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Abstract: Kynurenine is a tryptophan metabolite linked to several inflammatory processes including
transplant failure, a significant challenge in transplant medicine. The detection of small molecules
such as kynurenine, however, is often complex and time consuming. Herein, we report the successful
synthesis of a fluorescently labelled kynurenine derivative, showing proper fluorescence and anti-
kynurenine antibody binding behavior in a magnetic bead immunoassay (MIA). The fluorescent
kynurenine–rhodamine B conjugate shows a KD-value of 5.9 µM as well as IC50 values of 4.0 µM in
PBS and 10.2 µM in saliva. We thus introduce a rapid test for kynurenine as a potential biomarker for
kidney transplant failure.

Keywords: transplant failure; transplant medicine; biomarkers; fluorescent probes; fluorescence;
kynurenine; amino acids; rapid testing

1. Introduction

Kynurenine is a metabolite of the tryptophan degradation pathway linked to several
inflammatory, metabolic, oncogenic [1] as well as psychiatric disorders [2,3]. While some
tryptophan is metabolized to serotonin [4], 95% of the dietary tryptophan is metabolized
to the kynurenine pathway (KP) via the enzyme class of indolamine-2,3-dioxygenases
(IDOs) [5–7], followed by a cascade of degradation enzymes with quinolinic acid as the final
product [8]. The activity of the IDO enzymes is regulated through immunological factors
such as pathogenic microorganisms and LPS [9–11], inflammatory cytokines [12,13], or IL-1
and TNF-α [14]. Elevated kynurenine levels also downregulate immune activation and
convey anti-inflammatory activity [15–18], demonstrating a feedback-loop-like behavior.

The link between inflammatory response and elevated kynurenine levels in serum
via upregulation of IDO by pro-inflammatory factors renders kynurenine an interesting
biomarker for clinically relevant inflammatory processes. Upregulated IDO and, therefore,
elevated kynurenine levels of 3.9 ± 2.1 µM in serum have been found in the case of
chronic kidney disease (CKD) in patients in the pre-dialysis stage. Values increase along
with CKD severity up to 5.6 ± 2.3 µM because of chronic inflammation during CKD
progression [19–22]. Elevated kynurenine levels are related not only to CKD but also to
inflammatory processes after kidney transplantation; they are inversely correlated with
kidney function [23,24]. In a study from 2007 by Buczko et al., plasma and saliva kynurenine
levels from uremic patients were compared, showing reproducible results and correlations
among saliva and serum kynurenine levels [25]. Due to this correlation in serum and saliva
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kynurenine found by Buczko et al. [25] and the association with inflammation and IDO
expression both in kidney failure during chronic kidney disease and kidney transplant
rejection [22,26,27], and due to the findings that kynurenine is discussed as a biomarker for
renal allograft failure in the literature [28,29], here, we focus on kynurenine determined
from saliva as a potential biomarker for kidney transplant rejection. In patients with
transplant rejection, L-kynurenine levels of 17.4 ± 8.4 µM for serum and 4.6 ± 1.6 µM for
saliva were measured, compared to control groups with serum levels of 2.7 ± 0.4 µM and
0.7 ± 0.4 µM in saliva [23,25,28–30].

Apart from transplant failure, elevated kynurenine levels have also been linked to
titanium dental implants and to bone-osseointegration processes [31], as well as to the
implantation of a left ventricular assist device, showing that kynurenine as a metabolite is
linked to implant failure as well [32].

Most approaches in clinical trials to quantifying kynurenine from different tissues
are focused on LC-MS [33–35] or GC-MS [36] methods, displaying clinical impracticabil-
ity and delayed diagnosis. Apart from these, Ungor et al., 2019, presented fluorescent
gold nanoclusters able to detect kynurenine in physiological concentrations in PBS with
a quenching mechanism [37]. Another approach is the usage of fluorescently labelled
kynurenine derivatives, as shown by Klockow et al., 2013, who labelled kynurenine with
a coumarin aldehyde scaffold, showing fluorescence while undergoing a shift in pH [38].
Other approaches for potential rapid testing, using the kynurenine pathway for diagnosis,
focus on quantifying the IDO activity instead of measuring kynurenine directly [39].

To date and due to the small size of the kynurenine molecule, no fluorescently labelled
kynurenine derivatives bound to an anti-kynurenine antibody are described in the litera-
ture. Likewise, there is no functional bioassay based on antibody binding of kynurenine
described in the literature. Herein, we report the synthesis of a fluorescent, rhodamine
B-labelled kynurenine derivative and demonstrate its binding ability to an anti-kynurenine
antibody. We demonstrate that this denotes a promising approach for the development of a
competitive kynurenine antibody-binding assay and ultimately a kynurenine rapid test
from saliva and possibly other body fluids.

2. Materials and Methods
2.1. General Experimental

TLC was carried out on Silica Gel 60 F254 (Merck, layer thickness 0.2 mm) with
detection by UV light (254 nm) or by charring with 1% KMnO4 in 1N NaOH. Flash column
chromatography (FC) was performed on M&N Silica Gel 60 (0.063–0.200 mm). 1H NMR and
13C NMR spectra were recorded on a Bruker Avance I 200 (200 MHz), Bruker Avance II 400
(400 MHz, both Bruker, Billerica, MA, USA), or Varian Unity 500 (500 MHz) spectrometer
(Varian Inc., Palo Alto, CA, USA). Chemical shifts are reported in parts per million relative
to solvent signals (CDCl3: δH = 7.26 ppm, δC = 77.0 ppm; DMSO-d6: δH = 2.49 ppm,
δC = 39.7 ppm). Signals were assigned by first-order analysis and assignments were
supported where feasible by 2-dimensional 1H, 1H and 1H, 13C correlation spectroscopy.
Coupling constants are reported in hertz. UV/vis spectra were recorded on a PerkinElmer
Lambda XLS+ UV/vis spectrometer (PerkinElmer, Waltham, MA, USA) in a 10.00 mm QS
quartz cuvette. Fluorescence was recorded on a Tecan Infinite M200 multiplate reader in
commercially available 96-well multitier plates. Chemicals and reagents were purchased
from Acros Organics, Alfa Aesar, Sigma-Aldrich, Carl Roth, Carbolution or ABCR and
were used without further purification.

2.2. Synthesis of Kynurenine–Rhodamine B Conjugates
2.2.1. [6-Diethylamino-9-(2-prop-2-ynyloxycarbonyl-phenyl)-xanthen-3-ylidene]-diethyl-
ammonium; Chloride 1

Rhodamine B (10 g, 20.9 mmol, 1 eq) was dissolved in dry CH2Cl2 (250 mL) under N2
atmosphere. EDC (4.4 g, 22.99 mmol, 1.1 eq) and DMAP (0.51 g, 4.18 mmol, 0.2 eq) were
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added, and the mixture obtained was stirred for 15 min at room temperature. After the
addition of propargyl alcohol (1.33 mL, 22.99 mmol, 1.1 eq) and after stirring overnight at
room temperature, the mixture was washed 2x with 1M HCl (250 mL) and 1x with brine
(250 mL). Drying the organic layer over Na2SO4 and evaporating the solvent yielded the
crude product. Purification via flash column chromatography (CH2Cl2: MeOH 9:1) gave
the final product: violet powder (6.08 g, 56%).

1H-NMR (CDCl3, 400 MHz): 8.66 (d, J = 7.9 Hz, 1 H, Ar-H), 7.88 (t, J = 7.6 Hz, 1 H,
Ar-H), 7.78 (t, J = 7.7 Hz, 1 H, Ar-H), 7.38 (d, J = 7.6 Hz, 1 H, Ar-H), 7.09 (d, J = 9.4 Hz,
Ar-H, 1 H), 6.95 (d, J = 9.6 Hz, Ar-H, 1 H), 6.88 (s, Ar-H, 1 H), 4.65 (d, J = 1.3 Hz, CH2, 2 H),
3.68 (q, J = 7.1, CH2, 8 H), 2.46 (s, CH, 1 H), 1.36 (t, J = 7.1, CH3, 12 H).

13C-NMR (DMSO, 50 MHz): 164.4 (C(=O)O), 157.6 (Ar-C), 155.6 (Ar-C), 134.0 (Ar-C),
133.8 (Ar-C), 131.3 (Ar-C), 131.3 (Ar-C), 131.0 (Ar-C), 129.3 (Ar-C), 115.1 (Ar-C), 113.4 (Ar-C),
107.4 (Ar-C), 96.4 (Ar-C), 78.5 (C), 77.8 (CH), 53.3 (CH2), 45.8 (CH2), 12.9 (CH3).

2.2.2. 4-(2-Amino-phenyl)-2-tert-butoxycarbonylamino-4-oxo-butyric Acid 2

NH2 protection of kynurenine was carried out by Boc-chemistry following Schotten–
Baumann conditions: kynurenine (500 mg, 2.4 mmol, 1 eq) was dissolved in a water/THF
1:1 mixture containing NaOH (288 mg, 7.2 mmol, 3 eq). After the solution turned clear,
Boc2O (1.55 mL, 7.2 mmol, 3 eq) was added dropwise at 0 ◦C, and the reaction was
monitored by TLC. Complete conversion was observed after 90 min. Acidification using
10% HCl, followed by 3 extractions with ethyl acetate, drying of the organic layer and evap-
oration of the solvent yielded the crude product: a yellowish oil. Column chromatography
(ethyl acetate) yielded the pure product: a yellowish powder (327.7 mg, 44%).

1H-NMR (400 MHz, CDCl3): 7.73 (d, J = 8.0 Hz, 1H- Ar-H), 7.34 (t, J = 7.6 Hz, 1H,
Ar-H), 6.83–6.72 (m, 2H, Ar-H), 5.64 (d, J = 8.7 Hz, 1H, CH), 4.67 (ddd, J = 12.8, 8.5, 4.3 Hz,
1H, CH), 3.80–3.69 (m, 2H, CH2), 3.53 (dd, J = 18.0, 3.8 Hz, 1H, CH), 1.45 (s, 9H, 3x CH3).

13C-NMR (100 MHz, CDCl3): 199.54 (Ar-C(=O)), 172.43 (C(C=O)OH), 155.68 (Boc-
C(=O)), 149.45 (Ar-C), 134.96 (Ar-C), 131.08 (Ar-C), 125.83 (Ar-C), 118.10 (Ar-C), 116.73 (Ar-C),
69.98 (Boc-tert-C), 52.60 (CH), 41.47 (CH2), 28.34 (CH3).

2.2.3. [3-(2-Amino-phenyl)-1-(2-{2-[2-(2-azido-ethoxy)-ethoxy]-ethoxy}-ethylcarbamo-yl)-
3-oxo-propyl]-carbamic Acid Tert-Butyl Ester 3

Boc-protected kynurenine 1 (318.9 mg, 1.03 mmol, 1 eq) and the corresponding azido-
linker (248.68 mg, 1.14 mmol, 1.1 eq) were dissolved in CH2Cl2 (50 mL). EDC (197.45 mg,
1.03 mmol, 1 eq) and DMAP (25.17 mg, 0.206 mmol, 0.2 eq) were added, and the mixture
was stirred at room temperature for 48 h. Washing 3× with 2 M NaOH (80 mL) followed
by washing with brine (80 mL), drying over Na2SO4 and evaporation yielded the crude
product. Column chromatography (ethyl acetate) yielded the pure product: an orange
solid, which was used directly in the next step without further analysis (175.11 mg, 33%).

2.2.4. (9-{2-[1-(2-{2-[4-(2-Amino-phenyl)-2-tert-butoxycarbonylamino-4-oxo-
butyrylamino]-ethoxy}-ethyl)-1H-[1,2,3]triazol-4-ylmethoxycarbonyl]-phenyl}-6-
diethylamino-xanthen-3-ylidene)-diethyl-ammonium Salt 4

Azido functionalized Boc-L-Kynurenine 3 (166 mg, 326.6 µmol, 1 eq) and propar-
gyl rhodamine B 1 (169 mg, 326.6 µmol, 1 eq) were dissolved in 30 mL of a mixture of
CH2Cl2/MeOH/H2O 10:10:3. After adding an aqueous CuSO4 solution (262 µL, 0.5 M,
130.64 µmol, 0.4 eq), TBTA (18 mg, 32.66 µmol, 0.1 eq) and Na ascorbate (142 mg, 718.52 µmol,
2.2 eq), the mixture was heated to 60 ◦C for 16 h. After cooling down, 20 mL of ddH2O
was added and the mixture was extracted 3 times with 50 mL CH2Cl2, followed by drying
over Na2SO4 and evaporation of the solvent. The pure product was obtained after column
chromatography (CH2Cl2/MeOH 3:1) as a pink powder (302.5 mg, 90%).

1H-NMR (DMSO, 500 MHz): 8.20 (dd, J = 7.9, 1.0 Hz, 1H, Ar-H), 7.91–7.85 (m, 3H,
Ar-H), 7.83–7.79 (m, 2H, Ar-H), 7.47 (dd, J = 7.6, 0.8 Hz, 1H, Ar-H), 7.08–7.00 (m, 2H,
Ar-H), 6.97–6.90 (m, 5H, Ar-H), 5.04 (s, 2H, Ar-CH2), 4.65 (d, J = 2.4 Hz, 1H, CH2), 4.44 (t,
J = 5.2 Hz, 2H, Triazol-CH2), 3.74 (t, J = 5.2 Hz, 2H, O-CH2), 3.63 (dd, J = 13.9, 6.7 Hz, 8H, 4x
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RhB-CH2), 3.48–3.45 (m, 2H, O-CH2), 3.44–3.40 (m, 6H, 3× O-CH2), 3.30 (t, J = 6.4 Hz, 2H,
O-CH2), 3.00 (dd, J = 12.0, 6.0 Hz, 2H, CH2), 1.33 (s, 9H, 3× Boc-CH3), 1.20 (t, J = 6.7 Hz,
12H, 4x RhB-CH3).

13C-NMR (DMSO, 125 MHz): 198.9 (Ar-C(=O), 172.1 (C(=O)-NH), 164.9 (C(=O)-O),
157.8 (Ar-H), 157.5 (Boc-C(=O)), 156.0 (Ar-C), 155.6 (Ar-C), 155.5 (Ar-C), 141.04 (Triazol-
Ar-C), 134.6 (Ar-C), 133.9 (Ar-C), 133.8 (Ar-C), 133.7 (Ar-C), 131.3 (Ar-C), 131.2 (Ar-C),
131.0 (Ar-C), 130.9 (Ar-C), 129.6 (Ar-C), 129.2 (Ar-C), 125.3 (Triazol-Ar-C), 115.0 (Ar-C),
114.9 (Ar-C), 114.8 (Ar-C), 113.3 (Ar-C), 96.3 (Ar-C), 78.4 (tert.-C), 78.0 (NH(Boc)-CH),
77.8 (O-CH2), 70.1 (O-CH2), 70.0 (O-CH2), 69.9 (O-CH2), 69.6 (O-CH2), 69.3 (O-CH2),
68.0 (O-CH2), 58.6 (Ar-CH2), 53.2 (RhB-CH2), 49.8 (Ar-CH2), 45.8 (N-CH2), 28.7 (Boc-CH3),
12.9 (RhB-CH3).

2.2.5. (9-{2-[1-(2-{2-[2-Amino-4-(2-amino-phenyl)-4-oxo-butyrylamino]-ethoxy}-ethyl)-
1H-[1,2,3]triazol-4-ylmethoxycarbonyl]-phenyl}-6-diethylamino-xanthen-3-ylidene)-
diethyl-ammonium Salt 5

Boc-deprotection of rhodamine B–kynurenin conjugate 4 was carried out by dissolving
conjugate 4 in 6 mL of CH2Cl2 containing 25% trifluoroacetic acid. After stirring at room
temperature for 1 h, the solution was precipitated in 50 mL ice cold Et2O and centrifuged
for 5 min at 4 ◦C and max speed. The precipitate was dissolved in ddH2O and lyophilized.
Purification by HPLC yielded the pure product: a pink solid (60.5 mg, 26%).

1H-NMR (DMSO, 500 MHz): 8.20 (dd, J = 8.0, 1.4, 1H, Ar-H), 8.11 (s, 1H, C(=O)NH),
7.93–7.84 (m, 3H, Ar-H), 7.85–7.78 (m, 2H, Ar-H), 7.47 (dd, J = 7.7, 1.4, 1H, Ar-H),
7.05–6.99 (m, 3H, Ar-H), 6.97–6.89 (m, 5H, Ar-H), 5.05 (d, J = 4.4, 3H, Ar-CH2 + CH),
4.47–4.41 (m, 2H, Ar-CH2), 3.75 (t, J = 5.2, 2H, O-CH2), 3.63 (q, J = 6.9, 8H, RhB-CH2),
3.54 (d, J = 5.6, 2H, O-CH2), 3.50–3.42 (m, 8H, O-CH2), 2.92 (q, J = 5.6, 2H, O-CH2), 1.20 (t,
J = 7.0, 12H, RhB-CH3).

13C-NMR (DMSO, 125 MHz): 197.3 (Ar-C(=O)), 168.8 (C(=O)-NH), 164.9 (C(=O)-O),
158.2 (Ar-C), 157.9 (Ar-C), 157.5 (Ar-C), 155.5 (Ar-C), 141.1 (Triazol-Ar-C), 133.2 (Ar-C),
133.7 (Ar-C), 131.2 (Ar-C), 130.9 (Ar-C), 129.6 (Ar-C), 125.3 (Triazol-Ar-C), 117.5 (Ar-C),
114.9 (Ar-C), 113.3 (Ar-C), 96.3 (Ar-C), 70.1 (O-CH2), 70.0 (O-CH2), 69.9 (O-CH2),
69.0 (O-CH2), 67.1 (O-CH2), 58.6 (Ar-CH2), 49.8 (Ar-CH2), 45.7 N-CH2), 12.87 (CH3).

2.2.6. (6-Diethylamino-9-{2-[1-(2-{2-[2-(2-hydroxy-ethoxy)-ethoxy]-ethoxy}-ethyl)-1H-
[1,2,3]tr-iazol-4-ylmethoxycarbonyl]-phenyl}-xanthen-3-ylidene)-diethyl-ammonium Salt 6

Propargyl rhodamine B 1 (100 mg, 193.4 µmol, 1 eq) and azidotetraethylene glycol
(42.4 mg, 193.4 µmol, 1 eq, synthesized according to the literature [40]) were dissolved in
25 mL of a mixture of CH2Cl2/MeOH/H2O 10:10:3. A solution of CuSO4 in H2O (0.5 M,
15.5 µL, 7.74 µmol, 0.04 eq) was added, TBTA (1 mg, 1.93 µmol, 0.01 eq) and Na ascorbate
(8.4 mg, 42.6 µmol, 0.22 eq) were added, and the mixture was heated to 60 ◦C. The reaction
was monitored by TLC. After 16 h, the mixture was left to cool down, followed by the
addition of 25 mL of ddH2O. Extraction with 50 mL of CH2Cl2 3 times, followed by drying
over Na2SO4, gave the crude product. Column chromatography (CH2Cl2/MeOH 3:1) gave
the pure product: a pink oil (135.8 mg, 95%).

1H-NMR (DMSO, 500 MHz): 8.22 (d, J = 8.0 Hz, 1H, Ar-H), 7.89 (t, J = 5.2 Hz, 2H,
Ar-H), 7.82 (t, J = 7.9 Hz, 1H, Ar-H), 7.48 (d, J = 7.5 Hz, 1H, Ar-H), 7.04 (dd, J = 9.5, 2.2 Hz,
2H, Ar-H), 6.96 (s, 1H, Ar-H), 6.95–6.92 (m, 3H, Ar-H), 5.06 (s, 2H, Ar-CH2), 4.56 (s, 1H,
OH), 4.45 (t, J = 5.2 Hz, 2H, O-CH2), 3.76 (t, J = 5.2 Hz, 2H, O-CH2), 3.65 (q, J = 6.8 Hz, 8H,
CH2), 3.49 (dd, J = 5.6, 3.1 Hz, 2H, O-CH2), 3.46–3.41 (m, 6H, O-CH2), 3.37–3.34 (m, 2H,
O-CH2), 1.22 (t, J = 6.8 Hz, 12H, CH3).

13C-NMR (DMSO, 125 MHz): 164.88 (C(=O)), 157.88 (Ar-H), 157.53 (Ar-H), 155.53 (Ar-H),
141.05 (Ar-H), 133.71 (Ar-H), 131.24 (Ar-H), 130.93 (Ar-H), 129.67 (Ar-H), 125.36 (Ar-
H), 114.94 (Ar-H), 113.32 (Ar-H), 96.29 (Ar-H), 72.75 (CH2), 70.21 (CH2), 70.17 (CH2),
70.05 (CH2), 69.97 (CH2), 69.01 (CH2), 66.81 (CH2), 60.63 (CH2), 58.63 (CH2), 49.77 (CH2),
45.76 (CH2), 12.89 (CH3).
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2.3. Magnetic Bead Immunoassay (MIA)
2.3.1. Antibody Biotinylation

A total of 1 µL of a 6 mg/mL Biotin-NHS solution (NHS-dPEG®12-biotin, Sigma
Aldrich, Taufkirchen, Germany) was added to 100 µL of an anti-kynurenine antibody
(monoclonal Mouse IgG1a k chain anti-kynurenine antibody, clone 3D4-F2, ImmuSmol
SAS, 0.5 mg/mL). The mixture was incubated for 50 min at room temperature with gentle
shaking. Excess Biotin-NHS was removed using a VivaSpin 500 centrifugal concentrator
with 10 kDa MWCO (Sigma Aldrich).

2.3.2. Bead Preparation

For bead activation, 50 µL of magnetic beads (Dynabeads™ MyOne™ Streptavidin C1
magnetic beads 10 mg/mL, Thermo Fisher Scientific, Schwerte, Germany) was diluted to
1 mg/mL with 450 µL of PBS and pelleted on a magnetic rack for 2 min. The supernatant
was discarded, and the beads were washed three times with 500 µL PBS. After the last
washing step, 20 µL of the supernatant was replaced with 20 µL biotinylated antibody
(0.5 mg/mL). The mixture was incubated for 30 min at RT under gentle shaking. The
reaction was blocked by washing the beads three times with PBS containing 1.5% BSA and
0.5% Tween-20. The final concentration was 20 µg of antibody per 1 mg of beads.

2.3.3. Immunoassay Conjugate Binding

For 3 h at RT, 0–100 µM rhodamine B–kynurenine conjugate 5 or rhodamine B-PEG-
Linker 6 was incubated with 50 µL of antibody-conjugated magnetic beads and 50 µL of PBS
(1:3 dilution). The beads were pelleted on a magnetic rack, and the unbound rhodamine
B in the supernatant was quantified in a 96-well-plate with a fluorescence measurement
of 100 µL of supernatant at 561 nm excitation and 592 nm emission, using a Tecan Infinite
M200 multiplate reader. A standard curve of rhodamine B fluorescence intensity between 0
and 100 µM diluted 1:3 in PBS was used for the calculation of bead-bound conjugate 5 or 6.

2.3.4. Competition between Rhodamine B–Kynurenine Conjugate and Native Kynurenine

Fifty microliters of antibody coupled beads was incubated with 50 µL of 12 µM
rhodamine B-kynurenine conjugate 5 and 50 µL of spiked PBS or artificial saliva (Sigma
Aldrich, SAE0149) containing 0–250 µM native L-kynurenine for 3 h at RT on a hula shaker
(1:3 dilution). Beads were pelleted on a magnet and fluorescence intensity of unbound
rhodamine B–kynurenine conjugate 5 in 100 µL supernatant was measured in a Tecan
Infinite M200 multiplate reader at 561 nm excitation and 592 nm emission. Bead-bound
L-kynurenine was indirectly calculated by calculating the amount of displaced rhodamine
B–kynurenine conjugate 5. Therefore, the fluorescence intensity of bound rhodamine
B–kynurenine conjugate 5 without L-kynurenine was subtracted from the fluorescence
intensity of samples with different L-kynurenine concentrations.

3. Results and Discussion
3.1. Synthesis of Fluorescent Kynurenine Conjugates

Chemical synthesis of the fluorescent L-kynurenine–rhodamine B conjugate was car-
ried out as shown in Figure 1. First, commercial rhodamine B was reacted with propargyl
alcohol to the corresponding rhodamine B propargyl ester 1 using Steglich esterification by
EDC and DMAP, which was used as the fluorescent probe for click-conjugates 5 and 6.
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Figure 1. Route of synthesis for the fluorescent labelled kynurenine probe. Rhodamine B was reacted
with propargyl alcohol to rhodamine B propargyl ester 1, which was reacted with an azido tetraethy-
lene glycol linker to afford 6 or with azido-kynurenine to yield product 5. Reaction conditions:
(a) EDC, DMAP, CH2Cl2, RT, overnight; (b) NaOH, H2O/THF 1:1, RT, 90 min; (c) EDC, DMAP,
CH2Cl2, RT, 48 h; (d) 1, CuSO4, TBTA, Na ascorbate, H2O/MeOH/CH2Cl2 10:10:3, 16 h; and
(e) CH2Cl2/TFA 4:1, RT, 1 h.

For the azido tetraethylene glycol L-kynurenine derivative 3, Boc-protection of the
primary amine of kynurenine was carried out to obtain product 2, followed by attaching an
amino-azido-tetraethylene glycol linker, synthesized according to a published protocol [41]
yielding the azido-4EG-L-kynurenine derivative 3. Click reaction of 3 with 1 gave product 4,
followed by Boc-deprotection to the fluorescent kynurenine probe 5. To study the effect of
the linker as well as the rhodamine B moiety on antibody binding, rhodamine B clickamer 6
containing only a tetraethylene glycol linker [40] was prepared, following the same reaction
conditions as for product 4.

3.2. Spectral Properties

To determine emission and absorption maxima for the synthesized rhodamine B click-
conjugates, UV/vis spectra of the compounds were recorded in ddH2O (cf. Figure 2). The
absorption maximum of rhodamine B is at 554 nm [42] while the absorption maxima of the
rhodamine B conjugates 5 and 6, containing a benzoic ester instead of a free benzoic acid at
the rhodamine’s benzoic acid residue, is slightly shifted to 560 nm. Emission maxima were
determined to be at 586 nm for the L-Kyn-4EG-RhB probe 5, while the 4EG-RhB clickamer
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6 shows an emission maximum of 584 nm, indicating suitable absorption and emission
properties for immunoassays.
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ddH2O. Absorption maxima of compounds 5 and 6 are shifted slightly to 560 nm in the comparison
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3.3. Magnetic Bead Immunoassay (MIA)

To determine the antibody binding capabilities of the synthesized fluorescent
L-kynurenine conjugate, we elucidated the antibody binding capability of fluorescent
conjugates 5 and 6 as well as their competitive binding capability by using magnetic bead-
bound anti-kynurenine antibodies, followed by incubation with the fluorescent conjugates
and the subsequent fluorescence measurements of unbound conjugate in the supernatant.
The tetraethylene glycol rhodamine B clickamer 6 was used as a negative control to exclude
unspecific interactions between the rhodamine B or the tetraethylene glycol linker with
the antibody. Antibody binding data are shown in Figure 3. As the magnetic beads are
suspended in solution, the surface coated with antibodies is effectively increased, leading
to increased assay sensitivity and favorable binding kinetics and, therefore, more accurate
data on competition between fluorescent probe 5 and native L-kynurenine.

To this end, antibodies were bound to magnetic beads in 1 µm diameter, followed by
incubation with the target compounds, pelleted via magnet and the fluorescence measured
in the supernatant. In the competitive assay, 0–83 µM L-kynurenine was incubated together
with either 4 µM RhB-4EG-L-Kyn conjugate 5, followed by a pelleting of the beads and the
measurement of the fluorescence in the supernatant. The binding curves of 5 and 6 as well
as the competitive binding curve are shown in Figures 3 and 4.
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control 6. A specific binding of the conjugate to the antibody is concluded.
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Figure 4. Competitive antibody binding assay in magnetic bead assay of the L-kynurenine–rhodamine
B conjugate 5 against native L-kynurenine in (A) PBS and (B) artificial saliva. Fluorescence of the
solution increases with increasing L-kynurenine concentration, meaning native kynurenine competes
in antibody binding against the kynurenine conjugate.

With increasing concentration of the fluorescent L-kynurenine conjugate 5, the mea-
sured fluorescence in the supernatant decreases since more fluorescent conjugates bind to
the antibody. Figure 3A shows the difference in fluorescence intensity between
L-kynurenine conjugate 5 and 4EG-RhB clickamer 6 with and without incubation with
the bead-bound antibodies. In higher concentrations, the 4EG-RhB clickamer 6 binding
affinity also increases, probably due to unspecific interactions between either the linker
or the rhodamine B residue. Apart from this, the difference in measured fluorescence
for the L-kynurenine conjugate 5 is significantly stronger, showing a KD-value of 5.9 µM,
and therefore, unspecific interactions between the 4EG-RhB clickamer 6 and the magnetic
bead-bound antibody can be neglected.

As shown in Figure 4, the competitive binding assay shows a proper increase in
fluorescence along with increasing concentrations of native L-kynurenine in both PBS
and artificial saliva. Increasing fluorescence levels are caused by the displacement of the
fluorescent conjugate through native kynurenine. The IC50 values of this competition were
calculated to be 4.0 µM in PBS and 10.2 µM in saliva. As expected, the IC50 value in saliva
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is higher than in PBS due to interfering components such as enzymes and proteins in
saliva samples.

4. Conclusions

We successfully synthesized a fluorescent kynurenine conjugate based on rhodamine
B with unique antibody binding properties, a promising component of a future rapid diag-
nostic test for kynurenine, a metabolite with a clinically relevant marker for the diagnosis
of distinct diseases. Spectral properties of the products were elucidated, showing only
a slight shift of 6 nm in the fluorescence emission maximum when compared to native
rhodamine B. The antibody binding was investigated, and the magnetic bead assay showed
a good sensitivity with a KD-value of 5.9 µM for the L-kynurenine conjugate 5 and IC50
values of 4.0 µM in PBS and 10.2 µM in saliva for the competitive assay. Since an increase
in kynurenine levels in saliva to 4.6 ± 1.6 µM under pathological conditions, compared to
0.7 ± 0.4 µM in the healthy subject, are observed [30], it thus is possible to detect metabolite
changes with statistical significance by using repeated measurements. This allows for the
detection of transplant rejection in a clinical setting subject to validation in clinical trials.
In addition, this approach offers the possibility of using other body fluids such as blood
serum, where kynurenine levels are much higher with 17.4 ± 8.4 µM for serum compared
to 4.6 ± 1.6 µM for saliva [30], even though the influence of matrix proteins and other
metabolites from serum would have to be investigated in more detail for this to obtain
reliable measurements. Since the current standard methods for kynurenine detection are
based on liquid chromatography, they are not practical for routine diagnostics; likewise,
no clinically applied functional bioassay based on antibody binding of kynurenine exists.
Together, our investigations provide a promising approach towards future rapid tests for
kynurenine. Here, we introduced a microbead competitive assay allowing for the determi-
nation of L-kynurenine metabolites directly from saliva, thus avoiding the use of invasive
procedures and expensive equipment.
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