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Recently, the quantum topological energy partitioning method
called interacting quantum atoms (IQA) has been extended to
MPn (n = 2, 3, 4) wave functions. This enables the extraction of
chemical insight related to dynamic electron correlation. The
large computational expense of the IQA-MPn approach is com-
pensated by the advantages that IQA offers compared to older
nontopological energy decomposition schemes. This expense is
problematic in the construction of a machine learning training
set to create kriging models for topological atoms. However,
the algorithm presented here markedly accelerates the calcula-
tion of atomically partitioned electron correlation energies.

Then again, the algorithm cannot calculate pairwise interatomic
energies because it applies analytical integrals over whole space
(rather than over atomic volumes). However, these pairwise
energies are not needed in the quantum topological force field
FFLUX, which only uses the energy of an atom interacting with
all remaining atoms of the system that it is part of. Thus, it is
now feasible to generate accurate and sizeable training sets at
MPn level of theory. © 2019 The Authors. Journal of Computa-
tional Chemistry published by Wiley Periodicals, Inc.
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Introduction

Atomistic force fields continue to be developed[1–10] given their
growing use and impact in biological and materials science. Exten-
sive comparisons[11–14] between, traditional force fields can
offer guidance in this development, as well as comparisons[15,16]

between machine-learnt potentials. Within this grand scheme of
force field development, the modeling of dispersion[17] energy has
received special attention over the last decade and more.

Dispersion is normally defined within the context[18] of long-
range Rayleigh-Schrödinger perturbation theory, which is typically
used in the description of two or more interacting molecules.
However, it is possible to circumvent perturbation theory and
focus directly on the electron correlation, from a single super-
molecular system. This is the route we follow here. We calculate
dynamical correlation energy extracted from the two-particle
density-matrix (2PDM) of this single supermolecular (quantum)
system. This energy encompasses dispersion effects. We thus
apply an alternative method to obtain a dispersion-like interac-
tion energy between molecules.

A real-space partitioning, such as the quantum topological
one,[19] of the energy associated with electron correlation allows
dispersion to be quantified within a single atom. As a result,
intra-molecular dispersion is also defined and quantifiable, which
is not the case within a perturbation approach. The capacity to
look inside an atom and assess the extra stability it experiences
due to electron correlation yields deeper insight into the phe-
nomenon of dispersion, beyond that offered by the traditional
Lennard-Jones intermolecular dispersion. In this work, we adopt
the (topological) real-space method of interacting quantum

atoms (IQAs)[20] to provide dispersion energies, both within a
given atom and between any pair of atoms.

Already in 2005, quantum topological correlation energies were
calculated[20] for a few very small molecules at full CI level (for H2

and He2) and for complete active-space multiconfigurational wave
functions. Much later, the first IQA-partitioned electron correlation
energies were computed in the context of coupled cluster
theory,[21] coupled-cluster Lagrangian densities[22] and CCSD(T)
wave functions.[23] Very recently, we carried out IQA-MPn for the
first time,[24,25] applied[26] it to the machine learning method
Gaussian Process Regression (also known as kriging), quantified[25]

electron correlation of the chemical bond (showing that ionicity
and covalency are not each other’s opposite), demonstrated the
transferability of topologically partitioned electron correlation
energies in water clusters,[27] studied[28] the effects of higher
orders of perturbation theory on the correlation energy of atoms
and bonds in molecules, and finally calculated[29] dynamic elec-
tron correlation in a wider variety of systems including glycine…
water (hydration), the ethene dimer (π–π interactions), benzene
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(aromaticity), cyclobutadiene (antiaromaticity), and NH3BH3

(dative bond).
The work just described focuses on chemical insight and

hence the most detailed information possible, that is, obtained
at full atomic resolution. Indeed, IQA-MPn then gives access to
all interatomic energies (denoted A,B) and all intra-atomic ener-
gies (denoted A,A) where A and B are (topological) atoms. In
other words, the interatomic energies are known between any
two atoms A and B wherever they are in the system; the atoms
do not need to be bonded. Second, it should be emphasized
that this information is separated from the intra-atomic one.
This high-resolution contrasts with the coarser atomic resolu-
tion that is the subject of the current article. Here, we only dis-
cern the total interaction of a given atom with all other atoms
in the system (denoted AA’), including its self-interaction (den-
oted AA). This restriction is the price paid for the faster algo-
rithm presented here, and the reason for this price will become
clear in the next section. However, such overall interaction
between a given atom and its environment is sufficient for the
development of our quantum topological based force field,
called FFLUX.[30–34] This force field uses kriging to deliver fully
polarizable multipolar electrostatics alongside intra- and inter-
atomic nonelectrostatic energies and charge transfer as a func-
tion of flexible molecular geometries. After all, FFLUX only
needs to know the extent by which a given atom interacts with
all other atoms. This atomic information suffices to calculate
the force[35] on the nucleus of the atom in question, which then
allows the propagating of the system in time, leading to opti-
mized geometries or structural and thermodynamic properties
in the case of a molecular dynamics simulation. Indeed, a force
field always sums all the individual pairwise interactions that a
given atom is involved in. It is only this sum that is needed.
Knowing the individual terms would only be useful if detailed
chemical insight were being kept track of, which can be
done[34] in principle but this is computationally expensive.

In summary, we present a fast computational procedure in
order to equip the topological force field FFLUX with dynamic
electron correlation and thus any dispersion effects. This proce-
dure involves an analytical integration over whole space and
thereby reduces the expensive six-dimensional (6D) integration
to a three-dimensional (3D) integration.

Background and Method

Derivation

We have presented our original approach in detail elsewhere,[24]

which we briefly summarize here. The key equation is eq. (1),
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where V is the (electron) correlation energy between any two
atoms A and B (note that the intra-atomic correlation energy,
that is, when A = B, is also covered), d is the correlated part of
the 2PDM, the G functions are Gaussians arising from products

of Gaussian primitives originally centred at nuclei, K refers to
the product pre-factor (and should of course not be confused
with summation index k), and there are Nbasis Gaussian primi-
tives. There are two consecutive 3D integrations, each over the
volume of a topological atom Ω, introducing its own integra-
tion variable (r1 or r2). Traditionally, the resulting 6D integration
is carried out completely numerically, after installing a quadra-
ture grid (a grid, in short) over each of the respective atomic
3D volumes.

Now we show how an analytical integration over whole
space can be introduced. The starting point of the derivation

below is the calculation of VAA’
ee,corr, which is obtained as the

sum of the contributions from all atoms B. Substituting eq. (1)
into this sum leads to the derivation shown in eq. (2),
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where the summation index B is allowed to be equal to A (and
indeed must be in one term of the summation), and where Klm
is absorbed in VESP

lm . We stress that the summation over B is not
restricted in the familiar sense of A < B or A 6¼ B, for example.
Indeed, the analytical integration demands integration over
whole space, and thus B must run over all atoms, without
restriction. Second, we note that, although not shown in eq. (2),

the actual implementation of eq. (2) halves the value of VAB
ee,corr

for the case of A 6¼ B only. The introduction of this factor of ½
avoids double counting, that is, if A has interacted B then B has
already interacted with A.

The transformation from the second to the third line in the
above derivation is justified by the linearity of integration
(i.e., the sum of an integral is the integral of the sum, in short)
and the distributivity of summation versus multiplication.

It is clear in the third line that the partition over atom
B disappears and thus the integral is carried out over whole
space. Hence, the integral can be calculated analytically, using
ideas reminiscent of the calculation of the electrostatic poten-
tial (ESP). This integral technology has matured some time ago
culminating in the elaborate PRISM algorithm,[36] which has
been implemented in the program GAUSSIAN09[37] (or G09, in
short) used in this work. Note that, although we use the label
ESP, we actually do not calculate the electrostatic potential
itself. The latter involves the electron density (in the integrand)
rather than a Gaussian, as is the case in eq. (2). Indeed, the elec-
trostatic potential is a molecular property, but here we face an
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integral involving only atomic orbitals. Note also that the penul-
timate expression in eq. (2) cannot be re-written such that the
actual ESP appears. In summary, the net advantage is that a
numerical grid, one for each atom, has disappeared, and with it
an expensive integral.

There are two additional comments to be made here. First,
the main idea of replacing a collection of atomic integrations,
each over a numerical grid, by a single analytical integration
over whole space, is also at the basis of the so-called AA’ algo-
rithm in the program AIMAll,[38] which uses it to calculate Cou-
lomb and exchange energies very accurately and quickly.
Second, although we explain the algorithm in connection with
the program GAUSSIAN09, the algorithm is general and could
be interfaced with any quantum chemical software offering effi-
cient computation of ESP, or even with a public library that
contains all possible Gaussian primitive integrals.

The purpose of this article is to quantify the improvement
over the original 6D algorithm of the new ESP-based algorithm
(discussed in detail below). A simple measure that helps in
achieving this is the so-called recovery error, which is defined as
the difference between the system’s correlation energy directly
obtained from G09 and that obtained (i.e., recovered) from the

sum of atomic contributions VAA’
ee,corr, or

ΔEee,corr = VG09
ee,corr−

X
A

VAA’
ee,corr ð3Þ

We will report this recovery error for a wide variety of sys-
tems, alongside with estimates of CPU timings. It should be
pointed out that the summation over A is not restricted at all.
This lack of restriction does not cause double counting because
this issue has already been dealt with in connection with eq. (2)
and its discussion. To be more precise, the unrestricted summa-
tion over A generates AB and BA but the halving of these con-
tributions (see eq. (2)) compensates for this double counting.

Implementation of the 3D ESP algorithm

In order to evaluate eq. (2), we have modified a link of G09
(called L1111) to generate the correlated part of the 2PDM
(denoted d). In addition, the standard wave function file (“wfn”)
is outputted from G09. These two pieces of information are
then passed to our in-house code called MORFI, which gener-
ates a grid for the molecule under study, atom by atom. This
grid (over ΩA) is then passed back to G09 to generate the ESP
integrals[39] at each grid point r1 (see eq. (2)). The nuclear part
of an ESP integral is not needed. Because only the electronic
part is required we have further modified G09 to obtain these
values. The latter are then used as input for another MORFI run,
where the atomic energies are calculated from d via eq. (2).

Figure 1 compares the implementation of the original 6D

algorithm (left, VAB
ee,corr) with that of the new 3D ESP algorithm

(right, VAA’
ee,corr). Both implementations consist of a nested DO-

loop structure, introducing three numbers: Natoms, Ngrid, and
Nbasis. These counters respectively refer to the number of
atoms, the number of (quadrature) grid points of each atom
and the number of Gaussian primitive basis functions. The

original 6D algorithm is computationally expensive because it
involves a twofold nested DO-loop over the number of atoms
covering all atom-atom pairs (including AA self-interaction)

(Natoms(Natoms + 1)/2 or approximately N2
atoms), one DO-loop over

the grid points installed on each atom’s volume (Ngrid) (hence
two nested DO-loops in total), and four DO-loops over the num-

ber of basis functions ( Nbasis Nbasis + 1ð Þ
2 × Nbasis Nbasis + 1ð Þ

2

h i
≈ 1

4N
4
basis). As

a result, the number of executions of the innermost DO-loop

(over index IP in Fig. 1) scales roughly as N2
atomsNgridN4

basis. In
addition, there is another DO-loop (over index IL in Fig. 1) over

the grid that does not include the N4
basis DO-loops. This large

number of DO-loops has confined the application of VAB
ee,corr to

small systems only, with some of our larger systems studied
being the water pentamer,[27] glycine[28] and glycine…water.[29]

In summing over the atoms, one obtains a total energy of
an atom in the molecule rather than a self-energy plus all the
pairwise energies of that atom with all the other atoms in the
molecule. Thus, the decrease in computational effort demands
as a price the loss of detailed energy contributions. Naively,
one would expect a massive speed-up, by a factor of several
thousands, due to the elimination of several grid per atom
(i.e., NatomNgrid) and Ngrid is of the order of a thousand. How-
ever, this is not quite the case. Indeed, there are actually

approximately NatomNgridN2
basis=2 ESP integrals to be calculated,

which is a significant number. Then again, we have replaced
one numerical 3D volume integration by, in theory, an analytic
one, which means we expect increased numerical accuracy.

We have employed the uncontracted 6-31++G(2d,2p) basis
set with the MP4SDQ (including core orbitals) method to study

Figure 1. A schematic representation of the DO-loops involved in the
running of the program MORFI by the (a) original 6D algorithm and the
(b) new 3D ESP algorithm. The two DO-loops missing in the latter (but
present in the former), are indicated in (a) as yellow and blue. In addition,
the DO-loops indicated in green in (b) actually correspond to the total
number of ESP integrals. Hence the green part can be thought of as a single
repeated action consisting of reading and processing the ESP integrals.
[Color figure can be viewed at wileyonlinelibrary.com]
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a series of molecules and complexes. The basis sets are in their
uncontracted form because MORFI works in primitive functions
and therefore a contracted basis set offers no advantage in the
most time-consuming stage of the calculation. Indeed, it takes
longer to generate the MP4SDQ wave function using the
uncontracted basis and to optimize the geometry but generally
this extra effort lengthens the overall calculation time by a rela-
tively small amount. Although we employ the MP4SDQ 2PDM
in this study, any correlation method’s 2PDM can actually be
employed. We have used the MP2 and MP3 methods to gener-
ate the respective 2PDM in our previous studies.[25,28] In these
cases, the density matrices are the same size as the MP4SDQ
2PDM. Only the matrix elements differ, meaning that the calcu-
lation time in MORFI is the same irrespective of the wave func-
tion. However, MP2 can sometimes have more zero matrix
elements than MP3 and MP4SDQ.

Our aim is twofold: (1) to understand how the size of the grid
affects the recovery error when the 3D ESP approach is
employed and (2) for a fixed recovery error, to find out how
much faster the 3D ESP approach is than the original 6D
approach. For this purpose, we conducted two types of calcula-
tions, one for each aim, respectively, discussed in sections Grid
size to achieve a given recovery error and Algorithm speed up
(from 6D to 3D ESP) for a fixed recovery error.

Results and Discussion

Grid size to achieve a given recovery error

We first consider the size of grid necessary to achieve a given
recovery error in the correlation energy of the whole system.
Note that the FFLUX force field aims for the recovery error be
of the order of 1 kJmol−1 prior to training. Table 1 gives some
grid sizes and recovery errors for the water dimer, F2 and the
neon dimer, which have all been geometry-optimized.

Table 1 contrasts the recovery errors obtained with the new 3D
ESP integration with those of the original 6D method, for a variety
of grids. It is clear that the errors are dramatically reduced in
going from 6D to 3D, by one to two orders of magnitude. Table 1
also shows that, for the neon dimer, the recovery error of the 3D
ESP method follows the radial part of the grid and not the angu-
lar part (so nrad in nang-nrad). Indeed, the recovery errors are nearly
constant within each of the nang-10, nang-20, and nang-30 sets of
grids. However, this observation is not true for the water dimer or
for F2. Nevertheless, the error generally becomes smaller for all
three systems, for both 6D and 3D ESP integration, with increas-
ing angular grid. For the neon dimer, the 10-20 grid, with the 3D
ESP approach, yields energies with an error of 0.4 kJmol−1, while
for the water dimer and F2 errors of −0.5 and − 0.05 are, respec-
tively, observed for the 3-10 grid. These are acceptable errors in
the context of the FFLUX force field. However, they do imply that
the electronic structure of different molecules call for different
grids in order to obtain a similar absolute accuracy in the recov-
ery error with the 3D ESP method. For example, 3-10 for (H2O)2
as opposed to 10-20 for Ne2.

In Table 2, we present the results for a variety of molecules
studied with the 10-20 grid only. This grid was selected because

for the neon dimer it was the smallest grid that already gave an
acceptable recovery error by the 3D ESP algorithm (Table 1, 0.4
kJmol−1). In general, a comparison between Tables 1 and 2
shows that the large recovery errors appear for the non-ESP
(6D) approach and for small grids. Furthermore, our modest
10-20 grid yields reasonable accuracy in most cases (via the ESP
approach). The large errors from the non-ESP (6D) approach
stem from two numerical integrations, while in the ESP
(3D) approach, one of these is replaced by analytic integration
[eqs. (1) and (2)]. By consistently using the 10-20 grid in
Table 2, which is larger than some of the grids used in Table 1,
smaller recovery errors are generally listed in Table 2. Thus, the
3D ESP approach significantly reduces the recovery error com-
pared to the original 6D method for all systems, except for BH3

and BeH3
−. This reduction is typically at least one order of mag-

nitude but often two orders. However, for BH3, BeH3
−, there is

barely a reduction. In absolute terms, four systems show an
error of more than 1 kJmol−1 (BH3, BeH3

−, AlH3, and MgH3
−),

and five systems (Ne2, CO, SiH4, HCl, and FHF−) show medium
sized errors (0.4–0.7 kJmol−1).

We now look into the reason for the abnormal behavior of
BH3 and BeH3

−. To try and understand whether this is
compound-specific behavior of BH3 or a property of boron in
general we studied BH4

−. A test where BH4
− was given the

Table 1. The recovery errors (calculated by MORFI) of the MP4SDQ
energy of the water dimer, F2 and the neon dimer (Units: kJmol−1).

Grid
nang-nrad

[a]
No grid
points[b]

MP4SDQ
Correlation

energy of G09
6D recovery
error (MORFI)

3D ESP
recovery
error

(MORFI)

Water dimer
1-10 120 −1508.3 +772.8 +2.5
3-10 520 −1508.3 −31.6 −0.5
5-10 1000 −1508.3 −68.0 +0.2
10-10 3400 −1508.3 −39.0 +0.1
5-20 2000 −1508.3 +37.8 −0.1
10-20 6800 −1508.3 −17.4 −0.1
F2
1-10 120 −1992.4 +274.2 +15.4
3-10 520 −1992.4 −57.2 −0.05
5-10 1000 −1992.4 −59.1 +0.5
10-10 3400 −1992.4 −11.8 +0.2
Neon dimer
1-10 120 −1388.7 −586.1 +20.3
3-10 520 −1388.7 −233.7 +20.2
10-10 3400 −1388.7 43.9 +20.2
15-10 7000 −1388.7 102.0 +20.2
10-20 6800 −1388.7 −49.2 +0.4
15-20 14,000 −1388.7 −22.5 +0.4
10-30 10,200 −1388.7 −40.1 −0.0
15-30 21,000 −1388.7 −24.2 −0.0
20-40 47,200 −1388.7 −14.6 +0.0

[a] In the notation nang-nrad the first number is the Lebedev angular part of the grid
while the second number is the radial part of the grid, given by Gauss-Legendre
quadrature. The number nang refers to a grid shorthand adopting the values 1, 3, 5,
10, 15, or 20, which respectively designate angular grids of 6, 26, 50, 170, 350, and
590 points. The number nrad, on the other hand, directly designates the number of
radial points in the Gauss-Legendre grid.
[b] The total number of grid points is the number of Gauss-Legendre radial points
multiplied by the number of Lebedev angular points, multiplied by two (one grid
inside the β-sphere and one outside the β-sphere).
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geometry and the basis set of CH4, resulted in the same small
error reduction seen for BH3, whereas CH4 behaves normally.
Thus, the behavior seems to stem from the nature of the basin
around boron. In order to consider this behavior further, we
increased the grid size. It turns out that the recovery error
decreases significantly (from 0.44 to −0.02 kJmol−1) with the
larger 15-30 grid. This reduction (22-fold) is typical and seen in
all regular systems and it seems the anisotropic behavior of B is
being picked up by the smaller grid.[40] The situation of the iso-
electronic BeH3

− is more complicated than that of BH3. If the
15-30 grid is employed then the 6D result is marginally more
accurate than the 3D ESP result (+0.59 vs. + 0.60 kJmol−1). In
fact one has to employ an angular grid larger than any used
before in this work and coded “23” (770 angular grid points)
before the 3D ESP approach gives an order of magnitude
reduction in the recovery error over the 6D method. This great
sensitivity to the angular grid size suggests that the element
Be, like B, shows anisotropy in its basin when bonding.

Table 3 gives the CPU timings of the 6D and 3D ESP method,
as well as the number of ESP integrals, for all systems given in
Tables 1 and 2. The ratio of the timings between the two
methods is only indicative (in principle) because (1) our com-
puter cluster is heterogeneous in terms of its processors and
(2) even if the jobs run on the same type of processor, that pro-
cessor may have a different load due to other jobs running.
Both these factors affect the timing. Table 3 shows that the
ratio of the timings varies from 3 to 52, with most occurring in

the range of 5–10 and with an average of very close to 10.
However, these timings are for calculations employing one
core, although the program is capable of being run in parallel
and thus running much more quickly, but this will be reported
in the future. The time taken to calculate the ESP integrals has
not been taken into account. These calculations typically take
from a few minutes to half an hour and involve the ESP inte-
grals being written to disk. For example, for the water trimer
there were just short of a billion ESP integrals to calculate
(934,418,898) and this task was carried out in 92 groups (four
groups running concurrently on the current batch system). All
batches calculated the same number of integrals (10,264,674),
other than the last one, which calculated 333,564 ESP integrals.
The fastest group (excluding the last one), employing a single
core, took 1 min 16 s of CPU time. However, the overall calcula-
tion can be even faster. Indeed, in calculating these ESP inte-
grals, the G09 run includes the calculation of a Hartree–Fock
wave function, prior to the computation of the required inte-
grals. Technically, it is the ESP integrals over atomic basis func-
tions that are needed. In other words, we do not require a
wave function but only the atomic orbital basis and the grid
positions. Thus, the wave function calculation is superfluous
and clocks up unnecessary CPU time. Indeed, the wave function
and 2PDM have already been generated in a previous calcula-
tion (prior to the ESP evaluation) and passed to MORFI. The
resulting electron density, from this first run, is employed to
generate a grid and it is these grid points that are passed back
to G09 to have the atomic orbital ESP integrals evaluated at
their location. Thus, the wave function is not needed for the
ESP evaluation.

Algorithm speed up (from 6D to 3D ESP) for a fixed recovery
error

As mentioned in section Implementation of the 3D ESP algo-
rithm, there are two ways of quantifying the progress made by
the 3D ESP algorithm: (1) how the size of the grid affects the
recovery error and (2) how much faster 3D ESP is compared to
6D for a fixed recovery error. Here, we look at the second way.

The timings shown in Table 3 are impressive but still do not
do justice to the improvements achieved by changing the algo-
rithm from a 6D to a 3D ESP integration. Comparing the results
using the same grid for both methods is fair and useful. Indeed,
the very small recovery errors, often obtained by the 3D ESP
method with small to medium grids, are impressive. However,
for the purpose of constructing a training set for FFLUX, larger
recovery errors are acceptable. Hence, much computational
time can be saved by employing smaller grids by increasing the
recovery error to a fixed value that we are happy with. Thus, we
analyze the 3D ESP and 6D method by equalizing their respec-
tive recovery errors and then comparing the two CPU times. By
doing this, it becomes possible to really appreciate the
improvements achieved by the 3D ESP version of the code in
terms of speed-up. We carry out an analysis on a nontrivial sys-
tem and one that FFLUX benefits from, given its ultimate aim
to work for peptides in aqueous solution. Looking at the list of
systems at hand, the choice then falls on the water trimer. In

Table 2. The recovery errors (kJmol−1) for the 6D and 3D ESP
integration for a variety of systems. All results have been calculated with
the 10-20 grid (170 angular Lebedev points and 20 radial
Gauss-Legendre points, or 6800 points in total, for the volume inside
and outside the β-sphere).

System
(Molecule or
complex)

MP4SDQ
energy
of G09

6D recovery
error (MORFI)

3D ESP
recovery

error (MORFI)

LiH −177.4 −3.5 −0.1
BeH3

− −383.3 +2.9 +2.4
BH3 −423.5 +2.1 +1.1
CH4 −635.3 −1.5 −0.0
NH3 −707.5 −5.9 −0.0
H2O −752.0 −9.5 −0.0
HF −751.9 −13.1 +0.1
N2 −1130.4 −14.0 −0.0
O2 −1266.1 −14.2 −0.0
F2 −1456.6 −23.8 −0.1
Ne2 −1388.7 −49.2 +0.4
NO −1186.0 −16.1 −0.0
CO −1087.7 −17.3 −0.4
OF −1302.5 −19.7 −0.1
NaH −575.0 −15.4 +0.0
MgH2 −643.8 −15.0 +0.1
MgH3

− - 730.9 −13.5 +1.1
AlH3 −753.5 −10.9 +1.5
SiH4 −884.7 −10.4 +0.6
PH3 −930.8 −16.6 +0.0
SH− −936.8 −24.0 +0.2
HCl −952.9 −21.6 −0.7
FHF− −1536.5 −30.6 +0.6
(H2O)2 −1508.3 −17.4 −0.1
(H2O)3 −2271.6 −24.4 −0.1
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order to push the 3D ESP integration code to its absolute maxi-
mum, we aim for a recovery error of 0.1 kJmol−1 for the water
trimer and search for the smallest grid available that can
achieve this accuracy. However, as mentioned previously, realis-
tically larger recovery errors will be tolerable in FFLUX, and the
same procedure behind Figure 2 shall be carried out aiming for
chemical accuracy, which is 4 kJmol−1.

Figure 2 contrasts the performance of the 6D and 3D ESP
methods. Unfortunately the 6D method cannot reach a recov-
ery error of ~50 kJmol−1 (see red dotted line in Fig. 2) with less
than the maximum of 3500 grid points tested. Thus, this is the
practical threshold (rather than 1 kJmol−1) allowing a direct
comparison between the two methods. For the 6D method, it
takes 43,200 min to reach this recovery error while for the 3D
ESP method it takes 70 min, or 617 times less. These timings
are obtained for two very different numbers of grid points: 6D
needs many points while 3D ESP needs few. However, if the
same grid size is employed by both methods then the speed-
up is about 14 (43,200 vs. 3135 min). This grid optimization also
shows that while it is possible to achieve a recovery error as
small as 0.1 kJmol−1 using ~3500 grid points, a still respectful
error of 0.6 kJmol−1 can be achieved with only 1000 grid points,
in about 150 min.

In principle, the grid size can be varied from atom to atom,
as we have reported[27] for water clusters by showing that
hydrogen atoms required smaller grids in order to obtain good
recovery errors compared to oxygen atoms. However, the
implementation of the ESP 3D integration in MORFI had an
unforeseen secondary effect: the required number of grid
points to achieve small recovery errors is significantly lower
when compared to the 6D integration. In fact, the ESP 3D
approach makes the use of different grids for different atoms
obsolete, because the required grids for both heavy and hydro-
gen atoms can be pushed to their lower limit.

There is one final test to be done, which will further show
the power of the 3D ESP method. We applied both the 6D and

Figure 2. A comparison between the 6D and 3D ESP methods implemented
in MORFI for the water trimer showing the recovery error (summed over all
nine atoms), employing different grid sizes. The straight red dotted line
marks the approximate recovery error at which the 6D and 3D ESP methods
are compared. [Color figure can be viewed at wileyonlinelibrary.com]

Table 3. The CPU timings (minutes) for each of the systems studied by the 6D and 3D approach, the ratio of the two timings rounded to the nearest
integer and the number of ESP integral. All results are for the 10-20 grid unless stated otherwise.

System CPU Time: 6D MORFI CPU Time: 3D ESP MORFI CPU time ratio: 6D/3D Number of ESP Integrals

LiH 118 3 39 16,951,998
BeH3

–[a] 963 (4599) 77 (89) 13 (52) 71,136,312 (220,443,132)
BH3

[a] 306 (2027) 28 (106) 11 (19) 71,238,888 (220,258,488)
CH4 766 148 5 117,963,345
NH3 358 26 14 71,538,648
H2O 92 10 9 38,663,685
HF 31 4 8 17,519,376
N2 101 14 7 41,050,836
O2 83 17 5 40,669,980
F2 109 17 6 40,248,318
Ne2 109 17 6 40,248,318
NO 83 17 5 40,756,716
CO 90 17 5 41,010,030
OF 109 14 8 40,533,960
NaH 108 28 4 37,881,570
MgH2 290 32 9 74,103,696
MgH3

− 745 89 8 124,947,972
AlH3 822 316 3 124,947,972
SiH4 1358 197 7 193,862,505
PH3 1520 200 8 125,600,868
SH− 413 13 32 38,327,170
HCl 84 15 6 37,881,570
FHF− 323 39 8 77,000,922
(H2O)2 3971 328 12 283,381,584
(H2O)3

[b] ~24,000 3072 8 934,418,898

[a] The number that is not bracketed refers to the 10–20 grid while the bracketed number is for the 15-30 grid, which is only employed for B and Be.
[b] The size of the water trimer meant that the full MORFI run had to be split into several runs. Variation in processor speed and other jobs running concurrently on the node
affect the timings of each of these jobs. Thus, this timing is approximate and is a lower bound.
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3D ESP method to investigate a series of growing water clusters
(H2O)n (n = 1, 2,3, 4, and 5). Figure 3 plots the recovery error for
each of these five water clusters. While the recovery error
increases almost linearly with the number of atoms for the 6D
method, this is not the case for the 3D ESP method. Once a suf-
ficiently robust grid (10-10, 3400 grid points) is used, the error
remains more or less constant for the latter method. While the
6D recovery error starts off about 9 kJmol−1 for the water
monomer, it becomes as large as 40 kJmol−1 for the water pen-
tamer. However, for 3D ESP, the error remains around 0.1–0.2
kJmol−1 throughout the series, regardless of the system size.
This result is superb for the incorporation of dynamic electron
correlation (and thus dispersion) in FFLUX.

The 6D version of MORFI will remain relevant within the con-
text of the quantum chemical topology literature, because it
provides much physical insight, especially related to the nature
of chemical bonds. Nonetheless, the fact that the recovery error
obtained through the 6D algorithm heavily depends on the sys-
tem size creates an unsustainable situation to transition FFLUX
from small molecules to large biological systems. However, this
is not the case for the 3D ESP algorithm because the recovery
error is largely independent of the system size. One can use this
size independency to the benefit of FFLUX, by first carrying out
a grid optimization for, say, an amino acid and then apply the
knowledge of this optimal grid to also obtain excellent recovery
errors for polypeptides.

Regardless of how impressive the results look for the recovery
errors, in chemistry, energy differences are usually the ultimate
goal when it comes to predictions or calculations. These relative
energies converge faster than the absolute energies themselves
since the former benefit from error compensation. This effect
cannot be easily seen in the results presented here (the errors
are already very small), but it can be illustrated by the difference
between the correlation energy of the water pentamer and that

of five times the correlation energy of single water molecule,
with the 6D “AB” integration code. The absolute recovery error
for the pentamer is 7.7 kJmol−1 but the error is reduced to 5.5
kJmol−1 when considering energy differences.[27]

Conclusions

The Møller–Plesset dynamic electron correlation of topological
atoms can now be calculated 3–50 times faster for a given fixed
size of quadrature grid. This is possible by replacing the numeri-
cal integration over the atomic volume by an analytical integra-
tion over whole space. The price paid is the loss of pairwise
inter-atomic electron energies. However, these are fortunately
not required for the force field FFLUX, which only needs the
correlation energy of a given atom interacting with all other
atoms by summation. The total recovery error for all atoms in
the water pentamer now amounts to only 0.6 kJmol−1 for a grid
of only 3400 points. Moreover, for this system, the recovery
error is largely independent of the system size.
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