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Abstract: Long non-coding RNAs (long ncRNAs, lncRNAs) of all kinds have been implicated in
a range of cell developmental processes and diseases, while they are not translated into proteins.
Inferring diseases associated lncRNAs by computational methods can be helpful to understand
the pathogenesis of diseases, but those current computational methods still have not achieved
remarkable predictive performance: such as the inaccurate construction of similarity networks
and inadequate numbers of known lncRNA–disease associations. In this research, we proposed
a lncRNA–disease associations inference based on integrated space projection scores (LDAI-ISPS)
composed of the following key steps: changing the Boolean network of known lncRNA–disease
associations into the weighted networks via combining all the global information (e.g., disease
semantic similarities, lncRNA functional similarities, and known lncRNA–disease associations);
obtaining the space projection scores via vector projections of the weighted networks to form the
final prediction scores without biases. The leave-one-out cross validation (LOOCV) results showed
that, compared with other methods, LDAI-ISPS had a higher accuracy with area-under-the-curve
(AUC) value of 0.9154 for inferring diseases, with AUC value of 0.8865 for inferring new lncRNAs
(whose associations related to diseases are unknown), with AUC value of 0.7518 for inferring isolated
diseases (whose associations related to lncRNAs are unknown). A case study also confirmed the
predictive performance of LDAI-ISPS as a helper for traditional biological experiments in inferring
the potential LncRNA–disease associations and isolated diseases.
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1. Introduction

Long non-coding RNAs (LncRNAs) are a type of RNA, defined as being transcripts with lengths
exceeding 200 nucleotides that are not translated into protein, which exist in all kinds of organisms
widely [1,2]. A growing number of studies have found that mutations and dysregulations of lncRNAs
cause a variety of diseases, including cervical cancer [3,4], colorectal cancer [5,6], ovarian cancer [7–9],
prostate cancer [10,11], and diabetes [12,13]. Therefore, lncRNAs could be used as biomarkers for
the early diagnosis and prognosis of corresponding cancers, which motivates the identification and
confirmation of the associations between lncRNAs and diseases to become a research focus. The lncRNA
related databases (such as LncRNAdb [14], LncRNADisease [15], NRED [16], and NONCODE [17])
provide strong data support on which the computational prediction models can be built to provide
more accurate experimental targets as well as an effective supplement to biological experiments [18–22]:
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• Provide guidance with less cost and time for the subsequent biological experimental verification
related to complex diseases;

• Speed up our understanding on the pathogenesis of complex diseases;
• Give new ideas for disease prevention, diagnosis, treatment, and prognosis;
• Have a profound implication on drug development and medical improvement.

The computational models used for inferring lncRNA–disease associations have been divided
into two main categories: machine learning-based inference and network-based inference.

In recent years, machine learning has been used to infer lncRNA–disease associations [23–29].
Zhao et al. [30] integrated multi-omic data, genomic, regulome, and transcriptome with naïve Bayesian
classifier models to predict lncRNA–cancer associations, and successfully identified 707 potential
cancer-related lncRNAs. Yu et al. [24] utilized the naïve Bayesian classifier to predict lncRNA–disease
associations after constructing the global tripartite network and the global quadruple network.
Lan et al. [31] used bagging support vector machine (SVM) to predict lncRNA–disease association
based on multiple biological data resources fused by the matrix geometric mean. How to obtain the
negative samples is the huge challenge that all of the above-mentioned machine learning based methods
have to face. Normally, the unlabeled lncRNA–disease associations are those that cannot be found in
a finite number of biological experiments, which are selected randomly to be the negative samples.
Therefore, selecting the unknown associations as the negative samples randomly is unreasonable and
will undoubtedly have a serious impact on the accuracy of prediction results, because it cannot mean
that these associations do not exist. For overcoming that the negative sample cannot be obtained
accurately, Chen et al. [32] proposed a semi-supervised learning framework (LRLSLDA) based on
Laplacian Regularized Least Squares, without needing negative samples. LRLSLDA still has some
defects, like needing too many parameters and low prediction accuracy. Considering that the accurate
similarity network construction is beneficial to improve the prediction accuracy, Chen et al. [33] used
the hyper geometric distribution to infer lncRNA–disease associations (HGLDA) without relying on
known experimentally verified lncRNA–disease associations, but HGLDA cannot be used for isolated
diseases and new lncRNAs.

The hypothesis that lncRNAs with similar functions tend to be related to similar diseases is
the foundation of those network-based methods [34–36]. Chen et al. [37] proposed a new method
named LNCSIM that only used the information of common ancestors to calculate the similarity
without retaining the hierarchical structure of Directed Acyclic Graphs (DAGs) of diseases, which led
to being more vulnerable to information bias in DAGs. Huang et al. [38] proposed an edge-based
computational model ILNCSIM by integrating lncRNA–disease associations and disease DAGs.
However, the prediction results of ILNCSIM were affected for lack of unlabeled but existing associations.
Chen et al. [39] proposed a fuzzy measure-based lncRNA functional similarity calculation model
(FMLNCSIM) that achieved better performance but still suffered from the information bias in DAGs.
Inspired by social network analysis, Chen et al. [40] utilized Katz Centrality on network topology
to predict lncRNA–disease associations. The predicted results were biased toward those diseases
that had more related lncRNAs found from the known associations. Cheng et al. [41] proposed an
integrative framework to predict novel lncRNA–disease associations, but the prediction result heavily
relied on the integrated network and was easily affected by data incompleteness. Ding et al. [42]
inferred the lncRNA–disease associations via lncRNA–disease–gene tripartite graph (TPGLDA), but
TPGLDA depended on the topology of a tripartite graph whose data incompleteness may affect the
predictive performance. Shi et al. [43] proposed a graph regression-based unified framework (GRUF)
for the inference of lncRNA–disease associations including the inference of isolated diseases and new
lncRNAs. GRUF provided more information on the relationships between a pair of lncRNA and
disease instead of only a binary result. However, the prediction results may be affected by the quality
of the dataset as well as those lncRNAs with low expression level. Numerous researchers introduced
random walk into the prediction of lncRNA–disease associations [44–54]. Sun et al. [55] executed
random walk with restart (RWR) on lncRNA functional similarity network to infer lncRNA–disease
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associations. Zhou et al. [56] implemented RWR on a heterogeneous network, which cannot avoid
producing some biased predictions. Yao et al. [57] integrated genes, lncRNAs, phenotypes, and their
associations into a multi-level composite network with which they implemented a RWR algorithm
to identify candidate lncRNA–disease associations. Although this method can be used for isolated
disease prediction, its prediction accuracy depended on the topology of the composite network and
was affected by incompleteness and biases of data. The selection of a seed vector that was produced
from known lncRNA–disease associations had a great influence on the predictive performance of the
above-mentioned random walk algorithms. It caused the prediction results of the models that used the
random walk algorithms to heavily depend on the known lncRNA–disease associations. Therefore,
identifying diseases-related lncRNAs is still in its initial phase with following limitations:

• Most of the off-the-shelf computational models cannot be used for inferring isolated diseases and
new lncRNAs directly;

• Supervised learning of machine learning needs a negative sample to train the class classifier, but
such negative sample cannot be obtained;

• Those that only rely on the known network topology will produce biased prediction results.

Considering above limitations, we proposed a novel lncRNA–disease associations inference
based on space projections of integrated networks (LDAI-ISPS) that contained the following four
steps: step one, reconstruct the disease (lncRNA) integrated similarities network via integrating
multiple network information; step two, change the Boolean network of known experimentally verified
associations into the weighted network for further inferring the associations between lncRNAs and
diseases accurately; step three, utilize the vector projections of the vectors coming from the networks
of the above two steps to construct space projection scores; step four, obtain the final prediction results
by integrating two kinds of space projection sores. Finally, LOOCV experiments and the case study
showed that, without needing negative samples, LDAI-ISPS not only achieved excellent predictive
performance, but also can be used for isolated diseases and new lncRNAs.

2. Results

2.1. Influence of Parameter Selection on Performance

In this section, we mainly discuss how to obtain the optimum values that were the values when
corresponding AUC values were highest with three weighting parameters (weighting parameter α
used for the reconstruction of LD(dw)

nl×nd, weighting parameter β used for the reconstruction of LD(lw)

nl×nd,

weighting parameter ω used for the integration of LD(pd)
nl×nd and LD(pl)

nl×nd). Firstly, we analyzed how the
value of β influenced the predictive validity of LDAI-ISPS with setting α and ω as 0.5 for simplicity.
With increasing the value of β from 0.1 to 0.9 (with a step size of 0.1), we performed LOOCV on
the dataset LDnl×nd to calculate the AUC values (can be seen in Figure 1). We found that AUC was
obtained the optimum value of 0.7463 when βwas set to 0.1, and then AUC values decreased gradually.
AUC obtained the minimum value of 0.6204 when β was set to 0.9. Secondly, after setting β to be 0.1
and ω to be 0.5, we performed LOOCV to observe the corresponding AUC values with increasing
α from 0.1 to 0.9 (with step size of 0.1). Similarly, we found that AUC obtained the optimum value
of 0.893915 when α was set to 0.1, and then AUC values decreased gradually. Based on above two
steps (setting α = β= 0.1), we performed LOOCV to calculate the corresponding AUC values with
increasing ω from 0.1 to 0.9 (with step size of 0.1). We found that AUC obtained the optimum value of
0.9154 when ωwas set to 0.8. In conclusion, we set α = β= 0.1 and ω = 0.8 to obtain the corresponding
optimal AUC values.
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Figure 1. Influence of parameter variation on model prediction accuracy.

2.2. Comparison with Other Methods

2.2.1. Evaluation Metrics of Performance

LOOCV experiments were implemented for evaluating the predictive performance of LDAI-ISPS
in inferring the latent lncRNA–disease associations. We divided the dataset into two parts. In one
part, each known association in LDnl×nd was observed in turn as a test data, and in the other part,
the remaining known associations were used as the training data. Under the framework of LOOCV,
we compared the prediction results with LDnl×nd on some specific threshold to obtain the following
four metrics: true positive (TP), false positive (FP), false negative (FN), true negative (TN). Furthermore,
according to some specified thresholds, we calculated the true positive rate (TPR = TP

TP + FN ) against
false positive rate (FPR = FP

TN + FP ) with which we plotted out the receiver operating characteristic
curve (ROC). The area under the ROC curve (AUC) was finally calculated to assess the overall predictive
performance of LDAI-ISPS.

2.2.2. Comparison Results on Performance

Considering that the information used by GrwLDA [46], BPLLDA [58], and LRLSLDA [32] is similar
to that of LDAI-ISPS and these four methods can all be used for isolated diseases and new lncRNAs,
we compared LDAI-ISPS with GrwLDA, BPLLD, and LRLSLDA on predictive performance. In order
to make an unbiased comparison, we used the same parameter values described in corresponding
papers of GrwLDA, BPLLD, and LRLSLDA. The comparison results from LOOCV can be seen in
Figure 2, where AUC values of GrwLDA, BPLLDA, LRLSLDA, and LDAI-ISPS were 0.7833, 0.8712,
0.8231, and 0.9154, respectively. Obviously, LDAI-ISPS obtained the optimum AUC value, which was
higher than GrwLDA (16.84%), BPLLDA (5.07%), and LRLSLDA (11.21%).



Int. J. Mol. Sci. 2020, 21, 1508 5 of 16
Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 5 of 16 

 

 
Figure 2. The receiver operating characteristic (ROC) curves and AUC values of the long non-coding 
RNA (lncRNA)–disease associations inference based on integrated space projection scores 
(LDAI-ISPS) compared with other methods. 

2.3. Prediction for New lncRNAs and Isolated Diseases 

New lncRNAs are those whose associations related to diseases are unknown. How to pair new 
lncRNAs with diseases remains an urgent challenge, and the solutions will certainly advance our 
understanding of disease molecular mechanisms. Firstly, although more and more new lncRNAs 
were discovered, their associations with diseases could not be identified by the time they were 
discovered. Secondly, no known association can be used directly to predict the potential 
associations. Thirdly, most of the existing computational methods cannot infer the potential 
associations between new lncRNAs and diseases. Therefore, we continuously removed all known 
related associations of each candidate lncRNA with diseases to simulate new lncRNAs and 
performed LOOCV to evaluate the predictive performance of LDAI-ISPS. 

Isolated diseases are those whose associations related to lncRNAs are unknown. The prediction 
for isolated diseases faced the similar challenge of new lncRNAs as mentioned before. We simulated 
each candidate disease as an isolated disease by removing all known related associations with 
lncRNAs, and then implemented LOOCV with these simulated isolated diseases. The AUC value of 
0.7518 (shown in Figure 3) further confirmed the excellent predictive performance of LDAI-ISPS for 
isolated diseases. 
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2.3. Prediction for New lncRNAs and Isolated Diseases

New lncRNAs are those whose associations related to diseases are unknown. How to pair new
lncRNAs with diseases remains an urgent challenge, and the solutions will certainly advance our
understanding of disease molecular mechanisms. Firstly, although more and more new lncRNAs were
discovered, their associations with diseases could not be identified by the time they were discovered.
Secondly, no known association can be used directly to predict the potential associations. Thirdly, most
of the existing computational methods cannot infer the potential associations between new lncRNAs
and diseases. Therefore, we continuously removed all known related associations of each candidate
lncRNA with diseases to simulate new lncRNAs and performed LOOCV to evaluate the predictive
performance of LDAI-ISPS.

Isolated diseases are those whose associations related to lncRNAs are unknown. The prediction
for isolated diseases faced the similar challenge of new lncRNAs as mentioned before. We simulated
each candidate disease as an isolated disease by removing all known related associations with lncRNAs,
and then implemented LOOCV with these simulated isolated diseases. The AUC value of 0.7518 (shown
in Figure 3) further confirmed the excellent predictive performance of LDAI-ISPS for isolated diseases.
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2.4. Case Study

2.4.1. Case Study for Potential Associations

Cervical cancer is a deadly threat to a woman’s life and health. It is estimated that there are
528,000 new cases and 266,000 deaths from cervical cancer worldwide every year [59]. Type 2 diabetes
is one kind of metabolic disorder. So far, more than 415 million people have suffered terribly from type 2
diabetes. Therefore, identifying some specific diseases related lncRNAs is important for understanding
the pathogenesis, treatment, and prognosis. We took cervical cancer and type 2 diabetes as the cases to
further confirm the performance of LDAI-ISPS by using the known lncRNA-disease associations in
LDnl×nd as the training data.

The top five out of the prediction results for each of these two diseases are listed in Table 1, where
two out of the top five predicted associations were found evidence in database LncRNADisease [15] and
the remaining three out of the top five predicted associations were found supporting evidence in relevant
literatures. Only one predicted association listed in Table 1 was not found any supporting evidence,
which confirmed the excellent performance of LDAI-ISPS in inferring the potential associations between
lncRNAs and diseases.

Table 1. The top five results predicted for cervical cancer and type 2 diabetes.

Disease lncRNA Name Evidence Rank

Cervical cancer LSINCT5 Ref. [60] 1
Cervical cancer HOTAIR LncRNADisease 2
Cervical cancer MEG3 LncRNADisease 3
Cervical cancer EPB41L4A-AS1 Ref. [61] 4
Cervical cancer PANDAR Ref. [3] 5
Type 2 diabetes IGF2-AS Ref. [62] 1
Type 2 diabetes MEG3 LncRNADisease 2
Type 2 diabetes PINK1-AS Ref. [63] 3
Type 2 diabetes Gas5 LncRNADisease 4
Type 2 diabetes PCAT-1 Unconfirmed 5
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2.4.2. Case Study for Isolated Diseases

We took prostate cancer and Alzheimer’s disease as the cases to further confirm the predictive
performance of LDAI-ISPS for isolated diseases. As for prostate cancer, we removed 13 known
associations related to it to simulate the isolated disease. As for Alzheimer’s disease, we removed
eight known associations related to it to simulate the isolated disease. The top five out of the predicted
results of both diseases were listed in Table 2, where all of the top five predicted associations related
to prostate cancer were found evidence in database LncRNADisease, and four out of the top five
predicted associations related to Alzheimer’s disease were found evidence in database LncRNADisease
except CDKN2B-AS10. However, Tedde et al. [64] found that CDKN2A/CDKN2B genes/loci associated
with late-onset Alzheimer’s disease, which proved the credibility of our LDAI-ISPS.

Table 2. The top five results predicted for specific isolated diseases (e.g., prostate cancer and
Alzheimer’s disease).

Disease lncRNA Name Evidence Rank

Prostate cancer PCAT-1 LncRNADisease 1
Prostate cancer C1QTNF9B-AS1 LncRNADisease 2
Prostate cancer CBR3-AS1 LncRNADisease 3
Prostate cancer PCA3 LncRNADisease 4
Prostate cancer PCAT1 LncRNADisease 5

Alzheimer’s disease BACE1-AS LncRNADisease 1
Alzheimer’s disease GDNFOS LncRNADisease 2
Alzheimer’s disease SNHG3 LncRNADisease 3
Alzheimer’s disease SOX2-OT LncRNADisease 4
Alzheimer’s disease CDKN2B-AS10 Ref. [64] 5

3. Discussion

The research of a computational model for inferring lncRNA–disease associations is still a
hot topic. On one hand, the prediction of lncRNA–disease associations is helpful to explore the
complex pathogenesis of diseases; on the other hand, the traditional biological methods are tedious
and time-consuming, therefore, many computational methods have emerged in recent years used
for inferring massive lncRNA–disease associations. Those computational methods still have some
limitations that motivated us to propose a new lncRNA–disease association inference (LDAI-ISPS),
whose main contribution consists of the following points: made full use of network topology characters
instead of needing negative samples; LOOCV results showed that AUC value of LDAI-ISPS in inferring
disease related lncRNAs was 0.9154, which was 16.86%, 5.07%, and 11.21% higher than that of
GrwLDA, BPLLDA, and LRLSLDA, respectively. Additionally, the AUC value for new lncRNAs and
isolated diseases were 0.8865 and 0.7518, respectively, which further evaluated the stronger predictive
performance of LDAI-ISPS.

The following reasons helped our LDAI-ISPS achieve good predictive performance: first,
we integrated Gaussian interaction profile central similarity to calculate disease similarity and
lncRNA similarity, which made up the incompleteness of similarity network construction only
with sematic similarity. Second, we reconstructed the Boolean network of known experimentally
verified lncRNA–disease associations to be the weighted network of lncRNA–disease associations.
The weighted network can exactly describe the association strength not just showing the existence
of an association. Third, the global information (all the disease similarities, lncRNA similarities,
and lncRNA–disease associations), even those diseases and lncRNAs without any known association,
were utilized to improve the predictive ability of LDAI-ISPS including the ability on new lncRNAs and
isolated diseases.
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Our method still has following limitations that need to be improved in future: the predicted
results were biased towards the diseases with more related lncRNAs or the lncRNAs with more
related diseases; the prediction accuracy needs to be enhanced further through fusing different data.
In conclusion, LDAI-ISPS can be a useful helper for inference of lncRNA–disease associations.

4. Materials and Methods

4.1. Materials

4.1.1. LncRNA–Disease Association Network

The data source of our dataset used came from the LncRNADisease database [15] composed of
experimentally supported lncRNA–disease association data and predicting novel lncRNA–disease
associations. After preprocessing, the dataset was composed of 352 known associations that involved
156 lncRNAs (denoted by set L = {l1, l2, . . . , lnl}) and 190 diseases (denoted by set D = {d1, d2, . . . , dnd}),
as shown in Supplementary Materials S1–S3. A Boolean matrix LDnl×nd= (ldi j

)
nl×nd

including the 352
known lncRNA–disease associations was used to represent the adjacency matrix of the lncRNA–disease
associations, where nl represented the number of lncRNAs with value of 156 and nd represented the
number of diseases with value of 190. If lncRNA li has a known association with disease d j checked
from the 352 known lncRNA-disease associations, ldi j is set to 1, otherwise ldi j is set to 0.

4.1.2. Disease Semantic Similarity

The method proposed by Wang et al. [65] defined the semantic contribution value of disease
according to the layer structure of corresponding direct acyclic graph (DAG). A similar way
DAG(d j) = (N(d j), E(d j)) was used as described in [65] to calculate the disease semantic similarity,
where nodes set N(d j) denoted the disease d j itself and its ancestors, and edges set E(d j) denoted
the relations between the nodes in DAG. For each node dt in set N(d j), its contribution to d j was
numerically defined as the following:

Cd j(dt) =

 1, if dt = d j

max
{
∆ ∗Cd j(d

′

t)
∣∣∣d′t ∈ children of dt

}
, if dt , d j

(1)

where ∆ is the contribution factor of connecting edges between dt and its children d′t , with the optimum
value of 0.5 described in [65]. Additionally, the sematic score of disease d j was defined in Equation (2):

SS(d j) =
∑

dt∈N(d j)

Cd j(dt) (2)

A matrix DDnd×nd = (ddi j)nd×nd (can be seen in Supplementary Materials S4) represented the
disease semantic similarities, where ddi j ∈ [0, 1] denoted the semantic similarity between disease di
and d j, with the calculation shown in Equation (3):

ddi j =

∑
dt∈N(di)∩N(d j)

Cdi(dt) + Cd j(dt)

SS(di) + SS(d j)
(3)

4.1.3. LncRNA Functional Similarity

By far, there have been many methods for lncRNA similarity network construction. We used
the similar method like that proposed by Sun et al. [55], it calculated the functional similarity of
paired lncRNAs by measuring the semantic similarity of diseases related to these two lncRNAs.
As shown in Figure 4, it supposed that lncRNA li and l j related to m diseases and n diseases
out of 190 diseases, respectively, which formed the sets D(li) = {d1′ , d2′ , . . . , dm′ } = {di′ }m ⊂ D and
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D(l j) = {d1′′ , d2′′ , . . . , dn′′ } = {d j′′ }n ⊂ D. The actual value of subscript i′ ( j′′ ) was the subscript of each

element in set D(li)(D(l j)) that was composed of m (n) diseases relating to lncRNA li (l j).
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The similarity between one disease element di′ in the set D(li) and the whole set D(li) was calculated
as shown in Equation (4):

S(di′ , D(li)) = max
dt∈D(li)

(ddi′t) (4)

where the actual value of the subscripts i′ and t were the subscripts of the corresponding diseases
mapped by the diseases in set D(li), as mentioned before.

We defined a matrix LLnl×nl = (lli j)nl×nl (can be seen in Supplementary Materials S5), similar to
the detailed calculation process described in ref. [55]. The functional similarities between lncRNAs
were represented in matrix LLnl×nl, where lli j ∈ [0, 1] denoted the functional similarity between lncRNA
li and lncRNA l j, with the calculation shown in Equation (5):

lli j =

∑
dt∈D(li)

S(dt, D(li)) +
∑

dt∈D
(l j)

S(dt, D(l j))

m + n
(5)

where m and n refer the number of diseases related to lncRNA li and lncRNA l j respectively.

4.2. Disease (LncRNA) Gaussian Interaction Profile Central Similarity

There are many zeros in matrix DDnd×nd (and matrix LLnl×nl) because of few number of known
associations as mentioned before; it means that the similarities related to these zeros between diseases
(lncRNAs) cannot be found out from originally obtained information. Therefore, in order to further
calculate the similarities between diseases (lncRNAs) accurately, the Gaussian interaction profile
central similarities between lncRNAs were defined as GLnl×nl = (gli j)nl×nl with the calculation shown
in Equation (6):

gli j = exp(−γl‖LD(i, :) − LD( j, :)‖2) (6)

where gli j denotes the Gaussian interaction profile central similarity between lncRNA li and lncRNA l j,
LD(i, :) denotes the ith row of matrix LDnl×nd, the optimal value of parameter γl that controlled the
kernel bandwidth of Gaussian interaction profile in a similar way as described in ref. [66].

γl =
γ′l

1
nl
∑nl

i=1 ‖LD(i, :)‖2
(7)

where parameter γ′l is set to 1 normally.
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Similarly, the Gaussian interaction profile central similarity between diseases was defined as
GDnd×nd = (gdi j)nd×nd with the calculation shown in Equation (8):

gdi j = exp(−γd‖LD(:, i) − LD(:, j)‖2) (8)

where LD(:, i) denotes the ith column of matrix LDnl×nd, the optimal value of parameter γd that
controlled the kernel bandwidth was calculated as the following:

γd =
γ′d

1
nd

∑nd
i=1 ‖LD(:, i)‖2

(9)

where parameter γ′d is set to 1 normally.

4.3. Disease (LncRNA) Integrated Similarities

Considering that only semantic similarity is not able to describe all the relationships between
diseases accurately, we integrated disease semantic similarity and disease Gaussian interaction
profile central similarity to further construct the disease integrated similarities network (denoted by
DD(is)

nd×nd = (dd(is)i j )
nd×nd

). It means that the Gaussian interaction profile central similarity is utilized
to measure the similarity between two diseases when the corresponding element value in a disease
semantic similarity matrix DDnd×nd related to these two diseases is 0. Similarly, we integrated lncRNA
functional similarity and lncRNA Gaussian interaction profile central similarity to construct the lncRNA
integrated similarities network (denoted by LL(is)

nl×nl = (ll(is)i j )
nl×nl

). The detailed formula description is
shown as the following for clarity:

dd(is)i j =

{
ddi j
gdi j

, if ddi j , 0
, if ddi j = 0

(10)

ll(is)i j =

{
lli j
gli j

, if lli j , 0
, if lli j = 0

(11)

4.4. LDAI-ISPS Workflow Model

After finishing the related data preparation, the detailed inferring process of LDAI-ISPS was
explained in following flowchart (can be seen in Figure 5). Additionally, the numerical calculation
results with each step are demonstrated in Supplementary Figure S1.



Int. J. Mol. Sci. 2020, 21, 1508 11 of 16
Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 11 of 16 

 

 
Figure 5. The flowchart of LDAI-ISPS. 

4.4.1. Construction of lncRNA-Disease Weighted Network 

Boolean network nl nd×LD  of known associations can only indicate whether the associations 
between lncRNAs and diseases exist, without showing the strength of associations. We utilized 

nl nd×LD , ( )is

nd nd×DD , and ( )is

nl nl×LL  to construct two weighted networks of lncRNA–disease associations 

(denoted by ( ) ( )( )dw dw
nl nd ij nl nd

ld× ×=LD  and ( ) ( )( )lw lw
nl nd ij nl nd

ld× ×=LD , respectively) for inferring the 

potential lncRNA–disease associations, with detailed calculation shown as the following: 

α = ≠× ×
= +

 ( )

1,( )

( ( ,:))

nd is
kj ikk k jdw

ij ij

dd ld
ld ld

sum iLD
 (12) 

where the weighting parameter α , used for the lncRNA–disease weighted network reconstruction 
based on disease semantic similarities, is set to [0, 1]. 

β = ≠× ×
= +

 ( )

1,( )

( (:, ))

nl is
jk kik k jlw

ij ji

ll ld
ld ld

sum iLD
 (13) 

where the weighting parameter β , used for the lncRNA–disease weighted network reconstruction 
based on lncRNA functional similarities, is set to [0, 1]. 

4.4.2. Space Projection Scores of lncRNA–Disease Associations 

Based on above two weighted lncRNA–disease networks ( ×
( )dw
nl ndLD  and ×

( )lw
nl ndLD ), we defined 

the space projection scores of lncRNA–disease associations (denoted by ( ) ( )( )pd pd
nl nd ij nl nd

ld× ×=LD  and 

Figure 5. The flowchart of LDAI-ISPS.

4.4.1. Construction of lncRNA-Disease Weighted Network

Boolean network LDnl×nd of known associations can only indicate whether the associations
between lncRNAs and diseases exist, without showing the strength of associations. We utilized
LDnl×nd, DD(is)

nd×nd, and LL(is)
nl×nl to construct two weighted networks of lncRNA–disease associations

(denoted by LD(dw)

nl×nd = (ld(dw)
i j )

nl×nd
and LD(lw)

nl×nd = (ld(lw)
i j )

nl×nd
, respectively) for inferring the potential

lncRNA–disease associations, with detailed calculation shown as the following:

ld(dw)
i j = ldi j +

α×
∑nd

k=1,k, j dd(is)kj × ldik

sum(LD(i, :))
(12)

where the weighting parameter α, used for the lncRNA–disease weighted network reconstruction
based on disease semantic similarities, is set to [0, 1].

ld(lw)
i j = ld ji +

β×
∑nl

k=1,k, j ll(is)jk × ldki

sum(LD(:, i))
(13)

where the weighting parameter β, used for the lncRNA–disease weighted network reconstruction
based on lncRNA functional similarities, is set to [0, 1].

4.4.2. Space Projection Scores of lncRNA–Disease Associations

Based on above two weighted lncRNA–disease networks (LD(dw)

nl×nd and LD(lw)

nl×nd), we defined

the space projection scores of lncRNA–disease associations (denoted by LD(pd)
nl×nd = (ld(pd)

i j )
nl×nd

and
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LD(pl)
nl×nd = (ld(pl)

i j )
nl×nd

, respectively) by utilizing the concept of vector projection to infer the associations
between lncRNAs and diseases more accurately.

ld(pd)
i j =

LD(lw)( j, :) ×DD(is)(:, i)

‖LD(lw)( j, :)‖
(14)

where ld(pd)
i j indicates one of the space projection scores obtained from the disease similarity network

DD(is)
nd×nd, and ‖LD(lw)( j, :)‖ is the 2-norm based on row vector LD(lw)( j, :).

ld(pl)
i j =

LL(is)(i, :) × LD(dw)(:, j)

‖LD(dw)(:, j)‖
(15)

where ld(pl)
i j indicates one of the space projection scores obtained from the lncRNA integrated similarities

network LL(is)
nl×nl, and ‖LD(dw)(:, j)‖ is the 2-norm based on column vector LD(dw)(:, j).

4.4.3. Prediction Score Based on Space Projection Scores

The final prediction score of lncRNA–disease associations (denoted by LD( f s)
nl×nd = (ld( f s)

i j )
nl×nd

)

was composed of two parts, space projection score LD(pd)
nl×nd and space projection score LD(pl)

nl×nd:

ld( f s)
i j = (1−ω) × ld(pd)

i j +ω× ld(pl)
i j (16)

where the weighting parameter ω that represents the importance degree of ld(pl)
i j is set to [0, 1],

the larger value of ld( f s)
i j means the greater probability of an association existing between lncRNA li

and diseases d j.
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