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University of Poitiers, France

*Correspondence:
Yan Lin

linyan@hmc.edu.cn
You-Ni Zhang

zhangyouni1993@163.com

Specialty section:
This article was submitted to

Gastrointestinal Cancers:
Colorectal Cancer,

a section of the journal
Frontiers in Oncology

Received: 20 January 2022
Accepted: 07 March 2022
Published: 08 April 2022

Citation:
Lin Y, Kong D-X and Zhang Y-N (2022)

Does the Microbiota Composition
Influence the Efficacy of Colorectal

Cancer Immunotherapy?
Front. Oncol. 12:852194.

doi: 10.3389/fonc.2022.852194

REVIEW
published: 08 April 2022

doi: 10.3389/fonc.2022.852194
Does the Microbiota Composition
Influence the Efficacy of Colorectal
Cancer Immunotherapy?
Yan Lin1*, De-Xia Kong1 and You-Ni Zhang2*

1 Health Management Center, Department of General Practice, Zhejiang Provincial People’s Hospital (Affiliated People’s
Hospital, Hangzhou Medical College), Hangzhou, China, 2 Department of Laboratory Medicine, Tiantai People’s Hospital,
Taizhou, China

Colorectal cancer (CRC) is the second most common malignancy globally, and many
people with CRC suffer the fate of death. Due to the importance of CRC and its negative
impact on communities, treatment strategies to control it or increase patient survival are
being studied. Traditional therapies, including surgery and chemotherapy, have treated
CRC patients. However, with the advancement of science, we are witnessing the
emergence of novel therapeutic approaches such as immunotherapy for CRC
treatment, which have had relatively satisfactory clinical outcomes. Evidence shows that
gastrointestinal (GI) microbiota, including various bacterial species, viruses, and fungi, can
affect various biological events, regulate the immune system, and even treat diseases like
human malignancies. CRC has recently shown that the gut microorganism pattern can
alter both antitumor and pro-tumor responses, as well as cancer immunotherapy. Of
course, this is also true of traditional therapies because it has been revealed that gut
microbiota can also reduce the side effects of chemotherapy. Therefore, this review
summarized the effects of gut microbiota on CRC immunotherapy.
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1 INTRODUCTION

Colorectal cancer (CRC) is a type of human malignancies associated with the gastrointestinal tract (GI)
in which the proliferation and invasion of colon epithelial cells and GI become uncontrollable (1–3).
Due to the high metastatic properties of CRC cells and the lack of effective treatment, people with CRC
usually die (4). Based on available knowledge, depending on genetics and family history, all people are
at risk for CRC, but people over 50 are more likely to develop CRC than other age groups (5, 6).
Regarding risk factors for predisposition to CRC, studies have reported that mutations in certain genes,
heredity and family history of gastrointestinal malignancies, high-fat and fiber-free diets, obesity and
diabetes, gastrointestinal adenomatous polyps, inflammatory bowel disease (IBD), smoking,
alcoholism, and GI microbiome composition can increase the susceptibility to CRC (7–10). The
origin of CRC is usually polyps formed in the large intestine, which are small noncancerous masses, and
over time, under the influence of other predisposing factors, some of these masses can become
cancerous tissue (11, 12). For the treatment of CRC, various therapeutic approaches such as traditional
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therapies including surgery, chemotherapy, radiation therapy, and
novel and targeted therapies such as immunotherapy are used to
treat patients with CRC (13, 14).

Moreover, the GI is home to trillions of highly diverse
microorganisms, collectively termed microbiomes, that can play
an important role in regulating biological events and human
health (15). It has been shown that the microbiome can be
associated with nutrient absorption, digestion and metabolism as
well as the host immune system components and responses. Based
on recent findings, scientists have discovered that microbiome
pattern alteration can lead to diseases such as obesity, diabetes,
IBD and cancer (15, 16). It has also been documented that
changing the colon environment by manipulating the gut
microbiota can reduce the side effects of cancer therapy. For
instance, various studies have shown that some probiotic strains
can improve chemotherapy-induced mucositis, diarrhea, weight
loss. These changes can also reduce inflammation, regenerate and
improve intestinal epithelial barriers, and prevent intrinsic
apoptosis (17). The microbiota pattern can also be effective in
immunotherapy (18). In this regard, researchers have reported
that distinct species of Bacteroides might be involved in the
antitumor effects of cytotoxic T-lymphocyte associated antigen 4
(CTLA4) blockade. Furthermore, specific T cells responses against
Bacteroides fragilis or Bacteroides thetaiotaomicron were
associated with greater treatment efficacy with anti CTLA4 (19).

Therefore, considering the importance of the role of
microbiota and its possible effect on immunotherapy
outcomes, this review discussed the pathogenesis of CRC and
its immunopathogenesis and the effect of gut microbial patterns
on immunotherapy-based CRC treatment.
2 COLORECTAL CANCER

Colorectal cancer is a disease in which the growth and
proliferation of epithelial cells in the colon or rectum is out of
control (20). In some cases, the growth of abnormal masses
termed polyps in the colon or rectum can cause CRR. To prevent
CRC, screening tests can lead to early detection of polyps and
allow them to be removed before they become cancerous.
Screening tests can also detect CRC in early stages, just as
treatment approaches work best (21). Studies have shown that
there are different types of CRC, the most common of which is
adenocarcinoma. Other types of CRC include gastrointestinal
stromal tumors, colorectal lymphoma, and carcinoid tumors.

Additionally, hereditary colorectal cancers are categorized as
familial adenomatous polyps (FAP) and hereditary nonpolyposis
colon cancer (HNPCC) (22). It has been revealed that aging,
especially in the fifth decade, increases CRC risk. One of the most
important risk factors is the presence of IBDs, such as ulcerative
colitis (UC) or Crohn’s disease. It is also important to have CRC
or colorectal polyps, HNPCC, and FAP cases in the family (23).
Lifestyle-related factors include lack of regular physical activity, a
low-fruit and vegetable diet, a low-fiber and high-fat diet, a diet
high in processed meats, overweight and obesity, tobacco and
alcohol consumption, and could increase the risk of CRC (8, 23).
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In addition, in around 15% of sporadic CRCs, defective DNA
mismatch repair (MMR) could be occurred. Several retrospective
investigations have shown that MMR-deficient CRC patients
have a more promising stage-adjusted prognosis than those who
have MMR-proficient CRC (24).

Based on the findings of previous studies, colorectal polyps
and CRC are not always asymptomatic, especially at the
beginning of the disease. Many people with CRC or polyps
may not be aware of the disorder, so regular screening tests are
essential for the early detection of CRC (25). Clinical signs of
CRC usually include changes in bowel habits, blood in the stool,
diarrhea, constipation or feeling of complete bowel emptying,
chronic abdominal pain or cramping, as well as unexplained
weight loss (26). Therefore, it is recommended that adults 45 to
75 years of age be screened for CRC. Screening tests, including
periodic stool tests , CT colonography, and flexible
sigmoidoscopy, can help diagnose polyps or CRC (27).

It has been revealed that the early-onset CRCs show differential
molecular, clinical, and pathological features than later-onset CRCs
(28). Early-onset colorectal cancer (CRC) occurs in people below
50 years has been growing worldwide, particularly in high-income
countries (29). It has been reported that the exposome and early-
life environmental exposures, including western diets, red and
processed meat, obesity, antibiotics, stress, synthetic dyes,
monosodium glutamate, titanium dioxide, high-fructose corn
syrup, birth mode, breastfeeding behaviors, and maternal stress,
could affect microbiome health and development (30). Moreover,
some of the mentioned exposures may lead to genetic and
epigenetic modifications in CRC cells and affect the gut
microbiota and host immunity. Additionally, the gene-by-
environment interactions throughout life may play a pivotal role
in the early-onset CRC etiology. Moreover, hypomethylation of
long-interspersed nucleotide elements1 (LINE1) is sporadically
detected in CRC (31). A wide range of exposures such as
physical inactivity, high BMI, pesticides, ionizing radiation,
smoking, benzene have been accompanied by LINE1
hypomethylation in blood cells (32–34). Regarding the
relationship between tumor LINE1 hypomethylation and
younger age at CRC diagnosis, it is probable that gene-by-
environment interactions along with mentioned exposures,
particularly in early life, play an etiological role in early-onset
CRC (35, 36). Therefore, evaluating early-life exposures, gene-by-
environment interactions, and genetic germline polymorphisms
could improve the screening effectiveness and early diagnosis of
early-onset CRC (28).

These data collectively indicated that improving lifestyle and
diet to develop a healthy microbiota may contribute to early-
onset CRC prevention and a more favorable treatment response.
3 IMMUNE SYSTEM AND
COLORECTAL CANCER

As we know, the TME of solid tumors has complex properties and
special conditions, and due to the presence of hypoxia, high
acidity, different signals as well as the presence of immune
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system cells, different mediators, endothelial cells, fibroblasts and
other growth spectrum cells provides tumor cell development (37,
38). Immune cells in the TME can have pro and antitumor roles
based on their phenotypes (39, 40). The main components of the
innate immune system include physical epithelial barriers,
circulating plasma proteins, phagocytes, dendritic cells (DCs),
natural killer (NK) cells, and lymphatic cells. These innate
immune system components are usually present in all tissues
(41). However, understanding the function of these cells in the
TME remains unknown (42). For instance, researchers have long
believed that NK cells are an effective antitumor agent in CRC, but
novel investigations have shown that despite the secretion of
chemokines and adhesive molecules associated with the
recruitment and homing of NK cells in tumor tissue, there is a
surprising absence of these cells are in the TME (43–46).
Correspondingly, due to the predominance of myeloid cells over
lymphocytes and even tumor cells, different myeloid cell origins
and unknown differentiation programs for myeloid subtypes add
to the complexity of understanding the components of innate
immune function in the site of tumor (47–49).

Chronic inflammation subsequent from tumor function or
the immune system to control the tumor is one of the hallmarks
of human malignancies such as CRC, which promotes and
maintains cellular transformation and tumor development in
CRC (50). The source of this chronic inflammation can be
persistent infections, autoimmunity, and sterile inflammation,
in all of which the innate immune system cells are the main
performers (51). Although the extent of these cells’ involvement
in the initial inflammatory response is not fully understood, the
TME’s signals intelligently manage these innate immune cells
and their mediators in favor of the cancer development.
Inflammatory signals include heat shock proteins (HSPs) and
toll like receptors (TLRs), apoptotic cells, damage-associated
molecular patterns (DAMPs), cytokines, or free DNA
molecules that are responsible for dysregulation of immune
system responses (52–55). Following these signals, the
secretion of chemokines leads to the recruitment of more
immune cells to the TME, which can act as a suppressor or
activator of antitumor responses and ultimately lead to tumor
development or inhibition (38).

As mentioned, the distribution and abundance of immune
cell subpopulations in the TME of solid tumors are very diverse.
In this regard, it has been found that there is a close relationship
between the number of immune cells and the clinical course of
CRC (56–58). For example, the high frequency of effector T cells
with antitumor properties is associated with a good prognosis,
and conversely, the high frequency of infiltrated myeloid cells in
TME is associated with a poor prognosis leading to
tumorigenesis (59–61). Evidence suggests that the adaptive
immune system components, including T cells and B cells,
play an important role in CRC and can learn to detect tumor
cells and contribute significantly to the course of the disease (38).
The presence of effector T cells in the TME is typically
considered a sign of inflammation, while regulatory T cells
(Tregs) are considered a sign of immunosuppression (62–64).
However, in CRC, the high frequency of Tregs is associated with
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a better prognosis, which contradicts the negative association of
FOXP3+ tumor-infiltrated Tregs in other cancers (61). In CRC
metastatic liver lesions, the composition of the TME is mainly
determined by the chemokine and cytokine pattern, and
regularly a small number of FOXP3+ Treg and NK cell cells
are recruited to the tumor site (65). It has been reported that a
small number of CRC patients with unstable microsatellites
(MSIs) tumors that contain impaired DNA repair-related
proteins, immunity-related mutations are increased, resulting
in a remarkable upsurge in the presence of adaptive antitumor
immune cells such as lymphocytes, leading to promising
prognosis. While the number of infi ltrated cells in
microsatellite stable CRC tumor tissue (MSS) is less than half,
these patients respond to immunotherapy much better than the
MSI subgroup (66, 67).

Since the different phenotypes of different B cells, the role of
these cells in the CRC TME is highly controversial (68–70). The
formation of tertiary lymphoid structures seems to occur with
the juxtaposition of B cells and T cells in CRC, indicating an
increase in effector immune cells’ penetration and, ultimately, a
more favorable prognosis. However, some studies show that
mutations in the B-Raf proto-oncogene, serine/threonine
kinase (BRAF) gene are associated with the formation of
tertiary lymphoid structures (71–74).

The tumor escape mechanisms from the immune system are
very diverse and intelligent. Tumors can induce the production
of cytokines that enhance Tregs and MDSCs and inhibit the
function of CD8+ cytotoxic T cells. These occurrences can lead to
the suppression of CD4+ and CD8+ effector T cells that can no
longer detect or respond to tumor antigens. Tumor cells can also
reduce the expression of MHC-I so that T cells can no longer
recognize these cells. In addition, tumors can induce the
expression of immunosuppressive molecules such as CD274
(PDL1), CTLA4 (CD152), lymphocyte activating 3 (LAG3),
and T-cell immunoglobulin domain and mucin domain 3
(TIM3), which lead to exhaustion of effector T cells as well as
inhibition of malignant cell apoptosis (75–77). Targeting these
same immune checkpoint molecules forms the basis of
immunotherapy using the blockers of these inhibitors.

Evidence designates that lifestyle, diet, nutrition, the
microbiome, the environment, and other exogenous factors
could be responsible for the formation of pathologic states and
affect the genome, epigenome, transcriptome, proteome, and
metabolome of cancerous and noncancerous cells, as well as
immune cells. Nowadays, the importance of studying big data is
felt more and more, and this requires the transformation of
pathology to epidemiology, biostatistics and bioinformatics data
science fields. The Molecular Pathological Epidemiology (MPE)
research framework is able to reveal the advantages and strengths
of interdisciplinary integration that has been used to study
several human malignancies such as CRC, lung, breast, and
prostate cancers. The MPE research model offers new insights
into the interactions between the environment, the tumor, and
the host and could open new research frontiers (78).

In this context, the combination of tumor immunology
assessments with the MPE approach can evaluate the impact of
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endogenous and exogenous factors on tumorigenic processes
leading to CRC by assessing antitumor immune responses (79,
80). This integrative immuno-MPE field is able to fill a research
gap between epidemiology and tumor immunology, and it
signifies a future direction for cancer investigations (79, 81,
82). The immune status analyses in the TME are gradually
being unified into large-scale epidemiological cohorts (83–88).
4 IMMUNOTHERAPY FOR COLORECTAL
CANCER TREATMENT

Based on studies on the use of immunotherapy-based methods in
the treatment of patients with CRC, the success of these methods
compared to traditional therapies can be recognized to some
extent, although sometimes for different reasons and specific
conditions of tumor cells and TME along with the unpredictable
behavior of the immune system, immunotherapy also faces
major challenges (76). Immunotherapy in MSI-H or dMMR
patients has been performed and approved, and currently,
immune-checkpoint blockers such as programmed cell death 1
(PDCD1) inhibitors are being studied more than other
approaches. About 80% of cases of MSS or MMR-p can be
detected in the pathology of advanced stages of metastatic CRC,
and it is possible that combination therapies using immune-
checkpoint blockers and other tumor-inhibiting factors such as
radiotherapy, chemotherapy, and cancer vaccines together can
lead to strong antitumor responses from the patient’s immune
system (76, 89, 90). However, combining these methods has not
led to satisfactory clinical outcomes in several studies (91).

Therefore, studies are not limited to the use of immune-
checkpoint blockers and other treatments such as chimeric
antigen receptor (CAR) T-cell therapy and cancer vaccines, as
well as interventions in the microbiome pattern of patients with
CRC evaluated.

CAR-T cells, especially the third generation and later, have
successfully treated human blood malignancies such as acute B-
cell lymphoblastic leukemia by targeting specific antigens (92,
93). However, in solid tumors, due to various problems such as
lack of penetration and ineffective trafficking, the tumor
inhibitory TME has not yet achieved satisfactory consequences
(94). In metastatic CRC mouse models, targeting the guanylate
cyclase 2C (GUCY2C) antigen, expressed by tumor cells, could
eliminate these cells and inhibit metastasis (95). Clinical trial
studies are also underway on CAR-T cells in treating patients
with CRC. In this context, targeting the epidermal growth factor
receptor (EGFR) antigen and the design of CAR-T cells against
this receptor are underway (NCT03152435). Despite the
challenges, with the advancement of science and the
identification of a wider range of tumor-specific antigens, a
moral prospect for this treatment for CRC can be envisioned.

Vaccine therapy is another type of immunotherapy that can
also treat cancer. Based on current theories and backgrounds of
vaccines and their effect on the innate and adaptive immune
system, cancer vaccines may lead to more effective antitumor
responses by inducing tumor-related antigens to be targeted by the
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immune system (76, 96, 97). Various studies have been performed
on anti-metastatic CRC vaccines, including peptide vaccines, DC
vaccines, and autologous vaccines (98–100). However, the
available evidence suggests that cancer vaccines are generally not
as effective as other immunotherapy-based methods and
traditional therapies such as chemotherapy and surgery in
increasing patients’ survival for a variety of reasons, including
the genome-wide tumor mutations and the development of
neoantigens, as well as high tumor heterogeneity (101, 102).
5 ROLE OF GUT MICROBIOME IN
COLORECTAL CANCER

As mentioned earlier, genetic and environmental factors play an
important role in increasing the incidence of CRC (103). In
developing countries, changing lifestyles and unhealthy
nutritional habits such as low-fiber or high-fat diets,
consuming processed meats and red meat, along with physical
inactivity, alcohol and smoking, can alter the gut microbiota
pattern and influence several physiological processes, immune
system responses, and even cancer treatment (104–107).
Contrary to popular belief, the gut microbiome is not limited
to bacteria, but fungal species and viruses are also components of
the gut microbiome. For example, the DNA load of the virus in
tumors is much higher than in noncancerous tissue. Studies of
viral infections such as human poliovirus, human herpes, and
human papillomavirus have also shown that these viruses can be
involved in the pathogenesis and risk of CRC (108,
109) (Figure 1).

5.1 Effect of Diet on Gut Microbiome
Evidence suggests that diet can reduce or increase the risk of
various diseases, including CRC (110). A prudent diet may protect
against stroke, cardiovascular diseases (CVDs), and other frequent
disorders such as gastrointestinal cancers (111). This diet contains
vegetables, fruits, fish, legumes, whole grains, nuts, and low-fat
dairy foods rather than processed or refined foods, butter, egg, red
meats, and high-sweet products. In this regard, it has been
reported that foods containing fiber, such as whole grains, are
among the most effective factors associated with reducing CRC
risk (112–114). However, the epidemiological data have significant
heterogeneities due to the prudent dietary patterns and the main
components of the prudent diet associated with CRC (113).

On the other hand, according to previous studies, Western
diets containing high-fat, high salt, and processed meats have
been linked to CRC (114, 115). However, the mechanisms of this
correlation are not yet fully understood (110). A theory is that
the gut microbiota may play a mediating role because changing
dietary habits from a prudent diet to a high-fat, high-salt, low-
fiber diet significantly enhances the bacterial and metagenomic
profiles of the gut microbiota, such as an increase in the stool
Fusobacterium nucleatum (F nucleatum) levels, resulting in
elevation of inflammation-related metabolites serum levels
(110, 116, 117). Prospective cohort studies reported that
subjects with a long-term prudent diet (high fiber) were
April 2022 | Volume 12 | Article 852194
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accompanied by a lower risk of F nucleatum+ CRC but not F
nucleatum- CRCs. These findings could also indicate the possible
effects of prudent fiber-rich diets by modulating levels of specific
bacterial species such as F nucleatum in preventing CRC (118).

5.2 Effect of Lifestyle and Other
Environmental Factors on Gut Microbiome
The intestinal microbiota has been shown to be associated with
obesity, diabetes, IBD, cancer, rheumatoid arthritis (RA), and
CVDs (119, 120). On the other hand, other factors such as age,
host sex, genetics, diet, drugs, smoking, alcohol consumption,
and living environment influence the microbiota pattern (121).

5.2.1 Smoking
Evidence has shown that smoking is associated with alterations
in gut microbiota pattern, IBD, and especially Clostridium
difficile infection (122, 123). Before and after 4 to 10 weeks of
smoking cessation, smokers’ intestinal microbiota can undergo
significant changes (124). On the other hand, animal studies also
confirm a relationship between the immune system and chronic
cigarette exposure because smoking can lead to changes in the
mucosal immune system in the intestine (121, 125). Analysis of
the gut bacterial pattern of current smokers showed a decrease in
Firmicutes and Proteobacteria and an increase in phylum
Bacteroidetes levels compared with never smokers. While there
were no differences between bacterial gut patterns of former and
never smokers (126). These findings clearly show the effect of
smoking on changing the pattern of gut microbiota.

5.2.2 Alcohol Abuse
The intestinal flora plays an important role in the pathogenesis of
alcoholic liver damage (127, 128). On the other hand, alcohol
Frontiers in Oncology | www.frontiersin.org 5
abuse is the most common cause of liver disease in Western
countries, changing the amount and composition of gut
microbiota. Although the precise mechanism(s) of these
changes following alcohol abuse is not well elucidated, it
appears that following mucosal damage and increasing gut
permeability, bacterial products translocation into the portal
blood could be responsible for alcohol-induced liver damage
by inducing the release of inflammatory mediators, including
interleukin 1 beta (IL1B), tumor necrosis factor (TNF),
chemokines, leukotrienes, and reactive oxygen species (ROS),
increasing inflammatory responses and fibrosis in the liver, and
other body organs (129, 130). Studies in this area have reported
that gut microbiota manipulation is a potential therapeutic
approach to reduce liver damage caused by alcohol abuse
(127). However, more studies are required to confirm the
therapeutic effects of gut microbiota modulation in liver
damage and other disorders.

5.2.3 Exercise
Studies in athletes have shown that exercise can enrich the
diversity of intestinal microflora, especially Faecalibacterium
prausnitzii, preserving a healthier intestinal environment (131).
Although diet and exercise are effective in this regard, exercise
alone can also lead to increased intestinal microbial diversity.
Interestingly, the frequency of butyrate-producing species, such
as Erysipelotrichaceae, Roseburia, Lachnospiraceae, and
Clostridiales, increased in the gut microbiome following
exercise (132). It has also been shown that exercise, as
therapeutic support, can be helpful for dysbiosis-associated
diseases treatment. Furthermore, evidence revealed that
athletes’ metabolic biomarkers are improved and demonstrate
low chronic inflammatory markers, decreasing morbidity. These
FIGURE 1 | CRC formation process following gut microbiome change and dysbiosis. Normally, the gut microbiome, made up of bacteria, viruses, and fungi,
contributes to intestinal homeostasis and immune regulation by producing beneficial metabolites such as butyrate and SCFA, but following a change in lifestyle and
poor eating habits, consuming high-fat and low-fiber foods, red meat and processed foods alter the intestinal microbiome pattern and replace harmful and
tumorigenic species. Dysbiosis can lead to chronic inflammation, polyps, and eventually CRC. However, other risk factors can also play a role in increasing the risk of
developing CRC.
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findings indicated that an age-appropriate diet along with
exercise could be beneficial for decreasing inflammation and
age-associated disorders (133–135). Interestingly, the levels of
Akkermansia muciniphila in the microflora of athletes as well as
people with low BMI are higher than people with high BMI
(131). Akkermansia muciniphila is involved in the destruction of
mucosal mucin, possibly improving the function of the intestinal
physical barrier. Furthermore, the increase of this bacterial
species in the gut microbiome is inversely associated with
metabolic disorders, high BMI, and obesity (136, 137).

5.2.4 Obesity and Diabetes
As discussed above, obesity can also be associated with changes
in the diversity and composition of the intestinal microbiota. To
prove this, a study of two phyla of the gut microbiota in
genetically obese mice (ob/ob mice) showed that Firmicutes
levels increased while Bacteroidetes levels decreased (138, 139).
Another animal study reported that a high-fat diet was also
associated with alterations in intestinal microbiota in mice,
which were associated with decreasing the levels of
Eubacterium rectale and Blautia coccoides, Bifidobacteria and
Bacteroides-like mouse intestinal bacteria (140, 141).

Moreover, studies showed that the pattern of gut microbiota
and dietary-derived microbial metabolites could be associated
with type 2 diabetes (T2D) through impact on insulin secretion
and sensitivity (142). Among these microbial metabolites,
butyrate is produced by the fermentation of dietary fibers.
Independent cohort studies on populations with different
ethnicities reported that reduced butyrate production by special
bacteria spices in gut microbiota had been dependably detected in
prediabetes and T2D (143–146). Additionally, current
investigations have revealed that following a meal, glucose
response is affected by a combination of host physiology and
gut microbiota pattern (147, 148). Consequently, gut microbiota
analysis and characterization can pave the way for a deeper
understanding of the unknown dimensions of diabetes
pathogenesis and the emergence of therapeutic approaches by
altering the microbiome or eating habits.

5.3 Role of Genetics in the Human Gut
Microbiota Shaping
To the best of our knowledge, the composition of the human gut
microbiome is shaped by several factors, but the relative
contribution of the host genetics has not yet been fully
elucidated (149, 150). Although some studies reported that the
richness of health-related gut bacteria could be influenced by host
genetics, analysis of genotype and microbiome data obtained from
healthy individuals with several distinct ancestral origins and
relatively common environments has shown no significant
association between genetic ancestry and gut microbiome
pattern. Based on these findings, host genetics have very little
effect in determining the composition of the gut microbiome
(151). However, in genetically unrelated subjects who share a
household, there are considerable similarities in the composition
of the microbiomes. Studies have also shown that more than 20%
of the inter-person microbiome diversity is associated with
anthropometric indices, diet-related factors, and medications.
Frontiers in Oncology | www.frontiersin.org 6
On the other hand, a comparison of models that use only host
environmental and genetic data with data from microbiome
analysis has shown that microbiome data increase the
predictive accuracy of many human traits, such as criteria
related to diabetes and obesity. These clues also suggest that
microbiome manipulation to improve clinical consequences may
be feasible and effective in various genetic contexts (151).
However, the composition of microbiome is principally formed
by environmental and non-genetic factors.

5.4 Gut Microbiome Products and
Colorectal Cancer
Based on the findings of emerging studies using animal models,
bacterial metabolites produced by intestinal microbiota can induce
tumor progression in CRC by inducing and stimulating the release
of genotoxic virulence factors (152–155). Low bacterial diversity
and the presence of specific bacterial species in the fecal and
intestinal mucus samples obtained from CRC patients have been
observed that these bacterial groups can strongly affect mucosal
immune responses compared to healthy individuals (156, 157).
CRC patients in the early stages of the disease or advanced
adenoma have been shown to have different microbiota patterns
compared to patients with advanced-stage tumors, suggesting that
intestinal microbiota may be involved in tumor progression (158,
159). Significant growth of bacterial species including F.
nucleatum, Porphyromonas, Bacteroides fragilis, Escherichia coli,
Peptostreptococus, Campylobacter, Streptococcus gallolyticus,
Shigella, and Enterococus faecalis, along with a significant
reduction in Rosariabacterium, Clostridia, Clostridium, and
Clifridia, Roseburia can reduce butyrate-producing bacteria along
with enriching pro-inflammatory opportunistic pathogens that
lead to dysbiosis, increase the expression of pro-inflammatory
cytokines and increase the risk of tumor cell formation (104, 159–
162) (Figure 1). According to studies, the abundance of F.
nucleatum in the intestine is associated with the development of
dMMR CRC through an increase in M2 macrophages and a
decrease in FOXP3+ T cells in the TME (163). F. nucleatum is
probably involved in tumorigenesis due to the presence of bacterial
proteins FadA and Fap2 because bacterial FadA causes tumor
formation by activating the WNT/catenin beta 1 signaling
pathway, and Fap2 can inhibit NK cells and T cell signaling
through binding to the immunoreceptor tyrosine-based
inhibition motifs (ITIMs) (163–165).

One of the most important products produced by the gut
microbiome is butyrate, which can induce antitumor immune
responses and participate in microbiome homeostasis (166).
According to the Warburg effect, butyrate decreases the
expression of cell cycle-regulating genes and increases the
expression of apoptotic genes such as the Fas, which eventually
leads to apoptosis (167). Studies in dMMR/MSH mice have
shown that butyrate has an inhibitory effect on tumor cell
growth. In CT30 cells of mouse colon cancer or SW480 cells of
human colon cancer, butyrate also keeps microbial homeostasis
by increasing TLR4 expression as well as phosphorylation of the
nuclear factor kappa B (NFKB) and mitogen-activated protein
kinase (MAPK) (168) (Figure 1). Studies on genetically
predisposed CRC animal models have shown that microbiota
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can induce protumorigenic responses by initiating inflammatory
signaling pathways (169). Disruption of the balance of anti-
inflammatory and inflammatory responses also leads to
increased intestinal inflammation, colitis, and eventually
adenocarcinoma (170). For example, in IL10 deficient mice,
Th1-specific responses to microbiota increased, contributing to
intestinal inflammation and tumor formation (170). Another
reason for the involvement of microbiota in the growth of tumor
cells in CRC is that in germ-free mice, fecal microbiota
transplantation from CRC patients leads to the growth of
intestinal epithelial cells in the recipient animals (50, 171, 172).

It has been reported that hemostatic disorders occur following
the activation of intracellular signaling pathways induced by
unfolded proteins that cannot reduce endoplasmic reticulum
(ER) stress. Active transcription factor 6 (ATF6) leads to
increased ER capacity and degradation of imperfect proteins.
Activated ATF6 can also trigger destructive immune responses to
gut dysbiosis and increase CRC susceptibility (173, 174).

On the other hand, studies have reported that lysogenic
bacteriophages belonging to Myoviridae and Siphoviridae
species can change the bacterial patterns through bacterial
lysis, which leads to the production of biofilms by tumor-
associated opportunistic species that are anchored to the
intestinal epithelium. Following these events, oncogenic
bacteria penetrate the intestinal lumen and stimulate cellular
transformation and tumor development by inducing
inflammatory responses (103, 175).

In CRC, examination of the fungal microbiota metagenome
has also shown that in colorectal adenoma biopsies, the fungal
genera Phoma and Candida are more loaded, and these host
intestinal fungi pattern alterations may be associated with an
increased risk of CRC (176). Moreover, fungal dysbiosis in colon
polyps and CRC is associated with an increase in opportunistic
fungi Trichosporon, Malassezia, and Ascomycota/Basidiomycota
ratio, which may lead to less diversification and dramatic change
in microbiota and ultimately induce tumor cell progression in
early phases of CRC (176, 177).

Contrary to the mentioned species, some fungi have anti-
inflammatory properties and regulate the immune system. In this
regard, it has been revealed that Saccharomyces cerevisiae could
suppress the growth of tumor cells of CRC (HT-29) via inducing
apoptosis and inhibiting metastasis. Therefore, using
Saccharomyces cerevisiae might be a potential biological
therapeutic strategy in treating CRC (178).

Collectively, all of these studies suggest that in addition to an
imbalance in the pattern of intestinal bacteria, changes in gut
virome and mycobiome homeostasis can also lead to CRC
(Figure 1 and Table 1).
6 EFFECTS OF GUT MICROBIOTA IN
COLORECTAL CANCER
IMMUNOTHERAPY

Recent investigations have reported that microecology plays a
critical role in the effectiveness of CRC treatment by antitumor
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agents such as chemotherapy as well as immunosuppressive
agents (180, 181) (Table 1). The gut microbiota has the ability
to regulate the antitumor effect of chemotherapy drugs
commonly used in chemotherapy to eliminate CRC cancer
cells. It has been shown that 5-fluorouracil (5-FU), a
chemotherapeutic drug routinely used to treat CRC and other
human malignancies, can increase the effectiveness of tumor cell
killing under the effects of metabolites produced by gut microbial
(182). Correspondingly, eating foods rich in probiotics or
supplements containing probiotics, prebiotics, and symbiotics
can reduce the risk of CRC (183, 184).

Nowadays, cancer immunotherapy includes approaches such
as immuno-binding site-blocking therapy, adoptive
immunotherapy, indoleamine 2, 3-dioxygenase 1 (IDO1)
inhibitors, cancer vaccines, and nonspecific immunomodulators
(180, 185, 186). The combination of cancer immunotherapy and
microorganisms was first proposed in the early 19th century, and
experimental outcomes showed that the combination of heat-
killed Serratia and Streptococcus pyogenes could effectively increase
the survival of sarcoma patients. This increase in survival was
probably due to the development of a sustained antitumor
immune response (180, 187, 188).

Immune checkpoint inhibitors with PDCD1/CD274 axis
inhibitory capability can induce stable clinical outcomes in
several patients with malignancy. It has been shown that
primary resistance to immunosuppressive inhibitors can be
attributed to the abnormal pattern of the gut microbiome
because antibiotics can reduce or even inhibit the clinical
benefits of immune checkpoint inhibitors in patients with
advanced cancer (189). Evidence suggests that immunotherapy
is effective in only one subset of people with CRC. In this context,
anti-PDCD1 is approved only for use in dMMR/MSH metastatic
CRC, which may be due to the expression of higher amounts of
neoantigens by this type of CRC. How to respond to the anti-
PDCD1 therapy and understand the mechanisms leading to
improved immunotherapy performance in dMMR/MSH CRC
have not been fully elucidated (190–192).

Moreover, it has been shown that transplantation of fecal
microbiota (FMT) from responder cancer patients to immune
checkpoint inhibitors to sterile or antibiotic-treated mice
potentiates the antitumor effects of PDCD. In contrast, FMT
from non-responder patients has no effect on treatment with
PDCD1 blockers. Metagenomics studies of at diagnosis patient
fecal specimens have disclosed an association between clinical
responses to immune checkpoint inhibitors and the relative
abundance of Akkermansia muciniphila. On the other hand,
oral supplementation of non-responder patients with A.
muciniphila upon FMT restored the anti-PDCD1 efficacy via
IL12 by increasing the recruitment and infiltration of CXCR3+,
CCR9+, CD4+ T cells into the mouse tumor site (193). According
to recent studies, the composition of the intestinal flora can
predict the effectiveness of allogeneic stem cell transplantation,
and this feature confirms that the gut microbiome is effectively
involved in the formation of systemic immune responses (194).

As discussed before, gut microbiota can modulate immune
responses in the TME. In this context, an investigation on a
patient with cutaneous melanoma reported an association
April 2022 | Volume 12 | Article 852194

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Lin et al. Effects of Microbiome on CRC Immunotherapy
between infiltrating CD8+ T cells, intratumor bacteria
(Lachnoclostridium, Gelidibacter, Flammeovirga, Acinetobacter),
and patients’ survival. The outcomes revealed that intratumor
Lachnoclostridium could modulate CCL5, CXCL9, and CXCL10
Frontiers in Oncology | www.frontiersin.org 8
levels, affecting the infiltration of CD8+ T cells (195). A phase 1
clinical trial was recently performed to evaluate the feasibility
and safety of FMT and reinduction of anti-PDCD1
immunotherapy in patients with anti-PDCD1 refractory
TABLE 1 | Effects of different microorganisms on the immune system, the gut microbiome, and immunotherapy.

Microorganism Effect on the immune system and the
gut microbiome

Role in
CRC

Effect on immunotherapy of CRC or
other malignancies

Ref

F. nucleatum • Increase in M2 macrophages and a decrease in
FOXP3+ T cells in the TME

• FadA causes tumor formation by activating the
WNT/catenin beta 1 signaling pathway

• Fap2 can inhibit NK cells and T cell signaling
through binding to the ITIMs

Pro-
tumor (101–

103)

Myoviridae and Siphoviridae • Bacterial lysis
• Production of biofilms by tumor-associated

opportunistic species
• Penetrate the intestinal lumen
• Stimulate cellular transformation
• Inducing inflammatory responses
• Tumor development

Pro-
tumor

(83,
113)

Phoma and Candida • Increase in opportunistic fungi (Trichosporon and
Malassezia)

• Increase Ascomycota/Basidiomycota ratio
• Decrease of microbiota diversification

Pro-
tumor

(114)

Saccharomyces cerevisiae • Anti-inflammatory effects Anti-
tumor

(115)

Serratia & Streptococcus
pyogenes

• Anti-inflammatory effects Anti-
tumor

(116,
122,
123)

Akkermansia muciniphila • Increase the production of IL12
• Recruitment and infiltration of CXCR3+, CCR9+,

CD4+ T cells into the mouse tumor site

Anti-
tumor

• Restoration of the anti- PDCD1 efficacy (128)

Bifidobacteria • Increase DCs function
• Enhancing antitumor CD8+ T cell priming

and infiltration in the TME

Antitumor • Combination therapy with CD274 inhibitors and
Bifidobacteria can nearly completely inhibit the
growth and development of melanoma cells

(131)

Bacteroides or B. fragilis • Improve antitumor immune responses and
antitumor CD8+ T cells

Antitumor • Improvement of anti-CTLA4 therapy (19)

Bacteroides dorei and
Bacteroides vulgatus

• Nonspecific immune activation Pro-
tumor

• Induction of irAEs following immune checkpoint
inhibitor therapy in melanoma patients

(133)

Salmonella typhimurium • Inhibition of IDO1
• Suppression of immunosuppressive responses

Antitumor • shIDO-ST can remarkably reduce the expression
and function of IDO

• Inhibit tumor growth and development in CRC

(137)

Lactobacillus acidophilus • Improve antitumor immune responses
and antitumor CD8+ T cells

• Improving the gut microbiome homeostasis

Antitumor • Improvement of anti-CTLA4 therapy (138)

Ruminococcus spp. Alistipes
shahiiplayed, Eubacterium
limosum, Ruthenibacterium
lactatiformans, F. ulcerans, B.
uniformis, Bacteroides dorei,
Parabacteroides johnsonii,
Phascolarctobacterium
succinatutens, Paraprevotella
xylaniphila, Alistipes
senegalensis, and P. gordonii

• Improve antitumor immune responses and
antitumor CD8+ T cells

Antitumor • Modulating the TME
• Improvement of immune checkpoint inhibitors

effectiveness

(139)
(124,
140)

Colibactin-producing E. coli
(CoPEC)

• Decrease in tumor-infiltrating CD3+ T-cells in
patients colonized by CoPEC

• Decrease in CD3+ CD8 T-cells in mice with chronic
CoPEC infection

• Increase colonic inflammation
• Decrease in antitumor T-cells in the mesenteric

lymph nodes of CoPEC-infected mice
• Decrease the anti-PDCD1 immunotherapy efficacy

in MC38 tumor model

Pro-
tumor

(179)
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metastatic melanoma. The findings showed clinical responses in
some patients.

Interestingly, patients under FMT treatment experienced
promising alterations in expressing several genes involved in
antitumor responses and infiltration of effector immune cells in
the TME and gut lamina propria (196). Similarly, another clinical
trial in this field reported that FMT in combination with anti-
PDCD1 in patients with PDCD1 refractory melanoma was well
tolerated and accompanied by clinical benefits in about half of
these patients. The outcomes demonstrated that responder
patients exhibited elevated taxa associated with response to
anti-PDCD1 immunotherapy, activation of more effector CD8+

T cell, and reduced the number of myeloid cells responsible for
release IL8 (197).

In general, the findings of these studies suggest that
microbiota may play a key role in regulating the host’s
immune system, which is directly related to the success or
failure of cancer immunotherapy. As discussed, one of the
most important immunotherapy-based approaches in CRC is
checkpoint blockers using anti-inhibitory molecules mAbs
against CTLA4, PDCD1, and CD274 (198). In this regard,
researchers studied mice and showed that Bifidobacteria have
antitumor properties.

Interestingly, administration of oral Bifidobacteria alone can
have the same effect as CD274 inhibitors. In addition,
combination therapy with CD274 inhibitors and Bifidobacteria
can nearly completely inhibit the growth and development of
cancer cells (199). This treatment can augment DC function,
enhancing antitumor T CD8+cell priming and infiltration in the
TME. As a result, Bifidobacterium enhances antitumor immune
responses and improves the effectiveness of anti-CD274
immunotherapy through increased trafficking, penetration, and
infiltration of effector T CD8+ cells into tumor tissue which is
considered as one of the most important challenges in
cancer immunotherapy.

Bacteroides are considered another bacterial species effective in
immunotherapy (200). The antitumor property of CTLA4
inhibitors has been documented to be dependent on the
presence of Bacteroides or B. fragilis, and this association may
be reciprocal because the administration of CTLA4 inhibitors
contributes to the growth of B. fragilis. To prove this, it has been
shown that sterile mice or mice treated with antibiotics that
lacked the itemized bacterial species did not respond to treatment
with anti-CTLA4 but responded to this type of treatment by
feeding the animals with B. fragilis (19). Of course, most of the
findings in this field are in malignancies such as melanoma, and
perhaps due to the lower response of CRC to checkpoint blockers,
the pattern of gut microbiota cannot significantly affect this type
of immunotherapy and support it.

In contrast, a recent study on melanoma immunotherapy
using immune checkpoint blockers has disclosed that not all
patients respond to this treatment, and numerous patients with
melanoma who have been treated have potentially life-
threatening side effects (irAEs) and some gut microbiota
bacterial species such as Bacteroides dorei and Bacteroides
vulgatus may be involved in causing these complications (201).
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Recently, an investigation proved that some human
malignancies, such as CRC with impaired MMR, but not
patients with complete chromosomal mismatch repair, respond
to anti-PDCD1 therapy better, probably through the metabolic
pathway of glycerol phospholipids (202). These differences in
response to anti-PDCD1 therapy could lead to the emergence of
therapeutic approaches using gut microbiota, thereby increasing
the effectiveness of cancer immunotherapy in CRC patients with
MMR by regulating the composition of the intestinal flora
(202, 203).

As an anti-inflammatory mediator, IDO1 is also essential for
the resistance of host-microbiome homeostasis and is produced
by tumor cells and following the activation of TLR4 and TLR9 in
DCs that induces immune responses against tumors (204). In the
microbiome, IDO1, along with butyrate and short-chain fatty
acids (SCFAs), interferes with tryptophan metabolism (189).
IDO1 inhibitors may be useful in treating CRC, especially in
dMMR/MSH (190, 204). In vitro and in vivo studies on CRC
models of CT26 and MC38 mice have shown the use of
attenuated Salmonella typhimurium carrying a small hairpin
RNA plasmid targeting IDO (shIDO-ST) can remarkably
reduce the expression and function of IDO proteins and
thereby inhibit tumor growth and development. Moreover,
epacadostat was used as a known inhibitor of IDO1, which
could also reduce tumor growth by inhibiting IDO1 (205).

In mice models of colon cancer, the use of Lactobacillus
acidophilus lysate in combination with anti-CTLA4 enhanced
antitumor immune responses via activation of the TME-
infiltrated effector T cells as well as improving homeostasis in
the investigated animals (206). These findings suggest that some
bacterial species may be very effective in combination therapies
with other antitumor agents.

Additionally, it has been disclosed that in mice models of
CRC under treatment with immune checkpoint inhibitors,
specific bacterial species are associated with promising
antitumor responses. In this regard, MC38 cell line treated
with anti-PDCD1 or anti-CTLA4 and anti-IL10 plus CpG
oligonucleotides demonstrated Ruminococcus spp. and Alistipes
shahiiplayed could induce antitumor responses by modulating
the TME (207). Furthermore, other spices including,
Eubacterium limosum, Ruthenibacterium lactatiformans, F.
ulcerans, B. uniformis, Bacteroides dorei, Parabacteroides
johnsonii, Phascolarctobacterium succinatutens, Paraprevotella
xylaniphila, Alistipes senegalensis, and P. gordonii might be
beneficial in the improvement of immune checkpoint
inhibitors’ effectiveness (189, 208).

A study on the effect of antibiotic therapy on adoptive cell
therapy showed that antibiotics inhibited the innate immune
system responses in irradiated mice and reduced the effectiveness
of adoptive cell therapy. In CRC mouse models, the use of broad-
spectrum antibiotics reduced the effectiveness of CD4+ T cell
transplantation against implanted colorectal tumor cells (209).
Only one animal study on the effect of antibiotics on CAR-T cell
therapy reported that broad-spectrum antibiotics had not reduced
the survival of BA20-lymphoma mice treated with CD19 CAR-T
cells (209). However, the change and decrease in gut microbiome
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pointedly improved the duration of B cells aplasia as well as the
persistence of CAR-T cells in these mice (210).
7 CONCLUDING REMARKS

According to studies on the role of gut microbiota in
tumorigenesis and also the antitumor activity of some bacterial
species, it can be concluded that the gut microbiome can be of
great importance in CRC immunopathogenesis by regulating
immune responses. On the other hand, CRC immunotherapy
has been developed in various ways, and in the case of CRC
immune-checkpoint blockers, they have been studied more than
other immunotherapy approaches and have had relatively
promising effectiveness. However, this type of immunotherapy
also faces many challenges. Therefore, the use of some bacterial
species to change the pattern of the intestinal microbiome may
increase the effectiveness of immunotherapy with checkpoint
Frontiers in Oncology | www.frontiersin.org 10
blockers, which can be very useful in treating CRC patients.
Nevertheless, due to the complexity of microbiomes and the high
diversity of microorganisms, including bacteria, viruses and
fungi, and their unknown functions involved in tumorigenesis
or antitumor mechanisms, further studies to identify the
function of each of them and also use these microorganisms in
combination with other therapeutic approaches appear to
be essential.
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