.3

HAU50/mL, the clinical condition of pigs was normal, all animals survived. Four pigs from

Table 2. Seroimmunotyping of ASFV strains.

Strains and controls Seroimmunotype Serotype of reference sera Virus control

1 2 3 4 5 6 7 8 9

Lisbon-57 (L-57) I -� +�� + + + + + + + +

Congo-49 (C-49) II + - + + + + + + + +

Mozambique– 78 (M-78) III + + - + + + + + + +

France-32 (F-32) IV + + + - + + + + + +

TSP-80 V + + + + - + + + + +

TS-7 VI + + + + + - + + + +

Uganda VII + + + + + + - + + +

Rhodesia VIII + + + + + + + - + +

Davis IX + + + + + + + + - +

MK-200 III + + - + + + + + + +

FK-32/135 IV + + + - + + + + + +

Serum controls - - - - - - - - - -

Cell culture control - - - - - - - - - -

Note: -�—absence of cells with specific hemadsorption; +��—2–5 cells with a specific hemadsorption in the field of view of the microscope.

https://doi.org/10.1371/journal.pone.0270641.t002
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group 2, No. 13–16, infected on day 24 with the virulent ASFV strain F-32, fell ill after 3–5

d.p.i. Maximum body temperature values of 41.0–41.5 ˚C were recorded on 5-8th d.p.i. (Fig

1B), viremia—from 106.3 to 107.5 HAU50/mL on 6th to 9th d.p.i. (Fig 2B). The animals died

from the acute form of ASF by 10-12th d.p.i. The results demonstrated the property of the

Fig 1. Dynamics of body temperature in animals from groups 1 (A), 2 (B), 3 (C). On day 0 pigs No. 1–8 (group 1) were not inoculated (control), No.

9–16 (group 2) were inoculated with the ASFV strain MK-200, No.17-24 (group 3) were inoculated with the ASFV strain FK-32/135. On day 24 pigs No.1-4

(A), 9–12 (B), 17–20 (C) were infected with the virulent ASFV strain M-78, pigs No. 5–8 (A), 13–16 (B), 21–24 (C) were infected with the virulent ASFV

strain F-32.

https://doi.org/10.1371/journal.pone.0270641.g001

Fig 2. Dynamics of viremia in animals from groups 1 (A), 2 (B), 3 (C). On day 0 pigs No. 1–8 (group 1) were not inoculated (control), No. 9–16 (group

2) were inoculated with the ASFV strain MK-200, No. 17–24 (group 3) were inoculated with the ASFV strain FK-32/135. On day 24 pigs No. 1–4 (A), 9–12

(B), 17–20 (C) were infected with the virulent ASFV strain M-78, pigs No. 5–8 (A), 13–16 (B), 21–24 (C) were infected with the virulent ASFV strain F-32.

https://doi.org/10.1371/journal.pone.0270641.g002
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attenuated ASFV strain MK-200 to protect pigs inoculated with it from getting sick and dying

during subsequent challenge with the homologous by seroimmunotype virulent ASFV strain

M-78, and not to protect against getting sick and dying during subsequent infection with the

heterologous virulent ASFV strain F-32.

In all pigs from group 3, No. 17–24, inoculated with ASFV strain FK-32/135, no deviations

from the normal clinical condition were found during the next 24 days. In the blood of these

pigs, from 3rd to 10th day after inoculation, the ASFV was detected in titers from 100.5 to 101.5

HAU50/mL, from 14 to 24 days—there was no viremia (data not shown). On the 24th day after

start of the experiment, four pigs from group 3, No. 17–20, were infected with the virulent

ASFV strain M-78. From 3-4th d.p.i. the body temperature in these animals exceeded the

norm (> 40 ˚C), and from 4-5th d.p.i. they developed clinical signs of acute form of ASF. The

maximum values of body temperature of 41.3–41.8 ˚C were recorded on 5-6th d.p.i. (Fig 1C),

viremia, from 107.3 to 107.7 HAU50/mL, from 6th to 9th d.p.i. (Fig 2C). On 8-11th d.p.i. animals

No. 17–20 died. In pigs from group 3, No. 21–24, infected on day 24 with the virulent ASFV

strain F-32, no clinical signs of the disease were found during the next 18 days, all animals sur-

vived (Fig 1C). The maximum values of the viremia, from 101.3 to 101.7 HAU50/mL, were

recorded on 6th d.p.i. (Fig 2C), by 18th d.p.i viremia decreased to 100.5–101.0 HAU50/mL. The

results demonstrated the property of the attenuated ASFV strain FK-32/135 to protect pigs

inoculated with it from getting sick and dying during subsequent infection with the homolo-

gous virulent ASFV strain F-32, and not to protect against getting sick and dying during subse-

quent challenge with the heterologous virulent ASFV strain M-78.

Samples of blood serum from pigs with odd numbers from groups No. 2 and 3 were exam-

ined for the presence of ASFV-specific antibodies. The samples obtained on days 7–14 were

positive (Fig 3).

Modeling of immune defense mechanisms in vitro
Previously, it was found that inoculation of the ASFV stain FK-32/135 into pigs leads to

development of protective mechanisms of cellular immunity, in particular, virus-specific

Fig 3. Dynamics of virus-specific antibody response in animals from the groups 2 and 3. On day 0 pigs No. 9, 11, 13, 15 (group 2) were inoculated with

the attenuated ASFV strain MK-200, No. 17, 19, 21, 23 (group 3) were inoculated with the attenuated ASFV strain FK-32/135.

https://doi.org/10.1371/journal.pone.0270641.g003
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antibody-dependent cellular cytotoxicity (ADCC) and activity of cytotoxic T-lymphocytes

(CTL), which are detected in vitro already on day 3 and day 6, respectively [9]. A remarkable

feature of the FK-32/135 strain is the short duration of viremia [11]. This makes it possible to

investigate the possibility of quantitative registration of the effects of protective immune mech-

anisms in ASF in vitro by a simple virological method. Accumulation of homologous and het-

erologous virulent strains of ASFV was determined in PBLS culture from pigs inoculated with

FK-32/135 strain in the presence of autologous pig serum (PS) or FBS.

The results of in vitro modeling of the mechanisms of antiviral cellular immunity in ASF

are shown in Fig 4. The accumulation of homologous ASFV strain F-32 in PBLS-6-PS com-

pared to PBLS-0-PS was less by 102.09–102.15 HAU50/mL. The established differences are statis-

tically significant (p<0.01). Accumulation of ASFV of heterologous strain M-78 in PBLS-6-PS

compared to PBLS-0-PS was less by 100.79–101.02 HAU50/mL (p<0.01). The ASFV titers of F-

32 and M-78 strains in PBLS-0-PS were similar, the differences between them were not statisti-

cally significant. In those uninfected by virulent strains of PBLS-6-PS, the accumulation of

residual ASFV of strain FK-32/135 did not exceed 100.25 HAU50/mL.

The accumulation of ASFV strain F-32 in PBLS-6-FBS compared to PBLS-6-PS was greater

by 101.11–101.36 HAU50/mL (p<0.01). The corresponding differences in the accumulation of

the ASFV of the M-78 strain were 100.68–100.75 HAU50/mL (p<0.01). At the same time, the

accumulation of ASFV strain F-32 in PBLS-6-FBS compared to PBLS-0-PS was less by 100.79–

100.98 HAU50/mL (p<0.01). The corresponding differences in the accumulation of the ASFV

of the M-78 strain were 100.11–100.27 HAU50/mL (p<0.3, not statistically significant). In those

uninfected by virulent strains of PBLS-6-FBS, the accumulation of residual ASFV of strain FK-

32/135 reached 102.33–103.50 HAU50/mL.

Fig 4. Accumulation of ASF virus strains France-32 (F-32) and Mozambique-78 (M-78) in culture of primary PBLS cells prepared from pigs No.1 and

No.2 before (on day 0) and after (on day 6) inoculation of ASFV strain FK-32/135 at a dose of 106.5 HAU50. PS—autologous pig serums, FBS—fetal

bovine serum.

https://doi.org/10.1371/journal.pone.0270641.g004
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Discussion

This work confirms the importance of determining the seroimmunotype characteristics of

attenuated and virulent strains in the process of development and evaluation of the candidate

vaccines against ASF.

Currently, two technologies are used to categorize ASFV isolates: genotyping or seroimmu-

notyping. A standard methodology includes typing of the p72 capsid protein gene to provide

broad inter-genotypic phylogenetic grouping with concurrent analysis of central variable

region tandem repeats within the 9RL/B602L and p54/E183L genes or intergenic regions to

provide intra-genotypic resolution [24–26]. To date, greater than 24 ASFV genotypes have

been identified. Although useful for some purposes, ASFV genotyping does not fully correlate

with available cross-protection data and may be of limited value in predicting cross-protective

vaccine efficacy [27, 28].

Using HADIA and immunological bioassay, a number of researchers showed the antigenic

diversity of ASFV isolates [15, 29–31]. Analysis of more than 100 virulent and attenuated

strains provided the basis for ASFV seroimmunotypical classification. So far, nine seroimmu-

notype have been identified, but more likely exist [32, 33]. Recently, genetic signatures of sero-

type specificity have been identified in CD2v (EP420R, hemagglutinin) and C-type lectin-like

proteins (EP153R) [34–36]. Typing in HADIA places ASFV isolates into discrete seroimmuno-

types not necessarily resolved by conventional p72 genotyping. For example, ASFV of seroim-

munotypes I, II and IV are all genotype I (using p72 genotype classification) [10].

With the use of seroimmunotype classification, it is possible to have a different interpreta-

tion of the results of studies in which the homo- or heterologicity of isolates was based on the

genotyping of the p72 capsid protein gene or the geographical location of the virus isolation

site.

Based on the results of HADIA performed using reference strains of seroimmunotypes I-IX

and hemadsorption delaying type-specific porcine serum of serotypes I-IX, we confirmed that

the ASFV strains M-78 and MK-200 belong to seroimmunotype III, and F-32 and FK-32/135

belong to seroimmunotype IV. Well-known fact that the pigs infected with moderately viru-

lent ASFV or those attenuated by traditional methods develop long-term resistance to homolo-

gous, but rarely to heterologous, virus challenge [18, 37–40]. In general, the ASFV immune

protection granted by ASFV live attenuated vaccines is characterized by an absence of clinical

signs and by a reduction of viremia, which is either absent or delayed in onset and markedly

reduced in titer [28].

In our work, inoculation of pigs with attenuated MK-200 or FK-32/135 strains did not

cause clinical signs of ASF. However, the level and duration of viremia in the group of pigs

inoculated with strain MK-200 were greater than in the group of pigs inoculated with strain

FK-32/135. Virus-specific antibodies in pig sera were detected from day 7 after inoculation of

each of the attenuated strains. In our experiments the levels of virus-specific antibodies

induced by MK-200 or FK-32/135 strains did not have a statistically significant difference

(p<0.05). Previously, similar results were obtained with a low-virulent ASFV isolate ASFV/

NH/P68. High levels of specific antibodies against ASF were associated with chronic ASF,

while low levels were observed in asymptomatic pigs after intranasal and intramuscular immu-

nization with ASF isolate NH/P68 [41–43].

The inoculation of pigs from group 2 with attenuated ASFV strain MK-200 protected them

from the disease after infection with the homologous (by seroimmunotype) virulent ASFV

strain M-78. Infection of pigs from group 2 with the virulent ASFV strain F-32 led to an acute

form of the disease with high temperatures and death on 8-11th d.p.i. As expected, the inocula-

tion of pigs from group 3 with attenuated ASFV strain FK-32/135 protected them from the
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disease after infection with the homologous (by seroimmunotype) ASFV strain F-32. The

results of inoculation of animals in the group 3 in our experiments are similar to the known

results with OUR T88/3 and NH/P68 isolates [27, 39]. ASFV strain FK-32/135 is interesting in

its features: in vivo it induces asymptomatic form of ASF, and in vitro it induces a «loose»

hemadsorption. Infection of pigs from group 3 with the heterologous by seroimmunotype vir-

ulent ASFV strain M-78 led to an acute form of the disease with high temperatures and death

in 8–11 days.

To conclude, inoculation of pigs with attenuated ASFV strains MK-200 or FK-32/135

induces 100% protection against subsequent infection with homologous by seroimmunotype

virulent ASFV strains M-78 or F-32, respectively. And, conversely, it does not protect animals

from disease and death after infection with heterologous by seroimmunotype virulent ASFV

strains F-32 or M-78, respectively.

The boundaries of homologous cross-protection are not always clear, since different ASFVs

may cause cross-protection [27], and vice versa, the ASFVs that seem closely related may not

provide cross-protection [39, 40]. The pairs of ASFV strains M-78 and MK-200; and F-32 and

FK-32/135 are heterologous in genotypes (V and I) and in seroimmunotypes (III and IV),

respectively. Whereas virulent and attenuated strains of seroimmunotypes I and II, as well as

strains of seroimmunotype IV, belong to genotype I [28]. On this basis, we believe that the

strains described in this paper can be used in research focused on the development of the can-

didate vaccines against ASF and their subsequent evaluation in vivo.

In experiment 2, the accumulation of homologous virulent strain F-32 in PBLS-6-PS was

100 times less than in PBLS-0-PS. Apparently, in PBLS-6-PS, at least, ADCC and CTL are

functioning. The accumulation of the ASFV of the heterologous M-78 strain decreased by no

more than 10 times, which may be a consequence of the action of the ADCC mechanisms. In
vitro results confirmed that in the implementation of protection against ASF, immunological

mechanisms are more effective in relation to homologous strains.

The use of fetal bovine serum in PBLS cultures, rather than autologous pig serums, made it

possible to exclude the mechanism of ADCC. Therefore, in PBLS-6-FBS, the decrease in accu-

mulation of homologous strain FK-32/135 was less pronounced compared to PBLS-6-PS, and

no decrease in accumulation of heterologous strain M-78 was observed. The obtained results

demonstrate the applicability of a simple virological method for preliminarily in vitro evalua-

tion of ADCC and CTL mechanisms in relation to homologous and heterologous strains of

the ASFV.
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