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(e dynamic detection of human motion is important, which is widely applied in the fields of motion state capture and re-
habilitation engineering. In this study, based on multimodal information of surface electromyography (sEMG) signals of upper
limb and triaxial acceleration and plantar pressure signals of lower limb, the effective virtual driving control and gait recognition
methods were proposed. (e effective way of wearable human posture detection was also constructed. Firstly, the moving average
window and threshold comparison were used to segment the sEMG signals of the upper limb.(e standard deviation and singular
values of wavelet coefficients were extracted as the features. After the training and classification by optimized support vector
machine (SVM) algorithm, the real-time detection and analysis of three virtual driving actions were performed. (e average
identification accuracy was 90.90%. Secondly, the mean, standard deviation, variance, and wavelet energy spectrum of triaxial
acceleration were extracted, and these parameters were combined with plantar pressure as the gait features. (e optimized SVM
was selected for the gait identification, and the average accuracy was 90.48%. (e experimental results showed that, through
different combinations of wearable sensors on the upper and lower limbs, the motion posture information could be dynamically
detected, which could be used in the design of virtual rehabilitation system and walking auxiliary system.

1. Introduction

A human posture detection system means identifying the
change of posture in a specified area and detecting the range
of human motion. Generally, it can be described quanti-
tatively by the devices. According to different detection
approaches, the human posture detection is mainly divided
into nonwearable detection and wearable detection. In the
meantime, there are four kinds of human posture detection
modes, that is, infrared detection, data clothing and data
gloves, electronic camera, and measurement sensors. For the
wearable detection combined with the measurement sen-
sors, there are several characteristics of small detection limit
and no interference from external environment such as
background illumination.

Surface electromyography (sEMG) represents the bio-
electrical activities of spinal cord motor neurons under the
control of cerebral motor cortex, which can directly reflect
the human motion intention and muscle state information
with real-time interaction and noninvasive and convenient

operation [1]. A novel muscle-computer interface (MCI)
based on the sEMG signal features has been proposed, which
can be used to identify limb motion patterns and convert
them into input commands to control external devices. (is
technology has been applied in the field of rehabilitation; for
example, it can help patients with the motor dysfunction
performmotor control in a virtual reality (VR) environment
and effectively improve the effect of rehabilitation training
[2, 3]. Rincon et al. designed an immersive rehabilitation
video game, which used Unity Engine and sEMG sensors to
capture the movement action [4]. Powell et al. used the VR
environment to perform myoelectricity control training
based on pattern recognition, which improved the consis-
tency and discrimination of myoelectricity signals of stump
muscles in amputees [5]. (e introduction of the sEMG
signal analysis implements intelligent confirmation of sys-
tem instructions, which can solve the problem of limb
dyskinesia.

(e gait is the posture performance of human walking,
which reflects the structure and function of human motion
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and nervous system. (e purpose of gait detection is to
identify the gait patterns of subjects by analyzing their gait
information. (e main ways of information acquisition
include acceleration sensor, pressure sensor, and multi-
sensor fusion [6–9]. Young and Omid used the machine
learning method to process the gait information of accel-
eration sensor and obtained higher classification accuracy
[10, 11]. (e gait detection based on multisensor fusion can
obtain more gait information, which is helpful in improving
the identification accuracy. (e gait detection technology
has been widely used in sport training, medical research, and
pedestrian navigation [12–14].

In this study, an effective method of wearable human
posture detection on upper and lower limbs was proposed.(e
sEMG signal analysis of upper limb was applied to virtual
driving. Based on the characteristics of real-time and safety of
the sEMG signal, the virtual driving operation was performed
by effective feature extraction and classification identification.
By combining the features of triaxial acceleration and plantar
pressure, an optimized support vectormachine (SVM) classifier
was used to obtain the effective results of gait identification.

2. Methods

(e gesture and gait movements are important body lan-
guage. When the body is moving, it is usually implemented
through the cooperation of multiple muscle groups, and the
posture information of human body can be detected by some
wearable devices [15–18]. In this study, by detecting the
sEMG signals of the upper limb, the motion posture of
holding the steering wheel was identified, and the identified
mode was converted into control commands to perform
real-time control of virtual driving. (e plantar pressure
signals of subjects were collected by using the membrane
pressure sensors, and the human gait was identified by
combining the triaxial acceleration signal. (e principle
framework of wearable human posture detection is shown in
Figure 1. Firstly, the original sEMG signals, triaxial accel-
eration signals, and plantar pressure signals were filtered.
Secondly, the features of motion segment signals were
extracted. Finally, the optimized SVM algorithm was used to
identify the motion intention of human body.

2.1. Active SegmentDetection and Feature Extraction ofUpper
Limb sEMG. In order to extract the motion information
effectively, moving average window and threshold com-
parison are combined to detect active segment of the sEMG
signal. (e method is as follows:

(1) (e sEMG signal sequence sEMGk(i) after the band-
pass filtering is squared, and the instantaneous av-
erage energy sequence sEMGM(i) is defined. i is the
current sEMG sequence label, that is,

sEMGM(i) � sEMGk(i)􏼂 􏼃
2
. (1)

(2) A moving window is selected with fixed window
length N(n − 128), and the average energy
sEMGMA(i) is calculated, that is,

sEMGMA(i) �
1
N

􏽘

i+N

j�i

sEMGM. (2)

(3) (e threshold T is set. If sEMGMA(i)≥T , all data in
the window after time t are greater than the
threshold T, and all data in the window before time t

are less than the threshold T, then it is the starting
point of the motion; otherwise, it is the ending point.
In this study, 2% of the maximum energy of the
sequence signal was selected as the threshold T[19].

(e feature extraction is the key technique for the sEMG
signal identification. (erefore, the selection of appropriate
feature directly affects the subsequent classification results.
In this study, the standard deviation and singular values of
wavelet coefficients were selected as the features of pattern
recognition [20, 21].

2.1.1. Standard Deviation (SD)

SD �
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􏽘
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xi − x( 􏼁

2

􏽶
􏽴

, (3)

where N is the number of sampling points, xi is the am-
plitude of sEMG signal at the i th sampling point, and x is the
sample mean.

2.1.2. Singular Value Decomposition (SVD). (e singular
values of wavelet coefficients represent good stability and
can fully reflect the information contained in the matrix. Let
A ∈ Rm∗n, and then there exists an orthogonal matrix
U � [u1, . . . , um] ∈ Rm∗n, V � [v1, . . . , vm] ∈ Rm∗n, such that

U
TAV � diag σ1, . . . , σφ􏼐 􏼑, (4)

where p � min(m, n), σ1 ≥ σ2 ≥ · · · ≥ σφ > 0, σi, (i � 1, · · · ,

p) is called the singular value of matrix A, that is, the positive
square root of the eigenvalue ci of AAH or AHA.
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Figure 1: Principle framework of wearable human posture
detection.
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By decomposing the sEMG signal into level � 3 ∼ 5
layers, the level + 1 subbands are obtained. (en, the sin-
gular value σi is achieved in each subband signal Si by
singular value decomposition. In this study, the singular
value of each subband was used as the feature, that is,
feature � σi, i � 1, . . . , level + 1􏼈 􏼉.

2.2. Gait Information Detection and Feature Extraction.
(e triaxial acceleration of the lower limb and plantar
pressure signals were extracted. For time domain feature,
acceleration mean X, standard deviation σ, and variance S2

were extracted from three direction acceleration signals after
preprocessing. For time-frequency domain feature, the
wavelet energy spectrum was used.

(e wavelet energy spectrum is based on the wavelet
packet decomposition to extract multiscale spatial energy
features. It calculates the energy in different decomposition
scales and then arranges these energy values into the features
according to the scale order, that is,

E(i, j) � 􏽘
n−1

i�0
d(i, j)

2
, (5)

where d(i, j) is the coefficient of wavelet packet transform,
and j is the sequence number of low-frequency subspaces. In
this study, the wavelet basis function db1 was selected for
three-level decomposition. Eight low-frequency subspace
acceleration signals were selected to extract wavelet packet
energy.

(e feature of plantar pressure signal extraction is the
mean F of the difference between the forefoot pressure and
the heel pressure, that is,

F �
1
N

􏽘

N

i�1
Fi − fi( 􏼁⎛⎝ ⎞⎠, (6)

where Fi represents the forefoot pressure collected by the
membrane pressure sensor, and fi represents the heel
pressure.

2.3. Optimized SVM Based on Genetic Algorithm.
Compared with Bayes, K-nearest neighbor, decision tree,
and other classification methods based on statistical pattern
recognition, the SVM algorithm represents obvious ad-
vantages in solving small sample, nonlinear, and high-di-
mensional recognition problems [22, 23].

(e principle of SVM algorithm means finding an op-
timal classification hyperplane to meet the classification
requirements based on structural risk minimization, and its
learning strategy is employed to maximize the interval,
which is transformed into the solution of quadratic pro-
gramming problem. For linearly inseparable data, it is firstly
necessary to confirm the kernel function, and then the
nonlinear mapping algorithm is used to transform the in-
separable samples of low-dimensional features into high-
dimensional features to make them linearly separable. (e
appropriate kernel function K(xi, x) and parameter C are

chosen. By constructing Lagrange dual function, the non-
linear SVM can be described as

minα
1
2

􏽘

m

i�1
􏽘

m

j�1
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T
i xj − 􏽘

m

i�1
αi,

s.t. 􏽘
m

i�1
αiyi � 0, 0≪ αi≪C, i � 1, 2, . . . , m,

(7)

where C is the penalty factor, and α is the Lagrange mul-
tiplier. (e optimal solution of each coefficient is obtained.
After the kernel function is confirmed, the optimal classi-
fication function is

f(x) � sgn(􏽢ωφ(x) + 􏽢b ) � sgn 􏽘

m

i�1
􏽢αiyiK xi, x( 􏼁 + 􏽢b⎡⎣ ⎤⎦. (8)

(e kernel functions used in the SVM algorithm include
polynomial kernel function, Sigmoid kernel function, and
radial basis function (RBF). In this study, the RBF was
chosen, namely, K(xi, x) � exp(−cx · xi)

2. Meanwhile, the
genetic algorithm (GA) was used to optimize the parameters
of kernel function.

(e GA is a kind of quasinatural search algorithm based
on Darwinian evolution theory. It can simulate the evolution
of survival of the fittest in nature and map the problem-
solving space to the genetic space. In order to optimize the
SVM algorithm based on the GA, penalty factor C and RBF
parameter c need to be optimized. By selection, crossover,
mutation, and other genetic operators, the population with
good fitness is retained, and the optimal population is finally
achieved by the iterative evolution. (e flow chart of kernel
function parameter optimization of the SVM based on the
GA is shown in Figure 2.

3. Experimental Results

Twelve subjects were enrolled in the virtual driving control
and gait experiment. (e subjects consisted of six males and
six females ranging in age from 21 to 27 years. All subjects
did not have sprain and other injuries affecting motor
function, as well as motor nerve diseases. (e sEMG signals
of upper limb were collected by DELSYS testing system,
whose sensors used built-in electrodes with the spacing of
10mm. All data between the electrodes and the receiver were
transmitted by the wireless way. In the gait test, the subjects
wore shoes with two membrane pressure sensors, and the
triaxial acceleration acquisition device was placed at the
ankle to collect the signals of five gait modes, including
walking, waiting, going upstairs, going downstairs, and
falling.

Some settings of control parameters used in this study
are given in Table 1. In the process of GA optimization
training, a 5-fold cross-validation was selected to obtain the
optimal fitness. After 50 iterations, the optimal penalty
factor C � 5.0981 and kernel function parameter c � 1.0197
were calculated.
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3.1. sEMGIdentificationTest. Eachmotion signal was collected
by two channels. Figure 3 shows three motion states of virtual
vehicle, including left turn, stop, and right turn.(e red circles in
the figure represent the acquisition place of sEMG signals.

(e effects of three motion states in the forearm muscles
are different. Two groups of muscles, biceps brachii and
extensor carpi ulnaris, are selected for the experiment. (e
time domain features of the left turn, stop, and right turn are
shown in Table 2. Based on the results of standard deviation,
it was found that the states of biceps brachii were more
obvious in identifying three motions.

In order to further improve the identification accuracy,
time-frequency feature fusion was performed. (e standard
deviation was selected for time domain feature, and wavelet
coefficients were selected for frequency domain features. A set
of low-frequency coefficients a3 and high-frequency coeffi-
cients d1, d2, and d3 could be obtained by three-level wavelet

decomposition of the collected sEMG signals. (e variance,
maximum value, and singular values of the coefficients were
calculated. It can be seen from Table 3 that the singular value
features of wavelet coefficients are more obvious.

As can be seen from Figure 4, the combination of
standard deviation and singular values of wavelet coefficients
can achieve the highest identification accuracy through
online recognition of the SVM algorithm. (e identification
accuracy for the left turn is 82%, that for the right turn is
92%, that for the stop is 98.7%, and the average identification
accuracy of three motions is 90.90%.

Veer et al. applied neural network classifier to implement
the classification of sEMG signals from upper arm muscles,
and the best classification accuracy was 89.3% [24]. Zhang
et al. recognized sEMG signals based on human motion
intention, and the classification accuracy of upper limb
signals based on SVM classifier was improved, ranging from
90.33% to 91.1% [25]. In comparison, our recognition results
are better. Li et al. studied the quantitative relationship
between sEMG signal features and upper limb joint angle, so
as to identify themotion intention [26]. Shao et al. integrated
the SVD feature to improve the classification accuracy ef-
fectively [27]. Tosin et al. also performed multiple feature
analysis of sEMG signals from the upper limb [28]. (ese
results show that multiple feature fusion can improve the
classification accuracy.

It can be seen that real-time interaction with the virtual
driving scene can be performed by detecting the sEMG

Feature acquisition
(penalty factor and RBF parameter)

Start

Initialization

SVM training

Calculation of
population fitness

Is the termination
condition met?

Selection, crossover,
mutation

Optimal population

Optimization
parameters

End

N

Y

Figure 2: Flow chart of kernel function parameter optimization based on the GA.

Table 1: Parameters for the GA.

Parameter Setting
Population size 50
Maximum generation 50
Gap probability 0.95
Crossover probability 0.8
Mutation probability 0.1
Kernel function RBF
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Table 2: Time domain features in different muscle positions.

Muscles Features Left turn Stop Right turn

Biceps brachii
Mean absolute value 67.2572± 12.2266 19.5647± 0.1265 21.3071± 12.2266
Standard deviation 103.8934± 22.1665 5.3235± 1.2139 29.2781± 22.1665

Variance 104.4871± 22.0447 20.2829± 0.3369 32.1099± 22.0447

Extensor carpi ulnaris
Mean absolute value 55.0021± 9.7912 19.5647± 0.1265 26.7749± 9.7912
Standard deviation 88.8508± 16.1424 5.3235± 1.2139 43.4217± 16.1424

Variance 88.8615± 16.1262 20.2829± 0.3369 43.4867± 16.1262

Table 3: Feature comparisons of wavelet coefficients for three motion states.

Features Wavelet coefficients Left turn Stop Right turn

Variance a3 0.0007± 0.0004 5.6273e-06± 2.1938e-06 4.6795e-05± 3.9365e-05
d3 0.0010± 0.0005 2.2806e-06± 1.1195e-06 8.2666e-05± 7.4132e-05

Maximum value a3 118.7533± 48.8894 13.0637± 1.2329 23.5794± 19.2797
d3 222.2225± 98.4360 6.9295± 2.5674 54.2183± 29.2419

Singular value a3 1212.8528± 269.3678 560.9698± 12.5829 588.7500± 83.4251
d3 1308.7037± 318.5597 41.6474± 10.4164 364.3723± 185.9567

(a) (b) (c)

Figure 3: (ree motion states of virtual vehicle. (a) Left turn, (b) stop, (c) right turn.
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Figure 4: Accuracy comparisons for three motion states.
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signals of the upper limb and identifying the motion posture
of holding the steering wheel in the virtual driving operation.
Nacpil et al. also proposed a method to perform sEMG-
controlled virtual car in a PC platform, which showed the
feasibility for implementing a sEMG-machine interface that
controlled the steering of the virtual car [29].

3.2. Gait Identification Test. Figure 5 shows acceleration and
plantar pressure signals of five gait modes for walking,
waiting, going upstairs, going downstairs, and falling.

After optimizing the parameters of the SVM, the identifi-
cation accuracy comparisons are shown in Figure 6.(e average
gait identification accuracy based on single acceleration signals
is 80.42%, and that based on plantar pressure signals is 69.28%.
After fusing acceleration and plantar pressure signals, the av-
erage identification accuracy of the five gait modes is 90.48%,
which is significantly higher than those based on single signal.
Ai et al. combined wavelet coefficients and acceleration signal
features, and based on SVMclassifier, the classification accuracy
of the five lower limb movements was increased by 8% [30],
while our classification accuracy was increased by 12.5%.
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Figure 5: Acceleration and plantar pressure signals.
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4. Conclusion

In this study, the sEMG signal analysis and virtual driving
technology were combined to study the effective feature
extraction and classification identificationmethod. Combined
with the advantages of immersion, interest, and pertinence,
the virtual driving control was performed by real motions.
(e biceps brachii muscle could distinguish three kinds of
motions including left turn, stop, and right turn. (e moving
average window and threshold comparison were used to
detect and segment the collected sEMG signals. (e standard
deviation and singular values of wavelet coefficients were
extracted as the features. (e SVM algorithm was used to
perform real-time control of three virtual driving motions.
(e average identification accuracy was 90.90%.

(e triaxial acceleration and plantar pressure signals for
walking, waiting, going upstairs, going downstairs, and
falling were collected, and the features of acceleration mean,
standard deviation, variance, wavelet energy spectrum of
acceleration signal,and mean of pressure difference between
the forefoot and the heel were selected. By the optimized
SVM, the average identification accuracy of five gait modes
could reach 90.48%. (e identification accuracy of fusion
signal was significantly higher than that of the single signal.

(e wearable human posture detection can be used for
patients who need muscle rehabilitation training. It not only
solves the problem of inconvenient operation for patients
with motor dysfunction, but also has important practical
significance for improving the rehabilitation training effect
of patients.
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