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Abstract

Background: The notion of heme as a regulator of many physiological processes via transient binding to proteins
is one that is recently being acknowledged. The broad spectrum of the effects of heme makes it important to
identify further heme-regulated proteins to understand physiological and pathological processes. Moreover, several
proteins were shown to be functionally regulated by interaction with heme, yet, for some of them the heme-
binding site(s) remain unknown. The presented application HeMoQuest enables identification and qualitative
evaluation of such heme-binding motifs from protein sequences.

Results: We present HeMoQuest, an online interface (http://bit.ly/hemoquest) to algorithms that provide the user
with two distinct qualitative benefits. First, our implementation rapidly detects transient heme binding to
nonapeptide motifs from protein sequences provided as input. Additionally, the potential of each predicted motif
to bind heme is qualitatively gauged by assigning binding affinities predicted by an ensemble learning
implementation, trained on experimentally determined binding affinity data. Extensive testing of our
implementation on both existing and new manually curated datasets reveal that our method produces an
unprecedented level of accuracy (92%) in identifying those residues assigned “heme binding” in all of the datasets
used. Next, the machine learning implementation for the prediction and qualitative assignment of binding affinities
to the predicted motifs achieved 71% accuracy on our data.

Conclusions: Heme plays a crucial role as a regulatory molecule exerting functional consequences via transient
binding to surfaces of target proteins. HeMoQuest is designed to address this imperative need for a computational
approach that enables rapid detection of heme-binding motifs from protein datasets. While most existing
implementations attempt to predict sites of permanent heme binding, this application is to the best of our
knowledge, the first of its kind to address the significance of predicting transient heme binding to proteins.

Keywords: Heme, Heme-regulated protein, Transient heme binding, Heme-binding site prediction, Web
application, Machine learning

Background
Heme (iron protoporphyrin IX) is an astoundingly
prevalent molecule found within humans, animals and

plants, fulfilling a plethora of functions [1, 2]. It is the
oxygen carrying moiety of hemoglobin, the gas-sensing mol-
ecule of NO-sensors and the redox active part of cyto-
chromes [1, 2]. Besides its well-known binding to these
hemoproteins as a prosthetic group, heme has been estab-
lished as a biologically available molecule. Human targets of
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transient heme binding have been reviewed extensively [1–6]
(Additional Table 1, supplementary data 3). Well-known
representatives are δ-aminolevulinic acid synthase 1 (ALAS1)
and transcription regulator protein Bach1, which bind heme
via CP-containing motifs [1, 7, 8]. Recent reports have ex-
panded the knowledge on transient heme binding. Some of
the published heme-regulated proteins were shown to bind
heme, but no information on the heme binding motif is
available so far. A curated list of such proteins is available in
additional Table 1. In this work we highlight the need for an
exclusive computational method that is able to pinpoint
heme-binding residues in protein sequences.
Despite the apparent abundance of interest in compu-

tational solutions to predict heme binding, all of the
former approaches were focused on prediction of per-
manent heme binding as opposed to the prediction of
transient heme binding and its associated regulatory
function. In 2011 and 2012, the groups of Liu, Li and
Xiong were the first to present publicly available heme-
binding prediction algorithms [9–12]. These approaches
had in common that they started from sets of published
structures of hemoproteins. A large number of such
structures is available, i.e. the gene ontology term “heme
binding” (GO:0020037) currently yields over 4500 PDB
structures. However, these structures are highly redun-
dant and some are of low resolution, which was com-
pensated by the authors by applying a cutoff at 25% or
30% sequence identity and at 3 Å resolution [9–12]. The
resulting datasets were used to train machine learning
algorithms based on structural features. In 2013, Yu
et al. took the challenge to predict heme binding to pro-
teins without available 3D structures, since all the so far
known webservers were working with template-based
methods. Therefore, the webserver “TargetS” (http://
www.csbio.sjtu.edu.cn/ bioinf/TargetS/) was established
to predict binding of ligands (i.a. heme) starting from
primary sequences via a recursive spatial clustering algo-
rithm. It included different aspects, such as evolutionary
information, ligand-specific properties and secondary
structure. A dataset of 233 structures of heme-binding
proteins with a cutoff of 40% sequence identity was ex-
tracted from the BioLIP database [13], and used for
training and testing the webserver. Derived from a scor-
ing card method (SCM), the latest prediction method for
heme binding to proteins “SCMHBP” benefits from an
evaluation of heme-binding tendencies of 400 dipeptides
and 20 amino acids, which is transferred onto protein se-
quences. Consequently, two non-redundant training data-
sets were designed with 747 heme-binding proteins and
747 non-heme-binding proteins, and two already existing
datasets were taken into account for testing the SCMHBP,
resulting in a mean accuracy of 85.9% [9, 10, 14]. In an-
other approach, Zhang et al. clustered 4003 X-ray struc-
tures of heme-binding proteins via Blastclust [15] with a

sequence identity of less than 30% and selected 260 repre-
sentatives for testing [16]. In addition, the training datasets
from earlier studies were included [10, 17]. On this data, a
novel predictor, i.e. “HEMEsPred” (http://www.inforsta-
tion.com/HEMEsPred/), was generated including se-
quence- and structure-based features, a fast-adaptive
ensemble learning scheme and a more specific model for
different heme ligands [16]. A summary of previous algo-
rithms can be found in Fig. 1a.
However, all of these approaches employed relatively

generic training data by merely querying available data-
bases. Large parts of these training data consist of bio-
logically redundant data such as different variants of
hemoglobins (29.2%), and cytochromes (34.8%). Further-
more, previous studies were entirely focused on perman-
ent heme binding and thus, disregarded transient,
regulatory heme binding entirely. In contrast to hemopro-
teins, transient heme binding is believed to occur on pro-
tein surfaces and not in deep heme-binding pockets [1, 2,
6]. Strikingly, previous implementations have strongly
focused on residues in the protein core, at times even spe-
cifically excluding surface exposed residues. As a conse-
quence, all previous algorithms fail to predict transient
heme-binding sites, and attain a maximum accuracy of
less than 60% when challenged with the prediction of
transient heme binding. The overarching aim of this work
is to provide a computational tool exclusively developed
for the prediction and qualitative evaluation of transient
heme binding to protein surfaces based on our recently
established SeqD-HBM algorithm [6].

Results
The first version of the algorithm was produced as a
standalone Python script(s) wherein the SeqD-HBM al-
gorithm for detecting heme-binding motifs was imple-
mented only [6]. At this stage, the program was used as
an in-house tool and was shared with users upon re-
quest. The full-fledged web application, in contrast, is a
multi-fold improvement on the former version. It is built
on the Django 2.3 framework (https://www.djangopro-
ject.com/), which is known for its robustness, scalability
and security. As shown in Fig. 1b, the usage of Rab-
bitMQ and Celery for the management of user requests
in the housekeeping module makes it evident that the
application was built to scale well on heavy load. This is
especially important since the application handles not
only inbound and outbound user requests but also
makes API calls to the (external) weighted ensemble
solvent accessibility (WESA) [18, 19] application in the
process of providing predictions. That being the case,
additional measures had to be taken to constantly check
all of the application end-points and update the status of
a user request in the database. HeMoQuest was able to
correctly predict residues (and the associated motifs)
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annotated as “heme-binding” with accuracies of 92.1%
while using the WESA mode and 96.2% when WESA
solvent accessibility was skipped from the 469 sequences
gathered from BioLip (Supplementary data 2). In the
WESA mode a small dip in accuracy was due to the fact

that most CP motifs were predicted to be buried by
WESA. At the same time, though the non-WESA mode
of operation an increase in accuracy was produced, the
number of new potential motifs predicted increased by
~ 15%. However, it must be noted that these additionally

Fig. 1 a Datasets used in previous publications and their respective cutoff values. b Schematic representation of the HeMoQuest web
application architecture
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predicted motifs cannot be deemed as false positives
with certainty since there exists no experimental evi-
dence to prove their inability to transiently bind heme.
Going beyond detecting heme-binding motifs from input
sequences, the fact that a reasonable amount of in-house
data with published binding affinities existed (Additional
Table 2, supplementary data 1), provided the scope for a
predictive machine-learning based solution to be imple-
mented. In essence, the idea is to train the sequence data
with known affinities on different predictive models so
that a new input sequence could have the approximate
binding affinities of their nonapeptide motifs predicted.
We explicitly state here that the predicted affinities are
not to be compared with the experimental values pub-
lished at the protein level but are only to be compared
among the different nonapeptides from the same se-
quence as an indicator of the best binding motif in the
input sequence. Features from the input sequences were
engineered by using the Peptides R package (https://
github.com/dosorio/Peptides/). For any input sequence
Peptides can produce over 100 different physiochemical
values that define features such as hydrophobicity, in-
stability, partial charge etc. (Supplementary data 4). It is
infeasible to train a model on such a large number of features
and hence the feature engineering consisted of choosing a rea-
sonable number of diverse features that describe the input se-
quence. The Pearson correlation coefficient was calculated
between all physiochemical features available in Peptides on
the binding affinity data and the top 8 most diverse features
that produced the best correlation were chosen as the final
features for predictions. These features, which described
hydrophobicity, instability, helix propensity, partial charge and
electrostatics, were all sequence invariants, i.e. they are
strongly dependent on the order of the amino acid residues in
the sequence. All of the machine learning models were built
using the Scikit-learn machine learning package [20].
Since the aim was to predict binding affinities, regres-

sion was used in all models built. First, a multivariate
linear regression model was built using the Ordinary
Least Squares method. Next, a random forest regressor,
which is a meta estimator that fits a number of classify-
ing decision trees on various sub-samples of the dataset
and uses averaging to improve the predictive accuracy
and control over-fitting, was built. Finally, a regression
model of a SVM was built using the Epsilon-Support
Vector Regression method available in Scikit-learn. Pre-
dictions from the individual models were further sub-
jected to an independent voting scheme to produce the
best prediction. The AdaBoost and BaggingRegressor
methods were used for the purpose, respectively.
The application was tested on the three independently

collected datasets (see Methods). Overall, the heme-
binding residue prediction module was able to successfully
identify the predefined heme-coordinating residues and

the associated motifs. Our method was able to successfully
predict every single heme-coordinating residue and its as-
sociated motif for every single sequence tested. This is
mainly due to the specific checks done on H, C, and Y res-
idues explicitly on all the sequences. Consequently, the al-
gorithm predicted more motifs than what is mentioned in
the validation set. Though this results in an overall false
positive rate of ~ 15%, one cannot be sure that these “add-
itional” motifs are other potential heme-binding motifs,
not accessible for prediction via experimental approaches
as seen in earlier reports [21]. The prediction of affinities
was again impressive with the support vector machine
producing the best predictions of 71% accuracy on the
training set. In terms of the qualitative classification, we
were able to correctly classify with an overall accuracy of
68%, between the “good”, “moderate”, and “weak” binding
motifs on the test set.
It was further observed that within the individual pre-

diction algorithms (Fig. 1a), the linear regressor pre-
formed the worst since it was clear that none of the
physiochemical features used to describe the sequence
data had strong correlation to the KD values. This is a
common pitfall for linearly uncorrelated features and is
frequent in small datasets. However, the random forest
and SVM predictions outweighed poor performance of
the linear regression, thereby producing overall predic-
tions of acceptable quality.

Discussion
Under hemolytic conditions, such as thalassemia, sickle cell
disease, or distinct bacterial infections, red blood cells are
destroyed and release both hemoglobin and heme [3]. Heme
is initially bound and neutralized by heme scavengers such
as hemopexin and albumin, but once their capacity is
exceeded, vast amounts of free heme arise [22]. Heme can
consequently bind and regulate a number of proteins, for
most of which the interaction site is unknown. For example,
heme has been suggested to inhibit the classical complement
pathway by interaction with C1q [23] and to activate the al-
ternative complement pathway by deposition of C3 [24].
Using Surface Plasmon Resonance spectroscopy, the heme
dissociation constant of C1q was determined to be approxi-
mately 1–2 μM, but no binding site could be identified yet
[25]. The latter applies to C3 as well, yet molecular docking
suggested a binding site close to the functionally important
thioester bond [24]. Furthermore, heme influences factor
VIII and fibrinogen in seemingly contradictory fashion, but
partially due to the lack of structural information this disson-
ance has not been unraveled yet [26–28].
The opposite approach, i.e. the prediction of unknown

heme-regulated proteins from peptide sequences, has also
been fruitful. Building on a combinatorial peptide library
screening approach we predicted and validated transient
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heme binding to proteins such as chloramphenicol acetyl-
transferase, hemolysin C, and interleukin-36α [6, 29–31].

Conclusion
As demonstrated with evidence thus far, heme plays a key
regulatory role in a multitude of processes. Strikingly, for
most of the proteins involved, little is known about the
sites and affinities of heme binding. Experimental map-
ping of heme-protein interactions requires vast effort, e.g.
the expression of protein mutants or the co-crystallization
of heme with the protein of interest, at times with conflict-
ing results [8, 32]. As an extension of existing experimen-
tal work on peptide-heme binding, HeMoQuest provides
a shortcut to the identification of heme-regulated proteins.
Due to the convincing accuracy of the presented algo-
rithm, researchers may be able to bypass the necessity of
producing peptides as models and may even be able to ra-
tionally design heme-binding peptides and proteins. Sev-
eral efforts have been undertaken to predict heme binding
to proteins [9–12, 14, 16, 17, 33], however, HeMoQuest is
fundamentally different from previous tools because of its
exclusive focus on transient heme binding. The tool is
built on a dataset created solely for this purpose. As with
any data-driven approach, HeMoQuest is poised to only
get better with time as more data becomes available.

Methods
Web application architecture
Multiple programming languages and frameworks were
effectively utilized in this work to construct a user-friendly
and effective web application, called HeMoQuest (heme-
binding motif quest). This webserver (Fig. 1b) was built on
the Django framework version 2.3.1 (https://www.django-
project.com/) running Python 3.6.5 under the hood. The
user is given access to three pages: 1) the landing page that
can also be used to submit sequences for analysis, 2) the
results page containing the analysis of a single request in a
tabular format, and 3) the analysis page hyperlinked from
the results providing a stepwise analysis of how a predic-
tion was produced for an input sequence. User input and
the analysis results are saved in a SQlite database (https://
www.sqlite.org/index.html). The schema consists of three
tables namely: ‘jobs’, ‘sequences’ and ‘results’. The job is
saved whenever the user sends enough information to be
processed, such as a file or an input sequence. The se-
quences table stores for each job all sequences successfully
read (even if there are false inputs). The results table con-
tains the predicted nonapeptide motifs and the predicted
binding affinities.

Web application control flow
Django first checks user submissions for the following:
There must be at least one sequence or one file in the
FASTA format. File sizes are restricted to 2MB. If solvent

accessibility prediction via WESA, i.e. the Weighted En-
semble Solvent Accessibility predictor tool [18, 19], is re-
quested, an email address is required to be entered by the
user. With the basic checks done, the input is read and a
status (either “failed”, “queued” or “processed”) is assigned.
Each sequence is analyzed and the possible binding sites
are saved in the database. If solvent accessibility prediction
was not requested, the analysis for each sequence is gener-
ated and saved, the status is changed to “processed”. If an
email address was supplied, a message is sent with the link
to the results page and finally the user is redirected to the
results page. If solvent accessibility prediction was re-
quested, the analysis for each sequence is also generated
and saved, under the status “queued”. The user will re-
ceive an email with uniform resource locator (URL) link
to the results page that displays the status of how many
sequences are being processed and, as the sequences are
processed, their results. This process will continue as long
as the celery job detects the existence of queued sequences
with the WESA detection mode. The task scheduler takes
care of the automatic execution of this process.

Prediction algorithms
The nonapeptide motif prediction algorithm SeqD-HBM
published earlier [6] as a standalone python script was over-
hauled and rewritten for the web application. For the pre-
diction of binding affinities, a set of 73 nonapeptide
sequences (Additional Table 1) synthesized and validated
in-house with experimentally determined and published
binding affinities were used [29, 30, 34–36]. Three different
predictors namely, linear regression, random forest and
support vector machine (SVM) methods were used to per-
form regression, predicting the target variable, i.e. the bind-
ing affinity. An ensemble-based voting scheme was used to
obtain the final prediction from the individual predictors
(Fig. 1b). An 80/20 train-test split was employed in all cases.

Dataset preparation
Three independent datasets were used for this study. The
first of which comprised of 469 sequences (supplementary
data 2) from the BioLip database [13] (March 2019 release)
extracted for the HEM ligand code which relates to “heme”.
The second dataset consisted of a cumulative set of all of the
data used in previous studies (Fig. 1b). Finally, a set of 40
proteins (Additional Table 2, supplementary data 3) known
to bind heme transiently, was chosen manually.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12859-020-3420-2.

Additional file 1:. Additional Table 1. Human heme-regulated proteins
and reported heme-binding sites. Additional Table 2. Peptides sequences
and binding data used for the initial training of HeMoQuest
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Additional file 2 Supplementary data Additionally, the datasets used to
train and validate the application is also available for download from the
“HeMoQuest Datasets” section of the webserver. A description of the files
provided is given below. 1. Training data. 1a. Title: HeMoQuest KD
prediction training data. 1b. Description: This comma separated values
file contains 72 sequences along with their KD values used in the training
of the ML algorithms of HeMoQuest. Column 1 (ID) contains a sequence
identifier, column 2 (Seq) contains the sequence and column 3 (KD)
contains the experimentally determined KD value of for the peptide
sequence. 2. Test data. 2a. Title: HeMoQuest test data for heme binding
residue and motif prediction. 2b. Description: This file contains 469
sequences in fasta format, obtained from the BioLip database, all of
which are said to bind heme. This data was used to test HeMoQuest’s
ability to detect heme binding residues in comparison to existing
algorithms. 3. Test data. 3a. Title: HemoQuest test data with manually
curated transient heme binding protein sequences. 3b. Description: This
file contains 45 sequences in fasta format from 40 manually curated
proteins (from Additional Table 1) that are known from literature to be
transient heme binding proteins. Few of the proteins have their origins in
more than one species and hence we end up with 45 sequences for 40
proteins. 4. Training features. 4a. Title: Features used in training the
HeMoQuest KD prediction. 4b. Description: This comma separated values
file contains 76 initial features that were generated for the KD prediction
training from the R package Peptides. The final set of features used are
from the columns ‘charge_vec’, ‘hydrof_vec_octanolScale_pH8’, ‘acidic’,
‘kideraFac3’, ‘vhseScale5_vec’, ‘vhseScale7_vec’, ‘protFP5_vec’ and
‘fasgaiVec4’.

Abbreviations
ALAS: Aminolevulinic acid synthase; NO: Nitric oxide; SeqD-HBM: Sequence
based detection of heme-binding motifs; SVM: Support vector machine;
URL: Uniform resource locator; WESA: Weighted ensemble solvent
accessibility
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