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Abstract: For biomedical applications, superparamagnetic nanoparticles (MNPs) have to be coated
with a stealth layer that provides colloidal stability in biological media, long enough persistence and
circulation times for reaching the expected medical aims, and anchor sites for further attachment of
bioactive agents. One of such stealth molecules designed and synthesized by us, poly(polyethylene
glycol methacrylate-co-acrylic acid) referred to as P(PEGMA-AA), was demonstrated to make MNPs
reasonably resistant to cell internalization, and be an excellent candidate for magnetic hyperthermia
treatments in addition to possessing the necessary colloidal stability under physiological conditions
(Illés et al. J. Magn. Magn. Mater. 2018, 451, 710–720). In the present work, we elaborated on the
molecular background of the formation of the P(PEGMA-AA)-coated MNPs, and of their remarkable
colloidal stability and salt tolerance by using potentiometric acid–base titration, adsorption isotherm
determination, infrared spectroscopy (FT-IR ATR), dynamic light scattering, and electrokinetic
potential determination methods. The P(PEGMA-AA)@MNPs have excellent blood compatibility as
demonstrated in blood sedimentation, smears, and white blood cell viability experiments. In addition,
blood serum proteins formed a protein corona, protecting the particles against aggregation (found in
dynamic light scattering and electrokinetic potential measurements). Our novel particles also proved
to be promising candidates for MRI diagnosis, exhibiting one of the highest values of r2 relaxivity
(451 mM−1s−1) found in literature.

Keywords: superparamagnetic nanoparticles; PEG coating; core–shell nanoparticles; blood
compatibility; colloidal stability; MRI contrast agents

1. Introduction

Recent advancements in nanomedicine raise the expectations towards its translational medical
impact [1–3]. Fabrication of new types of nanoparticles, on the one hand, and the intention from the
side of medical science to pretreat corresponding tissues for better exploitation of nanodrugs, on the
other, are new trends in the multidisciplinary approach of nanomedicine. Most of the nanoparticles
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are intended to be applied as anticancer agents either separately in the fields of diagnosis and therapy,
or in combined theranostics [4–8].

Magnetic properties of some nanoparticles are widely exploited in MRI contrast enhancement,
magnetic targeting, and magnetic heating [9]. For biocompatibility and bioapplicability reasons,
the nanoparticles are coated by a stealth layer, which transforms the bio/nano interface so that the
particles are tolerated by the biological media. Moreover, it possibly contains the bioactive agents for
healing, and obeys the property of releasing the drugs at the target with required pharmacokinetics [10].

PEG (polyethylene glycol) coatings on SPIONs (superparamagnetic iron oxide nanoparticles,
abbreviated in this paper as MNPs, magnetite nanoparticles) reduce the non-specific adsorption
of blood proteins (among them, opsonins), and the resulting biologically passive surface protects
the particles from subsequent adhesion of phagocytes or inflammatory cells [11,12]. PEG stealth
layers on liposomes have been shown to reduce the nanoparticle uptake by microphages of RES
(reticuloendothelial system) [12,13]. It has also been proven that charge and hydrophobic/hydrophilic
property of the surface of nanoparticles influence, basically, their interaction with proteins,
other biomolecules, and cell membranes [14]. Highly negatively charged and hydrophobic surfaces
are the most prone to adsorb proteins, and promote their conformational changes in the adsorbed
state [15–18]. Although proteins can bind to PEG coatings as well, they most likely retain natural
conformation, and the recognition systems fail to identify the underlying nanoparticles as foreign
bodies. This type of mechanism could explain, for example, the results of Price et al. [12] that
PEG-modification of liposomes did not decrease the adsorption of blood plasma components,
but prolonged, significantly, the nanoparticle circulation time. Thus, PEGs make an excellent
coating for long circulating nanoparticles needed in MRI and other theranostic applications [19–22].
For therapeutic aims, specific bioactive moieties should be incorporated additionally in the coating
layer. Nevertheless, the physicochemical behavior of the core–shell nanocarriers remains of primary
importance [16].

The antifouling capability of PEGylated surfaces is strongly affected by the structure of the PEG
layer, in addition to its molecular weight and interfacial density [17,23–29]. It has been found that
PEG brushes enhance protein repellency more efficiently than linear PEGs [23]. The packing density
of stealth layers and, consequently, their durability, can be increased by applying either covalent
bonding strategies or multisite-binding physical adsorption [26,30]. Chemical anchoring processes
demand harsh conditions for creating high probability covalent binding, separating the reaction
products from catalyzers, eluting possible byproducts, and the non-aqueous medium. For biomedical
purposes, we prefer mild conditions for surface modification. Thus, we exploited the self-organizing
properties of the stealth polyelectrolyte, leading to its multisite-binding physical adsorption at the
MNP surface. We applied this method to one of our newest candidates for surface modification of
superparamagnetic (magnetite) nanoparticles for biomedical applications, which is a brush-like PEG
copolymer, P(PEGMA-co-AA), designated here as P(PEGMA-AA). The PEG chains of the PEGMA
units are brush-like, depending on the polymer backbone (see the structure in Table 1). In a previous
publication [31], we reported on the synthesis of P(PEGMA-co-AA), the basic colloidal and magnetic
properties of the core–shell P(PEGMA-AA)@MNPs, and their general biocompatibility and magnetic
hyperthermia applicability. In the present paper, we study the self-assembly of P(PEGMA-AA) on the
MNPs surface at a molecular level (using potentiometric acid–base titration, polyelectrolyte binding
experiments, and FT-IR ATR studies), and colloidal stability (via light scattering and electrokinetic
potential measurements), blood compatibility (exploiting blood sedimentation experiments, smearing
tests, WBC viability factor determination, and protein corona formation in blood serum) of the
core–shell P(PEGMA-AA)@MNPs. In addition, we report on the excellent applicability of the
P(PEGMA-AA)@MNPs for MRI contrast enhancement.
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2. Materials and Methods

Magnetite nanoparticles (MNPs) were prepared by a co-precipitation method detailed in our
previous and recent papers [32–34]. The crystalline structure of the synthesized iron oxide was
identified as magnetite (Fe3O4) [35]. The average diameter of the MNPs was ~10.2 nm, determined
from the broadening of the most intensive peak of the XRD pattern by using the Scherrer equation [34].
The primary core size of the synthesized MNPs was ~10 nm as determined by using a Philips CM-10
transmission electron microscope (Philips Electron Optics, Eindhoven, The Netherlands) with an
accelerating voltage of 100 kV.

Acrylic acid (AA), polyacrylic acid homopolymer (PAA, Mw = 1800 g/mol), L-ascorbic acid, ethyl
2-bromoisobutyrate, 1,1,4,7,10,10-hexamethyltriethylenetetraamine (HMTETA), and trifluoroacetic acid
were used as received. Poly(ethylene glycol) methyl ether methacrylate macromonomer (PEGMA300,
Mn = 300 g/mol) was used after purification by passing through a column filled with neutral
Al2O3. tert-Butyl acrylate (tBuA) was purified via vacuum distillation. Toluene was distilled over
sodium/benzophenone and dichloromethane over calcium hydride. Cu(I)-chloride was stirred with
acetic acid overnight, filtered, and washed with absolute ethanol and diethyl ether before use. All the
small and macromolecular compounds used in this study were purchased from Sigma-Aldrich
(Darmstadt, Germany)

The P(PEGMA) homopolymer and the P(PEGMA-AA) copolymer were synthesized via
quasi-living atom transfer radical polymerization (ATRP), as detailed previously [31]. Toluene as
solvent, ethyl 2-bromoisobutyrate as initiator, HMTETA as complexing agent, and Cu(I)-chloride as
catalyst, were used. A starting random copolymer P(PEGMA-co-tBuA) was prepared using PEGMA300
and tBu-A monomers. The ATRP reaction mixtures were purified by passing through a neutral Al2O3

column. The P(PEGMA-co-tBuA) copolymer was transformed to the acrylic acid form via acidic
hydrolysis, followed by stirring overnight and precipitating in hexane. The structure of the obtained
comb-like copolymer product is shown in Table 1.

Table 1. Characteristics of compounds used for coating magnetite nanoparticles (MNPs).

Coating Material Mn (g/mol) COOH Functional
Groups * (mmol/g) Molecular Structure

Acrylic acid (AA) small
molecule 72 14
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Number average molar masses of the obtained PPEGMA and P(PEGMA-co-tBuA) polymers were
determined by gel permeation chromatography in tetrahydrofuran. We used the mass of the polymers
or the molar amount of carboxyl groups to express the concentration of the different compounds.

Potentiometric acid−base titrations of P(PEGMA-AA) and AA were performed at 0.005, 0.05,
and 0.5 M ionic strength of NaCl background electrolyte according to the procedure described
previously [36]. The equilibrium method was used in the titrations with equilibrium criterion
∆pH/min < 0.01.

The adsorption of AA and P(PEGMA-AA) on magnetite was studied in batch adsorption
experiments. In 10 mL total volume, 0.1 g (AA isotherms) or 0.01 g (P(PEGMA-AA) isotherms)
of iron oxide was equilibrated with the surface modifying agents at concentrations from 0 to 2 mmol/g
MNP at fixed pH and ionic strength (pH ~ 6.5 and I = 10 mM (NaCl)). The pH was adjusted to
~6.5 ± 0.2 using 0.01 and 0.1 mol/L NaOH or HCl solutions. After 1 day of standing, the pH of
the samples was checked again. The solid phase was separated from the equilibrium supernatant
by centrifugation (60 min, 14,000 rpm) assisted by the addition of concentrated NaCl solution and
magnetic separation by means of a permanent NeFeB magnet (0.17 T). UV—vis spectrophotometry
(USB4000 Fiber Optic Spectrometer, OceanOptics, Winter Park, FL, USA) was applied for determination
of the equilibrium concentrations using the same method as for PAA [37]. The adsorbed amount (nσ)
was expressed in the molar amount of carboxylic moieties (mmol COOH/g MNP), and calculated as
nσ = V (c0,COOH − ce,COOH)/m, where c0,COOH and ce,COOH are the added initial and the equilibrium
concentrations of the adsorbates, respectively, V is the total volume of the solution phase, and m is the
mass of MNP. The experiments were repeated three times, and the results presented are the averages.
The error was equal or less than ±0.1 for P(PEGMA-AA) and ±0.01 mmol/g for AA isotherms.

FT-IR ATR spectra were recorded with a Bio-Rad Digilab Division FTS-65A/896 spectrometer
(with MCT detector) using a Harrick’s Meridian Split Pea Diamond ATR accessory (Bio-Rad
Digilab Division, Cambridge, MA, USA). The absorbance of the samples was measured in single
reflection mode over the 400−4000 cm−1 range (with resolution of 2 cm−1), accumulating 1024 scans.
Magnetite dispersions (MNP, AA@MNP, P(PEGMA)@MNP and P(PEGMA-AA)@MNP) and the
adsorbate solutions (AA, P(PEGMA) and P(PEGMA-AA)) were dripped and dried on the crystal
surface. The pH of all samples was set to ~6.5, and the ionic strength was 10 mM. The monomer and
polymer loadings of the coated MNP samples were 0.2 and 1 mmol/g, respectively. The background
spectra were measured on clean and dry diamond crystal.

The zeta potential of the uncoated magnetite and the adsorbate-loaded nanomagnets (AA@MNP,
P(PEGMA)@MNP and P(PEGMA-AA)@MNP) was determined in a Nano ZS (Malvern Instruments
Ltd., Malvern, UK) dynamic light scattering (DLS) apparatus with a 4 mW He−Ne laser source
(λ = 633 nm). The electrophoretic mobilities were recorded at 25 ± 0.1 ◦C using disposable zeta cells
(DTS 1070, Malvern Instruments Ltd., Malvern, UK) and the Smoluchowski equation was applied to
convert them to zeta potentials. The accuracy of the measurements is ±5 mV, and the zeta-standard
of Malvern (−55 ± 5 mV) was used for calibration. The dispersions were diluted to give an optimal
intensity of ∼105 counts per second. Prior to the measurements, the samples were homogenized in an
ultrasonic bath for 10 s, after which 2 min relaxation was allowed. The influence of adding AA and
polymers (0−2 mmol/g) on the zeta potential of MNPs was determined at pH ~ 6.5 and I = 10 mM
(NaCl). The pH-dependent surface charging properties of the naked and coated nanomagnets were
studied from pH ~ 3 to ~10 at I = 10 mM.

The average particle size of bare magnetite and coated core–shell nanoparticles was determined
at 25 ± 0.1 ◦C using a Nano ZS (Malvern Instruments Ltd., Malvern, UK) apparatus operating in
backscattering mode at an angle of 173◦. The solution conditions were the same as in the electrophoresis
measurements: the added amounts of P(PEGMA-AA) varied between 0 and 2 mmol/g MNP, the pH
range between ~3 and ~10, and the ionic strength (I) was 10 mM (NaCl). The aggregation state of the
nanoparticles in the aqueous dispersions was characterized by the intensity average hydrodynamic
diameter (Zave) values. We used the second- or third-order cumulant fit of the autocorrelation functions,
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depending on the degree of polydispersity. The variation of Zave values was less than 5% for primary
particles, and the error definition becomes irrelevant for large polydisperse aggregates.

Hemocompatibility of P(PEGMA-AA)@MNPs, i.e., their interaction with human blood,
was studied in erythrocyte sedimentation rate (ESR) experiments utilizing a Sedi-15 automated
sedimentation rate measuring device (BD Inc., Franklin Lakes, NJ, USA) and Seditainer 1.8
vacutainer tubes (BD Inc., Franklin Lakes, NJ, USA), as given in our previous publication [38].
P(PEGMA-AA)@MNP samples were mixed at room temperature with citrate-anticoagulated blood
of three healthy donors to achieve a concentration of 0.24 mg/mL. The experimental error given
by the producer is ±3 mm/h. Three replicates of the ESR measurements were performed for all
donors. Peripheral blood smear tests of the whole blood (EDTA-anticoagulated) of the donors were
carried out by an automated slide preparation system (Sysmex SP4000i, Sysmex, Kobe, Japan) at
room temperature using the May-Grünwald Giemsa (MGG, Biolyon, Dardilly, France) staining
technique in a CellaVisionTM DM96 automation device (CellaVision AB, Ideon, Science Park,
Lund, Sweden). The influence of P(PEGMA-AA)@MNPs on platelet aggregation was studied at
a concentration of 0.4 mg/mL. The acquisition and classification software of the instrument was used
to differentiate between normal and abnormal cells (white blood cells (WBCs), red blood cells (RBCs),
and platelets (PLT)).

The WBC viability factor (WVF), i.e., the fraction of viable white blood cells was determined
by using a CELL-DYN Sapphire hematology analyzer (Abbott Diagnostics, Santa Clara, CA,
USA). This routine diagnostic method differentiates between necrotic, apoptotic, and normal
cells in anticoagulated blood via selective staining of nuclei with a cell membrane-impermeable
fluorescent dye, propidium iodide. After hydrodynamic focusing, WVF was determined by the
emitted red fluorescence (at 617 nm) of the dye bound to the nucleic acid of injured or dead
cells. The effect of P(PEGMA-AA) coated nanoparticles on WBC viability was examined at 37 ◦C.
The P(PEGMA-AA)@MNP concentration in blood was 0.4 mg/mL. The WVF values were determined
10, 30, 60, 90, 140, and 240 min after mixing the MNPs with blood at a concentration of 0.4 mg/mL.
The accuracy of the measured WVFs was above 97%, as calculated from 5 parallel runs. In addition to
white blood cells, the viability of other cellular elements, such as red blood cells (RBCs), neutrophils,
lymphocytes, and monocytes, was determined as well. Impedance measurements were used to
determine the cell counts of WBC, RBC, and PLT (all viable, damaged, and dead cells) and their
volumes as well.

For testing the MNP interactions with human plasma (HP), the blood of six healthy donors
(age of 30 to 64, five females and one male) was collected in the Institute of Laboratory Medicine of
the University of Szeged, according to the routine blood drawing practice of the Institute. HP was
separated from the blood in EDTA-anticoagulated tubes (Seditainer 1.8 vacutainer tubes, BD Inc., USA),
using five tubes for each donor, and then centrifuged. The plasma from all samples was pooled, and a
second step of centrifugation at 16,000 rpm for 10 min was applied to remove residual cells and cell
debris. The total protein content was measured in the pooled sample as 65 g/L. The within-subject and
between-subject biological variation in total protein content was 2.75 and 4.7, respectively, based on
the Westgard database [39]. A plasma pool was used to get identical protein content in all experiments.
After freeze-drying the product in a Flexi-Dry µP lyophilizer (FTS Systems) using liquid nitrogen,
it was stored at −18 ◦C in small aliquots, and separately thawed at room temperature for individual
experiments. For protein corona formation experiments in HP, the thawed aliquots were dissolved in
ultrapure (UP) water to make up the original 100% concentration. The stock solution of HP was further
diluted by using Tris-buffered saline solution from Sigma-Aldrich, Darmstadt, Germany (pH ~ 7.4,
I ~ 154 mM). The experiments with the bare and P(PEGMA-AA)-coated MNPs were performed in
three replicates using separate plasma aliquots. Freeze-dried plasma was preferred for the series of our
room temperature experiments, because fresh plasma can only be stored for a maximum of three days.

The evolution of the average particle size of P(PEGMA-AA)@MNPs in the course of protein
corona formation in human plasma was studied at 25 ± 0.1 ◦C, both as a function of HP concentration
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and time. The HP concentration was increased from 0 to 80 v/v %, and the measurements were
done at 3 min and at 20 h after MNP incubation in plasma. For particle size determination, the same
apparatus was used as above, and the experimental conditions, data processing, and accuracy of
measurements were also the same. The pH and ionic strength were fixed by using the Tris-buffered
saline medium. The changes in the zeta potential due to protein corona formation were determined
in electrophoretic mobility measurements at 25 ± 0.1 ◦C by using the same apparatus, experimental
conditions, and evaluation as above. The experiments were performed at 20 h after MNP incubation
in plasma.

The MRI contrast enhancement efficiency of the P(PEGMA-AA)@MNP was studied by using a
clinical MRI instrument GE Excite HDxt (GE Medical Systems, Milwaukee, WI, USA) with a standard
“birdcage” head coil at magnetic field strength of 1.5 T. The MNP dispersions were prepared at nominal
Fe concentrations of 0.009, 0.018, 0.036, 0.072, 0,107, 0.143, and 0.179 mM. The exact iron content of
the samples was measured by inductively coupled plasma optical emission spectroscopy method
using an Optima 7000 DV ICP-OES instrument (Perkin-Elmer, Shelton, CT, USA). Samples (4 mL)
were placed in a plastic box filled with water, and put in the center of the head coil. The MR images
were acquired at echo delay times (TE) of 10, 20, 30, 40, 60, 120, 180, and 240 ms by applying a radio
frequency repetition time (TR) of 3000 ms. The r2 relaxivity, quantifying the contrast enhancement
efficiency of the P(PEGMA-AA)@MNPs, was determined as the slope of the 1/T2 vs. Fe concentration
plot. The quality of fitting was estimated by the coefficient of determination (R-squared).

3. Results and Discussion

Our novel brush copolymer P(PEGMA-AA) (Table 1) had been designed to combine such
structural elements that assist its durable stealth layer formation on the MNPs which, in turn, ensures
colloidal stability, blood compatibility, and sufficient circulation times for biomedical applications.
The AA units (acrylic acid units), in general, bind to the positively charged MNP surface (the net
surface charge is positive at pH ~ 6.5 applied in the binding process) both in electrostatic and
surface complexation mechanisms [37]. This binding is further strengthened by the presence of
hydrophobic –CH3 groups of the backbone of P(P(EGMA-AA) [31]. In addition, the AA anionic
moieties and PEG chains together provide a strong electrosteric (i.e., combined electrostatic and steric)
repulsion between the P(PEGMA-AA)@MNPs, leading to excellent colloidal stability. For deeper
insight into the process of binding, the results discussed here will be compared with those obtained
for the basic molecules of P(PEGMA-AA) components, i.e., small molecular acrylic acid (AA),
comb-like homopolymer P(PEGMA), and polyacrylic acid homopolymer (PAA). The characteristics
of the examined molecules are collected in Table 1. We further anticipated that the pending PEG
chains can hinder the anionic carboxylates from direct exposition to biomacromolecules, allowing for
long circulation times (beneficial in MRI applications) due to the prevention of nonspecific protein
adsorption, protein denaturation, and phagocytic clearance of the particles.

3.1. pH- and Ionic Strength-Dependent Dissociation of P(PEGMA-AA)

The binding of polycarboxylates to MNP surfaces is strongly influenced by the density and
degree of dissociation of acidic groups, and so, it is of primary importance to determine the degree of
dissociation of P(PEGMA-AA) at the pH and ionic strength conditions applied in the process of binding
on MNPs. The dissociation of carboxylic groups of the AA segments in P(PEGMA-AA) was measured
in potentiometric acid–base titrations in comparison with that of the same groups in AA monomers
and PAA homopolymers (Figure 1). See more about the acid–base titration method in the point
“Potentiometric Acid–Base Titration of Polyelectrolytes” in Supplementary Material. The dissociation
of carboxylic moieties reaches limiting values characteristic of the specific compounds. The nominal
value of the molar amount of carboxylic groups is 14 mmol/g in both AA and PAA (Table 1),
and their experimental amount from titrations is ~13.9 mmol/g (see the limiting values of net proton
consumption at pH ~ 10). The titrated specific amount of dissociable carboxyl groups of P(PEGMA-AA)
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is 4.6 mmol/g, somewhat smaller, but very close to the theoretic value 5 mmol/g, calculated from
PEGMA/AA monomer ratio of 1:2.33 in ATRP synthesis (Table 1). The experimental amounts of
carboxylic groups in AA and P(PEGMA-AA) were used for further concentration calculations in all
the experiments.
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Figure 1. pH- and ionic strength-dependent dissociation of acrylic acid (AA), polyacrylic acid (PAA)
and P(PEGMA-AA): –COOH + OH− → –COO− + H2O reaction taking place with base addition.
The lines connect experimental data points.

The net proton excess vs. pH curve of AA is independent of ionic strength, as is expected for small
molecules. The characteristic ionic strength dependence of PAA dissociation reveals the formation of
an electric double layer around the polyanion, screened increasingly by increasing the ionic strength of
the indifferent background electrolyte [40]. A very similar ionic strength dependence of the net proton
excess vs. pH curves was found for the P(PEGMA-AA) copolymer. The latter similarity is somewhat
surprising in the light of the different charge distribution of the two polyelectrolytes: while every
monomeric AA unit of PAA is a charge carrier, in P(PEGMA-AA), uncharged PEGMA units separate
the AA charges. The similar polyelectrolyte feature of PAA and P(PEGMA-AA) may be explained by
the presence of –CH3 groups in the backbone of the latter. The hydrophobic methyl groups can lead
to more contracted conformation in water relative to that of the fully hydrophilic PAA, resulting in a
similar volume charge density of the two polyelectrolytes.

3.2. PEGylation of MNPs by Using P(PEGMA-AA)

For binding of P(PEGMA-AA) on the MNP surface, we exploited the self-organizing property
of polyelectrolytes at solid–liquid interfaces. Adsorption isotherms were measured to determine
the optimal amount of polyelectrolyte necessary to coat the entire NP surface. The P(PEGMA-AA)
and AA adsorption isotherms were measured on the magnetite nanoparticle surface at pH ~ 6.5
and I = 10 mM and are shown in Figure 2, in comparison with the previously published isotherm
of PAA [37] adsorption under same conditions. P(PEGMA-AA) adsorbs on magnetite with high
affinity. At low added amounts of P(PEGMA-AA), almost all molecules become bonded to the
surface. The isotherm differs strongly from that of PAA and AA. AA is able to adsorb in an amount
corresponding to the positive surface charge of MNPs at pH = 6.5 and I = 10 mM (0.06 mmol COO−

(AA)/g MNP and 0.05 mmol ≡Fe−OH2
+/g MNP [37], respectively), suggesting that the adsorption is

driven by electrostatic interaction and stops at charge compensation. PAA, similarly to polyelectrolytes
in general, reaches adsorbed amounts, greatly overcompensating for the original positive surface
charge of MNP (0.05 mmol/g at pH ~ 6.5 and 10 mM NaCl). The isotherm is not of a high-affinity
type, and the saturation level is about half of that of P(PEGMA-AA). The P(PEGMA-AA) isotherm is
more similar to that of PAM (poly(acrylic acid-co-maleic acid [38], not shown here) than PAA or AA.
The presence of PEGMA segments appears to have a definite impact on the adsorption mechanism.
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PAM adsorption was found to proceed via direct iron complexation of the bicarboxylic maleic acid
monomer and H-bonding of non-dissociated carboxyls, while PAA adsorbed solely via H-bonding
of non-dissociated carboxylic moieties. The presence of CH3 groups on the backbone and at the end
of each PEG chains of P(PEGMA-AA) provide an amphiphilic character to the molecule, most likely
leading to a highly preferred orientation and accumulation of the comb-like polymers at the surface
of MNPs. This self-assembly is greatly assisted by the electrostatic attraction of carboxylate moieties.
The entropy gain here, similarly to that in the formation of micelles of amphiphilic molecules, is
responsible for self-assembling of P(PEGMA-AA) at the MNP/aqueous solution interface. The driving
force is known to be the loss of direct contact between the hydrophobic moieties (CH3 groups here)
and water molecules [41]. The latter process is called hydrophobic hydration, and can be the reason
for the high-affinity feature of the adsorption isotherm of P(PEGMA-AA).
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Figure 2. The adsorption isotherm of P(PEGMA-AA) in comparison to AA, PAA [37] isotherms
on magnetite surface at pH ~ 6.5 and 10 mM NaCl. The equilibrium concentration and adsorbed
amount are related to the molar amount of carboxylic groups (COOH). The error bars are omitted
for clarity, and lines are drawn to guide the eyes. The pictures of the adsorption series are taken at
increasing equilibrium concentrations of P(PEGMA-AA), from 0 to 2.06 mmol/dm3, and of AA from 0
to 7.4 mmol/dm3.

As it was proven in transmission electron microscopy (TEM) experiments (see our previous
publication [31]), P(PEGMA-AA) formed an intact polymer layer around the particles upon binding.
TEM analysis gave a value for coating layer thickness of 2–2.3 nm. For brush-like PEG chains of 4.5
ethylene glycol units (in P(PEGMA-AA)) the expected coating thickness would be around 1–2 nm,
and an additional layer thickness can be expected from the polymer backbone.

3.3. FT-IR ATR Study of the Binding Chemistry of P(PEGMA-AA) on MNPs

FT-IR ATR spectroscopy was used to study the molecular interactions between P(PEGMA-AA)
and the MNP surface. The spectra in Figure 3 show absorption peaks in the 1900–1000 cm−1 wavelength
range, most characteristic for oxygen-containing organic compounds.

The spectra of P(PEGMA) and PAA are useful for identification of separate peaks in
P(PEGMA-AA). The carbonyl band of the ester groups of P(PEGMA) is at 1728 cm−1, while that
of the carboxylic groups of PAA is at 1699 cm−1. In the P(PEGMA-AA) molecule, there is a
single carbonyl frequency at 1723 cm−1, resembling a combination of the carbonyls of PEGMA
ester and dissociated (acrylate) AA, and suggesting an interaction between those via, for example,
H-bonding [42]. The carbonyl C=O stretching of P(PEGMA) also shifted from 1728 to 1726 cm−1

upon adsorption on MNP (compare the P(PEGMA) and P(PEGMA)@MNP spectra), indicating the
probability of a similar H-bonding with ≡Fe–OH surface hydroxyl groups, such as with AA carboxyls
of P(PEGMA-AA). It is interesting, however, that the vibrational energy of the H-bonded C=O groups
of P(PEGMA-AA) does not change upon adsorption on MNPs. This indicates that either the carbonyls
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do not participate in the adsorption interaction, or that they form new H-bonds with the ≡Fe–OH
surface hydroxyls on account of the original H-bonds between C=O (PEGMA) and –COOH (AA). Other
characteristic peaks at 1564 cm−1 (–COO− asymmetric vibrations of PAA and P(PEGMA-AA)); 1456,
1452, and 1450 cm−1 (CH2/CH3 C–H bending of PAA, P(PEGMA-AA), and P(PEGMA), respectively);
1404 cm−1 (–COO− symmetric vibrations of PAA and P(PEGMA-AA)) and 1105 cm−1 (C–O–C ether
stretching bands of P(PEGMA), clearly did not shift upon polymer adsorption at all. The inertness of
the acrylic carboxylate groups of P(PEGMA-AA) in the adsorption on MNPs is in contrast with the
behavior of the carboxylates of small molecular AA (see in Figure S1, and discussion in Supplementary
Material). The Fe–OH vibration of magnetite at 1637 cm−1 disappears from the P(PEGMA-AA)@MNP
spectrum supporting the reliability of the H-bonding interaction of ≡Fe–OH (and/or ≡Fe–OH2

+)
with the ester and/or carboxyl carbonyls of P(PEGMA-AA) and its transition to Fe–O–C–R bonds.
Accumulating near the MNP surface, the original carbonyl–carboxylate H-bonds of P(PEGMA-AA)
can possibly lose the structured water molecules due to simultaneous crowding of hydrophobic
CH3 moieties in the adsorbed layer (see in section “PEGylation of MNPs by Using P(PEGMA-AA)”).
The loss of the stabilizing structured water can lead to H-bond decomposition and formation of lower
energy surface Fe–O–C–R bonds with further water release.

The spectra in the ranges of 4000–2400 and 800–500 cm−1 are discussed in Supplementary material
(Figure S2).Nanomaterials 2018, 8, x FOR PEER REVIEW  9 of 20 
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Figure 3. FT-IR absorption spectra of P(PEGMA-AA) and P(PEGMA) before and after adsorption on
MNP in the range of 1000–1900 cm−1. The spectrum of PAA@MNP [37] are also plotted for comparison.
The samples were dried from pH ~ 6.5 and I = 10 mM medium on ATR diamond crystal.

3.4. Evolution of the Colloidal Stability of Core–Shell MNPs

In electrokinetic potential measurements, we found that, despite the differences in the
characteristics of binding, the charge of P(PEGMA-AA)- and PAA-coated nanoparticles is the same
if the amounts of bound AA groups (mmol COOH/g MNP) are equal (Figure 4). The charge of
bare magnetite nanoparticles in aqueous dispersions is positive at the pH and ionic strength of our
adsorption experiments (pH = 6.5 and I = 10 mM). The net amount of ≡Fe−OH2

+ surface groups,
i.e., their excess over ≡Fe−O− groups, is ~0.05 mmol/g [38]. Binding of anionic adsorbates on the
MNP surface alters the electrokinetic potential by compensating (or overcompensating) the positive
original surface charge of the MNPs. The changes in the zeta potential to P(PEGMA-AA) adsorption
are shown in Figure 4, in comparison with that of PAA and AA.
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Figure 4. Zeta potentials of coated nanomagnets as a function of P(PEGMA-AA) (red), PAA
(orange) [37], and AA (blue) loadings, calculated on the basis of molar amount of carboxylic groups
(0–1.2 mmol/g). The measurements are done at pH ~ 6.5 and I = 10 mM (NaCl).

The pictures inserted in Figure 4 show the changes in the aggregation state of MNPs in the course
of coating agent addition. The aggregation behavior was similar for AA and P(PEGMA)-coated and for
P(PEGMA-AA)- and PAA-coated MNPs (upper and lower pictures, respectively). Particle aggregation
was observed between ~+30 and ~−30 mV of zeta potential in the absence of sufficient electrostatic
repulsion between particles. The amount of carboxylic moieties to achieve the maximal value of
(negative) zeta potential is ~0.5 mmol/g MNP for both polyelectrolytes.

On the other hand, if the zeta potential evolution was represented in function of coating agent
weight (g polymer/g MNP), as it is accustomed in literature, P(PEGMA-AA) would appear to be less
efficient in electrostatic stabilization of MNPs (see Figure S3). Although this type of evaluation has
practical advantages, it can lead to false conclusions about the capabilities of different polyelectrolytes
in stealth layer formation. More detailed discussion of the zeta potential changes due to P(PEGMA-AA)
binding is given in Supplementary Material (“Additional discussion on the changes in zeta potential
due to P(PEGMA-AA) addition”).

The pH dependence of the electrokinetic potential and hydrodynamic diameter of
P(PEGMA-AA)@MNPs, and their aggregates at different P(PEGMA-AA) loadings, was studied in
order to find the optimum loading to stabilize the MNPs in the widest possible pH range. Sufficient pH
resistance is necessary for a multitude of biomedical applications. As is seen in Figure 5, the addition
of increasing amounts of P(PEGMA-AA) to MNPs shifts the pH of the isoelectric point gradually to
lower values, and widens the pH range of electrostatic stabilization.Nanomaterials 2018, 8, x FOR PEER REVIEW  11 of 20 
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At low pHs (below ~6, not significantly lower than the pH in biological environment), however,
the electrokinetic potential of core–shell MNPs cannot be reduced below ~−30 mV (the electrostatic
stability threshold) even at the highest P(PEGMA-AA) loading of 2.2 mmol/g. This alone would
suggest a narrower pH range of colloidal stability of P(PEGMA-AA)@MNPs, as compared with
that of PAA [37]- and PAM [38]-coated MNPs. However, DLS experiments proved the presence of
well-stabilized primary particles at pHs 5 and 4, and 0.55 or 2.2 mmol/g polyelectrolyte loadings,
in spite of the low absolute values of zeta potential (between ~−25 and ~−15 mV) (see Figure S4).
As the electrostatic component to colloidal stabilization is exactly the same for the two kinds of
core–shell MNPs (PAA and P(PEGMA-AA)-coated particles), the above result implies that the steric
component, due to the presence of PEG chains in the stealth layer, has a determining role in particle
stabilization. In addition, P(PEGMA-AA) pushed the acidic limit of the pH threshold of colloidal
stability by 1 unit lower, relative to that of a similar comb-like polyelectrolyte PEG-acrylate-co-acrylic
acid, (P(PEGA-AA), [32]). The only difference in the structures of the two PEG copolymers is the
absence or presence of –CH3 groups in the backbone. Thus, it can be supposed that the better
stabilization capability of P(PEGMA-AA) can be due to the improvement in self-organization on the
surface of MNPs. Apparently, the presence of the hydrophobic –CH3 in the polyelectrolyte backbone
prompts the formation of tighter and sterically more repulsive stealth layer.

3.5. Salt Tolerance of P(PEGMA-AA)@MNPs

Detailed analysis of the pH dependence of hydrodynamic size of P(PEGMA-AA)@MNPs at
and below physiological salt concentrations [31] revealed that the polymer coating increased the
average hydrodynamic diameter of naked MNPs by ~30 nm (from ~80 to ~110 nm), leaving the PDI
(polydispersity index as given in Malvern software) values practically unchanged (i.e., 0.15 and 0.16,
respectively). The large values of hydrodynamic diameters of well-stabilized naked and coated MNPs
(as compared to their physical diameter from TEM, ~10 nm) are due to the formation of nanoparticle
clusters, and this observation was also supported by the magnetic hyperthermia results.

The P(PEGMA-AA)@MNP dispersions were colloidally stable at 10 mM ionic strength when
pH > ~4, and polyelectrolyte loadings above 0.55 mmol COOH/g MNP (Figure 5). The salt tolerance of
the particles was tested in coagulation kinetics experiments at pH = 6.5 and 1.2 mmol/g P(PEGMA-AA)
loading. Figure 6 shows that particle coagulation principally was not observed until raising the salt
concentration to 150 mM.Nanomaterials 2018, 8, x FOR PEER REVIEW  12 of 20 

 

 

Figure 6. Changes in the kinetics of coagulation of P(PEGMA-AA)@MNP with 1.2 mmol COOH/g 

MNP loading measured at pH ~ 6.5 as a function of ionic strength. 

At 150 mM NaCl, the ionic strength of blood, instant aggregation is seen, and the 

hydrodynamic diameter gradually decreases with time. At higher salt concentrations, 200, 250, and 

500 mM, instant aggregation can also be seen, which is followed by moderate size increase over the 

span of experimental observation. Both below and above 150 mM NaCl, the feature of the kinetics of 

coagulation seems to be changing non-systematically with ionic strength or, rather, independently of 

that. The highly non-ideal aggregation behavior of the P(PEGMA-AA)-coated MNPs can be caused 

by steric adaptation of the polyelectrolyte shell to the increase in ionic strength. With increasing 

ionic strength, the repulsive potential of the particles decreases. This, in turn, promotes aggregation, 

which is counteracted by the dehydration effect of the salt. Dehydration reduces the thickness of the 

polyelectrolyte shell and the distance of closest approach and, so, the potential at this plane 

(somewhat proportional to zeta potential) increases, counteracting the charge-induced zeta potential 

decrease. In addition, the formation of a denser coating layer with strongly hydrophilic PEG units 

contributes to stabilization via steric effects. 

The P(P(EGMA-AA)@MNPs show principally different salt tolerance behavior, as compared to 

all other carboxylated MNPs synthesized in our laboratory (e.g., PAA@MNP [37], PAM@MNP [38]), 

which is due to the efficient screening of acrylate charges by the ordered layer of PEG brushes. The 

inaccessibility of the charged moieties possibly prevents ion pair formation with background 

electrolyte cations and, thereby, the destabilization effect of the electrolyte is reduced. Thus, the 

core–shell MNPs behave similarly as uncharged hydrophilic particles or molecules possessing low 

pH- and salt sensitivity. Measured at 500 mM salt concentration, all the other core–shell MNPs 

aggregated in coagulation kinetics experiments to reach a hydrodynamic size of 400–600 nm at 600 s 

of measuring time, while the size of P(PEGMA-AA) MPNs did not exceed 140 nm. Even an 

extremely high salt concentration, 1000 mM, could not double the particle size, i.e., it increased from 

~100 to ~170 nm. 

3.6. Hemocompatibility of P(PEGMA-AA)@MNPs 

We demonstrated previously in biocompatibility experiments [1] that P(PEGMA-AA)@MNPs 

do not have any harmful effect on cell cultures of human origin. Since MRI contrast agents are 

injected intravenously, the P(PEGMA-AA)@MNPs should obey excellent blood compatibility as 

well, which we tested on whole blood samples. The blood sedimentation rate (ESR) analysis result of 

Donor #1 is seen in Figure 7. The rates of sedimentation are essentially identical, within the 

experimental error for both control blood sample and the sample containing the 

P(PEGMA-AA)@MNPs, i.e., 9 ± 2 and 5 ± 2 mm/h, respectively. Our previous studies of the effect of 

MNP addition showed that the same type of MNP can alter the ESR values by between −1 to +5 

mm/h depending on the donor, while remaining in the normal range, below 22 mm/h. One example 
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MNP loading measured at pH ~ 6.5 as a function of ionic strength.

At 150 mM NaCl, the ionic strength of blood, instant aggregation is seen, and the hydrodynamic
diameter gradually decreases with time. At higher salt concentrations, 200, 250, and 500 mM, instant
aggregation can also be seen, which is followed by moderate size increase over the span of experimental
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observation. Both below and above 150 mM NaCl, the feature of the kinetics of coagulation seems to be
changing non-systematically with ionic strength or, rather, independently of that. The highly non-ideal
aggregation behavior of the P(PEGMA-AA)-coated MNPs can be caused by steric adaptation of the
polyelectrolyte shell to the increase in ionic strength. With increasing ionic strength, the repulsive
potential of the particles decreases. This, in turn, promotes aggregation, which is counteracted by
the dehydration effect of the salt. Dehydration reduces the thickness of the polyelectrolyte shell
and the distance of closest approach and, so, the potential at this plane (somewhat proportional
to zeta potential) increases, counteracting the charge-induced zeta potential decrease. In addition,
the formation of a denser coating layer with strongly hydrophilic PEG units contributes to stabilization
via steric effects.

The P(P(EGMA-AA)@MNPs show principally different salt tolerance behavior, as compared to
all other carboxylated MNPs synthesized in our laboratory (e.g., PAA@MNP [37], PAM@MNP [38]),
which is due to the efficient screening of acrylate charges by the ordered layer of PEG brushes.
The inaccessibility of the charged moieties possibly prevents ion pair formation with background
electrolyte cations and, thereby, the destabilization effect of the electrolyte is reduced. Thus,
the core–shell MNPs behave similarly as uncharged hydrophilic particles or molecules possessing
low pH- and salt sensitivity. Measured at 500 mM salt concentration, all the other core–shell MNPs
aggregated in coagulation kinetics experiments to reach a hydrodynamic size of 400–600 nm at 600 s of
measuring time, while the size of P(PEGMA-AA) MPNs did not exceed 140 nm. Even an extremely
high salt concentration, 1000 mM, could not double the particle size, i.e., it increased from ~100 to
~170 nm.

3.6. Hemocompatibility of P(PEGMA-AA)@MNPs

We demonstrated previously in biocompatibility experiments [31] that P(PEGMA-AA)@MNPs do
not have any harmful effect on cell cultures of human origin. Since MRI contrast agents are injected
intravenously, the P(PEGMA-AA)@MNPs should obey excellent blood compatibility as well, which we
tested on whole blood samples. The blood sedimentation rate (ESR) analysis result of Donor #1 is seen
in Figure 7. The rates of sedimentation are essentially identical, within the experimental error for both
control blood sample and the sample containing the P(PEGMA-AA)@MNPs, i.e., 9 ± 2 and 5 ± 2 mm/h,
respectively. Our previous studies of the effect of MNP addition showed that the same type of MNP
can alter the ESR values by between −1 to +5 mm/h depending on the donor, while remaining in the
normal range, below 22 mm/h. One example of this donor-dependent variability (−1, +5, and +1,
for 3 donors) has been published by us earlier [38], the explanation of which requires additional studies.
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Figure 7. Sedimentation test results of sample from Donor #1: (a) vial contains original blood sample
and (b) vial the sample with P(PEGMA-AA)@MNP added at 0.24 mg/mL concentration.

The brown colour of the plasma in the right vial reveals the presence of MNPs. The cell viability
experiments (see red blood cell count results below) may be used to exclude the contribution of
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hemolysis to plasma discoloration, as the number of whole red blood cells remained essentially
constant during the 240 min of our experiment).

The smears of control and MNP containing blood also did not reveal signs of coagulation (Figure 8).
Nanoparticles are not seen at the resolution of the image of smear tests unless coagulation occurs.
The small dots in the enlarged fields are non-aggregated thrombocytes. In our previous studies,
we found strong aggregation in citrate-anticoagulated blood with well-stabilized polygallic acid- and
PAA-coated MNPs [43] presumably due to iron dissolution by citric acid that could displace part of the
polyelectrolytes in the MNP coating layer. Additional examples of thrombocyte aggregation induced
by poorly stabilized MNPs are given in [44]. For this reason, we use EDTA-anticoagulated blood in
the smears.
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Figure 8. Whole blood smears from the sample of Donor #1 without (a) and with (b)
P(PEGMA-AA)@MNP added at 0.4 mg/mL concentration. The plasma of the two samples are seen in
the insets. Small dots in the magnified regions are thrombocytes. The nanoparticles are invisible at the
magnification of the optical microscope.

The results of WBC viability factor (WVF) measurements are presented in Figure 9. Comparing the
WVF results for whole blood and blood samples diluted with distilled water and with
P(PEGMA-AA)@MNP magnetic fluid in the same volume ratio, the WV factor decreased most
intensely due to the addition of distilled water. This shows that the viability decrease is caused
primarily by osmotic effects. The magnetic fluid has a smaller influence because it contains the
core–shell MNPs and, consequently, the volume fraction of water (responsible for the osmotic action)
is less than 1. Despite the measurable changes in WVF, the effect of the magnetic fluid is negligibly
small, leading to less than 5% decrease during the four hours of experiment. Cell counts (cells/L)
varied at 5.45–6.40 × 106 (WBC), 3.13–3.76 × 109 (RBC), and 1.74–2.09 × 106 (PLT), and the variation
of cell volumes was less than 5% in the presence of MNPs. No trends were observed for cell count and
volume variations as a function of the concentration of MNPs in the blood. The measured results for
white cell subpopulations (neutrophils, lymphocytes, and monocytes) also show minor impact of MNP
addition on the recognition system. The percentage viability values of neutrophils (pNEU) changed in
the course of the experiments, from 57.36 to 57.42 (in reference sample without MNP from 55.8 to 54.52),
that of lymphocytes (pLYM) from 32.03 to 33.19 (reference 33.79 to 33.96), and of monocytes (pMON)
from 7.88 to 6.45 (reference 7.05 to 8.35). Comparing these values with the reproducibility requirement
given by producer (pNEU: ±8.55%, pLYM: ±5.10%, pMON: ±8.90%), we have to conclude that
the change of pNEU and pLYM values in time is not even higher than their reproducibility limits.
We observed a higher change only for pMON, however, this was the case for both the MNP containing
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and reference samples. The latter also reflects the absence of sensitivity of blood to the presence of
P(PEGMA-AA)-coated nanoparticles.
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Figure 9. Changes in white blood cell viability factor as a function of time in whole blood and
blood diluted with magnetic fluid (the P(PEGMA)@MNP concentration in blood is 0.4 mg/mL) and
distilled water.

For MRI applications, there should be no interaction between the contrast agent nanoparticles and
blood plasma proteins, or at least, nonspecific interactions must be absent [45]. Instead of concealing,
non-specific attachment of proteins help nanoparticle recognition and clearance from circulation.
The interaction between P(PEGMA-AA)@MNPs with plasma proteins were tested in DLS experiments
and electrokinetic measurements.

Changes in the hydrodynamic diameter of the MNPs were measured upon contact with human
plasma of increasing concentrations. The measurements can reflect simultaneously both aggregation
and changes in the coating layer thickness.

The hydrodynamic diameter of naked and P(PEGMA-AA)-coated MNPs (Figure 10) was higher
at low plasma concentrations, and lower at high plasma concentrations. The low HP concentration
regime resembles the conditions at the locus of intravenous administration in that the ratio of proteins
to nanoparticles is very low. Adsorption of only a few protein molecules reduces considerably the
size of naked MNP aggregates and somewhat enhances that of P(PEGMA-AA)@MNPs. In both cases,
this is a likely sign of the initiation of protein corona formation. The size of naked MNPs remains
above 400 nm at all HP concentrations, meaning that the particles of ~10 nm diameter are dispersed
by protein adsorption, but the corona is formed around aggregates of naked MNP. By contrast,
the size of P(PEGMA-AA)-coated MNPs increased less than twofold, revealing that, instead of particle
aggregation, the formation of a protein corona is more likely. At higher HP concentrations (up to
80% of the original HP solution) aggregates do not form, but the size of protein corona increases
gradually, as seen from the increase in Zave from ~120 nm at 20% to ~180 nm at 80% HP (see Figure S5).
The polydispersity index was between 0.6 and 1 for the aggregated naked MNPs (in the whole HP
concentration range) and between 0.2 and 0.4 for P(PEGMA-AA) MNPs, which also supports the
lack of aggregation in the latter systems. The aggregation state of the dispersions was visualized
in sedimentation experiments as seen in the pictures. Indeed, no sedimentation was observed in
dispersions of P(PEGMA-AA)@MNP in HP solutions. The initially higher hydrodynamic diameter
values (measured at 3 min after mixing the MNP dispersions with HP solutions) decreased with time,
which is probably the sign of formation of denser protein corona with time. For the naked MNPs,
the size decrease with time is about 20% [46]. This is likely due to some further decrease in the size of
aggregates. On the other hand, for P(PEGMA-AA)@MNPs, a consistent size change with time cannot
be observed. After the initial oscillations with HP concentration, the hydrodynamic diameter steadily
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increases at higher HP concentrations, most likely due to the dynamic character of the protein corona
(see Figure S5).
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Figure 10. Changes in the hydrodynamic diameter of naked MNP (green) and P(PEGMA-AA)@MNP
(red) as a function of the concentration of HP measured 3 min (a) and P(PEGMA-AA)@MNPs at 3 min
and 20 h after dispersing in HP solution (b).

The zeta potential changes in the course of protein corona formation (Figure 11) reflect the protein
corona formation both around naked MNP aggregates and well-dispersed P(PEGMA-AA)@MNP
particles. The aggregates of originally positively charged naked MNPs (pH ~ 6.5 and I = 10 mM) get
overcharged negatively, and the negative zeta potential increases with increasing HP concentration.
As the zeta potential of HP solutions is ~−5mV, the much higher negative potentials measured for
both naked and P(PEGMA-AA)-coated MNPs indicate dense packing of HP in the protein corona.
The adsorption of HP on P(PEGMA-AA)@MNPs decreases their originally high negative zeta potential
(−32 to −16 mV), probably due to shifting of the plane of shear by the protein corona farther from its
position for the original polyelectrolyte-coated particles. With increasing concentration of HP from 10 to
80%, the values of negative zeta potentials increase gradually for both naked and polyelectrolyte-coated
particles. The latter shows that protein corona changes gradually in parallel with the increase in
hydrodynamic sizes and, seemingly, does not reach saturation, even at the highest concentrations.Nanomaterials 2018, 8, x FOR PEER REVIEW  16 of 20 
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3.7. MRI Contrast Efficiency of P(PEGMA-AA)@MNPs

We have observed [31] the absence of non-specific binding of P(PEGMA-AA)@MNPs to HeLa
cells. The lack of cellular binding or uptake allows the MNPs to flow freely in the vascular system
during the course of MRI diagnosis. In addition, specific targeting function can safely be added to the
particles, as non-specific binding mechanisms could not compromise their action.

The MRI contrast efficiency [47,48] of the P(PEGMA-AA)@MNPs was measured at Fe concentrations
between 0.5 and 13 mg/L. The iron content was corrected by using the accurate values from ICP
measurements. The experimental r2 relaxivity, 451 mM−1s−1 (Figure 12), is one of the highest among
published data for core–shell magnetite nanoparticles of similar size [49–51].
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Figure 12. Transverse relaxation curves of P(PEGMA-AA)@MNPs in phantom water measured at
20 ◦C at increasing iron concentrations (a) and the plot for r2 relaxivity vs. iron concentration (b).
The goodness of the linear plot is R2 = 0.9971. In the inset of the right panel, the T2-weighted image of
the samples is shown (measured at TR = 3000 ms repetition time and TE = 40 ms echo delay time) with
increasing Fe concentrations.

4. Conclusions

The molecular background of post-coating of MNPs with P(PEGMA-AA) brush polyelectrolyte,
colloidal stability, pH and salt concentration tolerance of the core–shell MNP product,
its hemocompatibility, and MRI contrast efficiency, were studied. Blood sedimentation rate, blood
smear, white blood cell viability experiments, and interaction tests of MNP with human plasma proved
the hemocompatibility of the PEGylated MNPs. The MRI contrast enhancement of our novel product
is noteworthy; the value of the r2 relaxivity is one of the highest among the data published in the
literature. This fact, together with the magnetic hyperthermia experiments published previously [31],
demonstrated the theranostic potential of this newly developed PEGylated MNP product. The high r2
relaxivity value and previous hyperthermia analysis [31] both indicate the presence of MNP clusters
that have already been observed in dynamic light scattering experiments. We are convinced that our
idea to prepare designed PEGylated MNPs via the spontaneous process of self-organization under
mild conditions, i.e., the post-coating of magnetic nanocore with multifunctional polyelectrolyte, and
optimization for potential biomedical applications, has great advantages, aiming at further scaling-up
of the process.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-4991/8/10/776/s1,
“Potentiometric Acid–Base Titration of Polyelectrolytes”, “Additional information on the FT-IR ATR spectra”,
Figure S1: FT-IR spectral shifts of AA adsorbed on MNP surface in comparison to the spectra of AA and naked
MNP, Figure S2: FT-IR spectra of MNP, P(PEGMA-AA)@MNP and P(PEGMA)@MNP in the ranges of 4000–2400
(a) and 800–500 (b) cm−1. For comparison, the PAA@MNP absorption spectrum [37] is also included in (b).
The samples were dried from pH ~ 6.5, I = 10 mM medium on the ATR crystal, “Additional discussion on the

http://www.mdpi.com/2079-4991/8/10/776/s1
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changes in zeta potential due to P(PEGMA-AA) addition”, Figure S3: Zeta potentials of coated nanomagnets
in function of P(PEGMA-AA) (red), PAA (yellow) [37], P(PEGMA) (green) and AA (blue) loadings calculated
on polymer mass basis (0–0.5 g/g). The measurements are done at pH ~ 6.5 and I = 10 mM (NaCl), Figure S4:
The pH-dependent mean sizes of P(PEGMA-AA) coated nanomagnets at 0, 0.18, 0.55 and 2.2 mmol COOH/g
MNP loadings at 10 mM NaCl. The error bars are omitted for clarity and the lines are drawn to guide the eyes,
Figure S5: Evolution of protein corona on P(PEGMA-AA)@MNPs in human plasma in the total measured HP
concentration range, as expressed through the changes in average hydrodynamic diameter (Zave) measured in
dynamic light scattering experiments.
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