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Schneider (1999) recently addressed the question of
whether Ca?* sparks arise from the opening of a single
ryanodine receptor (RyR) channel or the simultaneous
opening of several channels. The discussion high-
lighted the importance of single RyR channel perme-
ation and gating in the interpretation of Ca?* spark
data. The Schneider (1999) perspective inspired us to
extend this theoretical discussion by using a published
kinetic model of modal RyR gating to actually simulate
RyR channel gating and permeation that may underlie
a Ca?* spark in cardiac muscle.

The Single Channel Ca2* Spark Interpretation

Cheng et al. (1993) was the first to propose that the
spontaneous Ca?* spark is the elementary intracellular
Ca?" release unit that underlies excitation-contraction
coupling in cardiac muscle. They estimated that the lo-
cal Ca?* flux underlying the Ca2* spark would need to
be ~2 X 10-17 mol/s, assuming a volume of ~10 fl
(i.e., an ~2-um cube), duration of 10 ms (time to
peak), and a final [Ca?*] of ~300 nM (resting [Ca?*] =
100 nM). This type of calculation predicts that the un-
derlying unitary RyR channel Ca?* current would need
to be 1-4 pA to generate the observed Ca?* spark
(Cheng et al., 1993; Pratusevich and Balke, 1996; Blat-
ter et al., 1997; Jiang et al., 1998; Schnieder, 1999). An
early estimate of the unitary Ca2* current through the
cardiac RyR channel was 2.5 pA (at 0 mV with 50 mM
charge carrier; Rousseau and Meissner, 1989). This
lead Cheng et al. (1993) to propose that the Ca2* spark
may arise from the opening of a single RyR Ca?* re-
lease channel. The RyR channel, however, is a poorly
selective Ca2* channel, and thus other ions (e.g., K*
and Mg?*) are likely to compete with Ca?* for occu-
pancy of the pore. Consequently, the unitary Ca2* cur-
rent must be smaller under more physiological condi-
tions (1 mM lumenal Ca?*, 150 mM K*, and 1 mM
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Mg?*). Tinker et al. (1993) used a RyR permeation
model to estimate that the unitary Ca2* current was 1.4
pA (at 0 mV, 1.2 mM lumenal Ca%* charge carrier in
symmetrical 120 mM K* and 0.5 mM Mg?*). This up-
dated estimate lead Blatter et al. (1997) to propose that
simultaneous opening of two RyR channels may gener-
ate the Ca?* spark. If Ca?* sparks arise from the open-
ing of one or two RyR channels, then certain pharma-
cological manipulations that alter single channel prop-
erties should be reflected at the Ca2?t spark level.
Cheng et al. (1993) reported that lower amplitude,
long duration Ca2* sparks occur in the presence of ry-
anodine. This resembles the ryanodine-induced long-
lasting subconductance states observed at the single
channel level. Shtifman et al. (1999) reported that pro-
longed small-amplitude Ca?* sparks occurred after
application of Imperatoxin A (IpTx,). This resembles
the prolonged subconductance of IpTx,-modified RyR
channels in bilayers (Tripathy et al., 1998).

In summary, the single channel Ca?* spark interpre-
tation is largely based on two lines of evidence: first, the
relatively large estimates of unitary RyR channel Ca2*
current and, second, the parallel pharmacological ac-
tions at the spark and single channel levels.

The Multichannel Ca2* Spark Interpretation

The hypothesis that multiple RyR channels open simul-
taneously to generate the Ca2* spark is consistent with
the clustered arrangement of RyR channels in heart
(Sun et al.,, 1995; Franzini-Armstrong and Protasi,
1997). It is also consistent with the stereotypic ampli-
tude of the Ca?* spark. If Ca2* sparks were generated
by spontaneous openings of a single channel, then the
distribution of Ca?* spark amplitudes should be expo-
nential in nature because single channel open times
are distributed exponentially. Observed Ca2* spark am-
plitudes, however, are normally distributed. There is
also a curious lack of small Ca?* spark events that is not
easy to reconcile with the single channel spark hypoth-
esis. Recently, Mejia-Alvarez et al. (1999) have directly
measured the amplitude of unitary Ca?" current
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through a single cardiac RyR channel under quasi-
physiological ionic conditions. The unitary Ca2* cur-
rent was considerably smaller than previously predicted
(0.35vs. 1.4 pA,; Tinker et al., 1993). This suggests that
Ca?* sparks may arise from 3 to 10 RyR channels open-
ing simultaneously.

In summary, the multichannel Ca2* spark interpreta-
tion is based on three lines of evidence: first, the stereo-
typic nature of the Ca?* spark; second, new smaller esti-
mates of unitary RyR channel Ca2* current; and, third,
tantalizing correlations with the clear physical cluster-
ing of RyR in heart.

Simulating the RyR Channel Gating that Underlies
the Ca2* Spark

A published kinetic Markovian scheme of RyR channel
gating was used to generate simulated single RyR chan-
nel records. The simulated gating reflects single RyR
channel measurements made in planar lipid bilayer
studies (e.g., Sitsapesan and Williams, 1995). The uni-
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tary Ca2* current was fixed at 0.35 pA (Mejia-Alvarez et
al., 1999). To predict free [Ca%*] fluctuations, a multi-
compartment unidimensional diffusion model was
evaluated (Cannell and Allen, 1984; Pizarro et al.,
1991). The diffusion model includes Ca?* binding/un-
binding to known buffers and SR Ca?* reuptake. The
only entity allowed to diffuse is the Ca2* ion. The pre-
dicted fluorescence (Fluo-3) signals due to the local
Ca?* fluxes produced by the simulated single RyR
channel activity were calculated and are presented in
Fig. 1.

At a steady state Ca2* concentration of pCa 7, the ap-
plied RyR gating scheme predicts that spontaneous sin-
gle channel events occur at low open probability (P,).
(The gating scheme does not consider other regulatory
factors [e.g., Mg2*] that may impact the stationary P, of
the channel.) Most single channel open events are
brief and bursts of open events are rare (Fig. 1 A). Ev-
ery RyR channel opening elevates the local Ca2* con-
centration. However, nearly all local Ca2* elevations
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Galea et al. (1998) and was based
on the model proposed by Zahr-

adnikova and Zahradnik (1996). The RyR channel mean open time was 0.5 ms and the unitary current amplitude was 0.3 pA, which corre-
sponds to ~9.4 X 10° ions/s. Simulations were run under steady state conditions (pCa 7) assuming the presence of a single RyR channel.
Simulations of triggered RyR channel activity were run assuming the presence of five RyR channels. The applied trigger Ca?* pulse (10
wM for 500 ws) was from pCa 7. This trigger Ca?* stimulus (arrows) mimics that which may be generated by an opening of a single DHPR
Ca?* channel. For simplicity, the simulation assumed that the trigger Ca?* pulse and RyR-mediated Ca?" release occur in different pools. A
multicompartment diffusion model was used to evaluate how the simulated single channel behavior (i.e., the underlying driving Ca2+*
waveform) impacts local Fluo-3 (100 wM) fluorescence. Model parameters include: Fluo-3 k,, = 0.238 puM~1 ms=, Fluo-3 ky = 740 nM, 1
mM endogenous Ca?* buffers with k,, = 0.002 puM~* ms~! and ky = 400 nM in a volume of 1015 liters. The Ca?* flux through a single RyR
channel was 1.55 X 10~ pM/ms. If five RyR channels open simultaneously for 500 ws in a volume of 10~ liters, then the A[Ca?*] was
775 nM. This value is considerably higher than that needed to generate a Ca?* spark. However, the inclusion of parameters like binding
and diffusion result in a A[Ca?*] of 232 nM, which corresponds to a AF/F, of ~1.53.
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would not be detected as Fluo-3 fluorescence signals.
The largest local Ca?* elevations induced by bursts of
RyR openings are just barely detectable at the fluores-
cence level. The same RyR gating scheme was also used
to predict the response of five RyR channels to a trigger
Ca?" pulse (10 wM for 500 ws). The trigger Ca?* pulse
was applied to synchronize the opening of the RyR
channels. Simultaneous opening of multiple RyR chan-
nels elevates the local Ca?* concentration to levels con-
sistent with that predicted to underlie the Ca?* spark
(Fig. 1 B). These local Ca?* concentrations generate
Fluo-3 fluorescence signals reminiscent of the experi-
mentally observed Ca?* spark.

Conclusions

Our simulations suggest that individual openings of a
single RyR channel under steady state conditions at a
resting Ca?* level are unlikely to generate detectable lo-
cal Ca?* release events. Barely detectable Ca2* release
events occasionally occur when bursts of open events
(lasting many milliseconds) occur. This implies that an
abnormally long opening of a single RyR channel
would generate a prolonged detectable local Ca?* re-
lease. Simultaneous opening of multiple RyR channels
generated fluorescence signals that were consistent
with the observed Ca?* spark waveform. We propose
that the stereotypical Ca2* sparks are generated by the
simultaneous opening of multiple RyR channels. This
proposition is consistent with our recent estimates of
unitary Ca%* current, the stereotypical nature of the
spark, and the clustering of RyR channels in the diadic
space. We also propose that pharmacological manipula-
tions that generate small-prolonged local Ca?* fluxes
could arise from the opening of single RyR channels.
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