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ABSTRACT
The severe acute respiratory syndrome COVID-19 declared as a global pandemic by the World Health
Organization has become the present wellbeing worry to the whole world. There is an emergent need
to search for possible medications. Cressa cretica is reported to show antitubercular, antibacterial and
expectorant property. In this research, we aim to prospect the COVID-19 main protease crystal struc-
ture (Mpro; PDB ID: 6LU7) and the active chemical constituents from Cressa cretica in order to under-
stand the structural basis of their interactions. We examined the binding potential of active
constituents of Cressa cretica plant to immensely conserved protein Mpro of SARS-CoV-2 followed by
exploration of the vast conformational space of protein–ligand complexes by molecular dynamics
(MD) simulations. The results suggest the effectiveness of 3,5-Dicaffeoylquinic acid and Quercetin
against standard drug Remdesivir. The active chemical constituents exhibited good docking scores,
and interacts with binding site residues of Mpro by forming hydrogen bond and hydrophobic interac-
tions. 3,5-Dicaffeoylquinic acid showed the best affinity towards Mpro receptor which is one of the tar-
get enzymes required by SARS CoV-2 virus for replication suggesting it to be a novel research
molecule. The potential of the active chemical constituents from Cressa cretica against the SARS-CoV-2
virus has best been highlighted through this study. Therefore, these chemical entities can be further
scrutinized and provides direction for further consideration for in-vivo and in-vitro validations for the
treatment of covid-19.

GRAPHICAL ABSTRACT

Abbreviations: MD: Molecular dynamics; ORF: Open reading frames; HIV: Human Immunodeficiency
virus; RNA: Ribonucleic acid; OPLS: Optimized potentials for liquid simulations; NCDCV: Neonatal calf
diarrhoea coronavirus; OC43: Orthocornavirinae family; RdRps: RNA-dependent RNA polymerase; MW:
Molecular weight; PSA: Polar surface area; HBD: Hydrogen bond donor; RMSD: Root mean square devi-
ation; RMSF: Root Mean Square Fluctuation; CAESAR: Computer assisted evaluation of industrial
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chemical substances according to regulation; CoMPARA: Collaborative modeling project for androgen
receptor activity; IRFMN: Oestrogen receptor relative binding affinity model; ADI: Applicability domain
index; WHO: World Health Organization; SDF: Spatial data file

1. Introduction

Novel coronavirus disease (COVID-19) has become a pandemic
danger to the general wellbeing. It is a respiratory disease-caus-
ing fever, fatigue, dry cough; muscle aches, shortness of breath
and some instances lead to pneumonia. Development of symp-
toms and their brutality of disease vary from patient to patient.
The elderly people, children below 6years and patients with
the past medical history of asthma, diabetes, cardiac disorder
are more susceptible to this disease due to weaker or conceded
immune systems (Shah et al., 2020). The World Health
Organization (WHO) has now declared a global emergency and
pandemic for the coronavirus disease (COVID-19) that has been
actively spreading around the globe (World Health Organization
(WHO), 2020). SARS-CoV-2 virus consists of mRNA as genetic
material after release into the host cell can be readily translated
into protein. There are totally about 14 open reading frames
(ORF) in the mRNA genome of virus. Every individual ORF is
responsible for encoding a variety of structural and non-struc-
tural proteins required for viral existence plus its virulence influ-
ence. In the transformation phase of the viral genome, genes
that encode non-structural polyprotein are first translates into
ORF1a and ORF1b to generates two large overlapping polypro-
tein namely pp1a and pp1ab by contributing a ribosomal frame
shifting event (Astuti & Ysrafil, 2020; Masters, 2006).

The SARS-CoV-2 virus polyprotein encodes two proteases,
which share in its processing and release of the translated
non-structural proteins. A) Main protease is called 3-CL-like or
serine-type protease (Mpro) and B) Papain-like protease (Plpro).
The researchers are concentrating on both of these vital tar-
gets Mpro and Plpro for drug discovery studies against the
recent coronavirus epidemics. The mediation of nonstructural
viral proteins and maturation by the main protease makes
Mpro a very attractive target for the development of anti-cor-
onavirus drugs. Thus, any inhibitors which inhibit the main pro-
tease (3CLpro or Mpro) and block the replication of SARS-CoV-2
would be effective and specific measures for the development
of therapeutic agents or antiviral drugs against SARS-CoV-2
(Vlachakis et al., 2020). The first available crystal structure of
COVID-19 proteins is Mpro, which was published in February
2020 (PDB ID:6LU7) (Kandeel & Al-Nazawi, 2020) provides struc-
tural insights for understanding of ligand binding to Mpro. As
of now, no specific treatment available for copping this mal-
ady. Clinical trials undergoing at ClinicalTrials.gov (https://clini-
caltrials.gov/) and WHO Solidarity concentrating on the
repurposing of existing drugs (Altay et al., 2020; Viveiros Rosa
& Santos, 2020). Scientist working in this area has suggested
the use of some recognized broad-spectrum antiviral drugs
such as Nucleoside analogs, HIV protease inhibitors and trad-
itional Chinese medicines as hopeful treatment approach.
Some antiviral drugs like Remdesivir, Ritonavir, Oseltamivir,
Favinapir, Ganciclovir and Lopinavir are clinically tried against
COVID-19 disease. Until any exact treatment procedure is

accessible for COVID-19, the utilization of derivatives of
recently realized antiviral drugs is a helpful technique (Hall &
Ji, 2020). In resembling, different clinical trials are likewise now
being experienced on nucleoside analogue medications, for
example, Remdesivir, an antiviral medication demonstrated to
be compelling against a wide scope of RNA infections in vitro
(Elfiky, 2020a) and it is the only drug that is approved by FDA
(National Institutes of Health, n.d.). However, the beneficial
importance of Remdesivir remains uncertain (Siemieniuk et al.,
2020). Favipiravir demonstrated a better effect in disease pro-
gression and viral clearance (Cai et al., 2020).

To encounter viral diseases, traditional plants are principally
empowered in the greater part of the total populace (Mukhtar
et al., 2008). Also, different assessment shows the valuable
impact of traditional therapeutics in the usage of patients
infected with a novel SARS-CoV-2 virus (Yang et al., 2020).
Sanjeevani is among the most baffling and most sought-after
herbs in Indian folklore, whose presence and personality are
saturated with profound contention. Cressa cretica is a plant
that is referred to by the name that mirrors the highlights of
Sanjeevani (Sen, 2009). Selaginella bryopteris, Dendrobium plica-
tile and Cressa cretica have been anticipated as likely nominees
for the Sanjeevani plant. Amongst them, Cressa cretica is a very
common holophytic herb used in traditional medicine for cure
of diabetes, ulcers, asthma, anthelmintic, stomachic, aphrodisiac,
and beneficial in constipation, leprosy and urinary discharges.
The leaf extract also shows antioxidant and antibacterial prop-
erty for infections. It has a huge range of biologically active
chemicals as Quercetin, Quercetin-3-O-glucoside, Kampferol-3-O-
glucoside, Rutin, Syringaresinol-h-d-glucoside, Scopoletin, 3,5-
dicaffeoylquinic acid, Creticane, Cressa tetracosanoate, Cressa
tetratriacontanoic acid, Cressa triacontanone, Cressa naphthace-
none, etc. that are chemically and structurally different (Afshari
& Sayyed-Alangi, 2017; Priyashree et al., 2010; Rani et al., 2011;
Suganthi et al., 2008).

With the conventional technique of drug discovery could
take years, whereas in silico docking models from the most
variable protein in the SARS-CoV-2 can search for the pos-
sible natural medications for the treatment of COVID 19. In
this investigation, docking examines on the phytoconstitu-
ents of Cressa cretica were performed over restricting pocket
of Mpro (protease) to locate the potential small natural mol-
ecule to encounter life-threatening coronavirus disease. The
obtained results will help in the repurposing natural rem-
edies to combat the recent dangerous COVID-19.

2. Material and methods

2.1. Protein preparations

In-silico analysis of phytoconstituents of Cressa cretica was
performed on 2.16 Å crystal structure of COVID-19 Mpro, the
main protease in complex with an inhibitor N3 (PDB ID:
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6LU7, Resolution: 2.16 Å) which was retrieved from protein
data bank (https://www.rcsb.org) Figure S1. Protein
Preparation Wizard module of Maestro (Anang et al., 2018)
was used to prepare and process protein structure which
includes three main steps; import and process, review and
modify and final refinement of the protein structure. Pre-pro-
cess step includes assigning bond orders, hydrogen bond
addition, creation of zero-order bonds to metals and disul-
phide bonds with the filling of missing side chains and miss-
ing loops using Prime. The waters beyond 5Å was deleted
and het states were generated using Epik pH 7.0 ± 0.0. The
workspace was analysed and states were generated at pH
7.0 ± 0.0. In the refinement step, optimization of protein and
removal of water molecules followed by minimization using
OPLS3e as force field was performed (Jorgensen et al., 1996).

2.2. Ligand preparations

The structures of chemical constituents of Cressa cretica were
retrieved in a MOL format from the PubChem database avail-
able on the NCBI website (https://pubchem.ncbi.nlm.nih.gov).
The ligand N3 (N-[(5-methylisoxazol-3yl) carbonyl] alanyl-l-
valyl-n�1�-((1R, 2Z)-4-(benzyloxy)-4-oxo-1-f[(3R)-2-oxopyrro-
lidin-3-yl] methylg but-2-enyl)-l-leucinamide) was obtained
from database of chemspider. CSID:4883311, http://www.
chemspider.com/ChemicalStructure.4883311.html (accessed
04:56, May 12, 2020). Ten compounds were selected to tar-
get the main protease of SARS-CoV-2; five are known as
potential inhibitors for Mpro enzyme, one of them is
approved drug against different viral RdRps (Remdesivir) (C.
Gordon et al., 2020) and 3,5-Dicaffeoylquinic acid, Quercetin,
Scopoletin, Syringaresinol are active chemical constituent of
the plant Cressa cretica. The chemical structures of all the
ligands are depicted in Figure 1. All the structures were mini-
mized using LigPrep module within Schrodinger using
OPLS3e force field and pH 7.0 ± 0.0 was set as an ionization
state (LigPrep, Schr€odinger, LLC, New York, NY, 2020).

2.3. Receptor grid generation and molecular docking

The grid was generated by selecting co-crystallized inhibitor
N3 within the minimised protein structure. Furthermore, the

generated grid was used for docking of all prepared ligands
using Glide employing extra precision (XP) docking module
(Friesner et al., 2006; Release, 2017). Glide has been shown
to calculate superior prediction in contrast to that of the
other docking software; because it applies both empirical as
well as force field terms to compute the finest binding pose
and binding energy (Friesner et al., 2004).

2.4. Molecular dynamic (MD) simulation studies

Desmond with OPLS3e force field from Schrodinger was
used to study the dynamic behaviour of all protein–ligand
complexes in the presence of explicit water molecules
(Harder et al., 2016). The obtained docking poses for selected
compounds (3,5-Dicaffeoylquinic, Remdesivir and Quercetin)
were used for MD simulation studies. The System Builder
module was used for system preparation using the SPC mod-
ule for solvation and volume occupancy in an orthorhombic
box with periodic boundary conditions. The solvated system
was neutralised by the addition of appropriate anion (Cl�)
and cation (Naþ) with a salt concentration of 0.15mol/L. The
generated solvated system was used for 100 ps minimization.
The minimized system was then used for 100 ns MD simula-
tion using NPT ensemble, 300 K temperature and pressure
(1.013 bar). The MD trajectory analysis was performed using a
simulation interaction diagram (Kotha et al., 2020).

Furthermore, the relative binding affinity of the ligands
towards Mpro protein was determined using Prime Molecular
Mechanics with Generalized Born Surface Area (MM-GBSA)
Schrodinger, NY, 2019 (Release, 2017). The MM-GBSA
(Genheden & Ryde, 2015) calculations were performed using
VSGB (Li et al., 2011) and OPLS3 (Harder et al., 2016) as the
solvent model and force field, respectively.

2.5. ADME and toxicity studies

The selected phytoconstituents were further checked for
drug-likeness properties according to the Lipinski rule.
During drug development, safety is usually the foremost
important issue, therefor Toxicology prediction of small mol-
ecules is vital to predict the amount of tolerability before
being ingested into the animal models. VEGA-QSAR (http://

Figure 1. Chemical structure of all selected ligand molecules in docking studies.

JOURNAL OF BIOMOLECULAR STRUCTURE AND DYNAMICS 3

https://www.rcsb.org
https://pubchem.ncbi.nlm.nih.gov
http://www.chemspider.com/ChemicalStructure.4883311.html
http://www.chemspider.com/ChemicalStructure.4883311.html
http://www.vega-qsar.eu/


www.vega-qsar.eu/) is integrating In silico QSAR models and
read-across method for a number of toxicological data out-
comes (Rogiers et al., 2020). To analysed ligands for toxico-
logical properties, SMILES notations or SDF files uploaded
followed by selecting required models for generating numer-
ous information about structure related effects. The results
also show structural alerts in chemical structure based on
known mutagenic and carcinogenic structural analog
(Benfenati et al., 2019).

3. Result and discussion

The main aim of the study was to prospect active chemical
constituents of Cressa cretica to a highly conserved protein,
Mpro of SARS-CoV-2, therefore, we performed molecular
docking studies of all chemical constituents of Cressa cretica
followed by identification of top hits which is discussed in
the first section. Furthermore, the docking poses of ligands
showing highest docking score were evaluated through MD
simulations, calculated free energy of binding for the drugs
using MM-GBSA. The results are presented in the
second section.

3.1. Molecular docking studies

All the prepared ligands shown in Figure 1 were docked (XP
module) on the prepared protein (PDB ID: 6LU7) successfully
and XP docking score was analysed.

The XP docking score for all the ligands is listed in Table
1 along with their molecular properties.

According to the analysis of docking results, the interactions
(listed in Table 2) between 3,5-Dicaffeoylquinic acid and
Quercetin are highly consistent with that of Remdesivir and
even they represent the most promising inhibitors of the
SARS-CoV-2 Mpro. The results of the molecular docking showed
that the tested compound 3,5-Dicaffeoylquinic acid gives the
lowest binding energy (�6.375kcal/mol) in complex with
6LU7, which is the best score when compared to other docked
compounds. Quercetin (�5.314 kcal/mol) gives score agreeable
to the one given by Remdesivir (�6.278kcal/mol).

Docking of selected ligands shows various kinds of interac-
tions with active site of Mpro protein indicating the possible
binding of these ligands to Mpro protein. Ligand 3,5-
Dihydrocaffeolyquinic acid shows eight hydrogen bond interac-
tions with LEU4, MET49, GLN189, THR190, GLN256, ALA255,
VAL297 and SER301. Additionally, it also forms hydrophobic

Table 1. Ligands binding interaction parameter with the main protease of SARS-CoV-2 (PDB ID: 6LU7).

Sr. No.
PubChem CID/
ChemSpider ID Name

MW
(g/mol) log P HBDH

Topo-logical
PSA (Å2)

XP docking score
(kcal/mol)

Lipinski rule
violation

1 6474310 3,5-Dicaffeoylquinic acid 516.4 1.5 19 211 �6.375 3
2 121304016 Remdesivir 602.6 1.9 17 204 �6.278 2
3 5280343 Quercetin 302.23 1.5 12 127 �5.314 0
4 479503 Shikonin 288.29 3.0 8 94.8 �4.091 0
5 5280460 Scopoletin 192.17 1.5 5 55.8 �3.545 0
6 11313622 Tideglusib 334.4 4.3 3 65.9 �2.100 0
7 3117 Disulfiram 296.5 3.9 4 121 �1.977 0
8 100067 Syringaresinol 418.4 2.2 10 95.8 �1.740 0
9 4883311 N3 680.791 1.74 19 198 �1.705 2
10 219104 PX-12 188.3 2.3 4 79.3 �1.506 0

Table 2. Binding interactions of ligands with the binding site of main protease of SARS-CoV-2 (PDB ID: 6LU7).

Interactions (PDB-6LU7)

Sr. No. Ligands H-Bonding Hydrophobic

1 3,5-Dicaffeoylquinic acid LEU4, MET49, GLN189, THR190, GLN256, ALA255, VAL297, SER301 ALA2, LEU50, ARG188, PHE305
2 Remdesivir LEU4, THR24, THR25, GLU166, GLN189 VAL3, MET49, LEU50 and PRO168
3 Quercetin THR24, THR26, ASN28, HIS41, ASN119, ASN142 and GLN189

Figure 2. Docked pose of A) Remdesivir B) Quercetin and C) 3,5-Dihydrocaffeolyquinic acid against Mpro protease (PDB ID: 6LU7). The ligand is shown in ball and
stick representation whereas residues forming binding pocket of Mpro are shown as green sticks. Hydrogen bond interactions are shown with black dotted lines.
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interactions with ALA2, LEU50, ARG188 and PHE305. On the
other hand, Remdesivir formed five hydrogen bonds with LEU4,
THR24, THR25, GLU166 and GLN189, and four hydrophobic
interactions with VAL3, MET49, LEU50 and PRO168. This is well
aligned with the reported docking studies of Remdesivir (Elfiky,
2020a, 2020b; Shannon et al., 2020). Similarly, Quercetin also
interacted with different amino acids such as THR24, THR26,
ASN28, HIS41, ASN119, ASN142 and GLN189 residues by form-
ing H-bond interactions. The docking poses for 3,5-
Dihydrocaffeolyquinic acid, Remdesivir and Quercetin is depicted
in Figure 2 and Figure S2 in supporting information (SI).

A literature review revealed that extracts of the selected
plants were reported to possess antiviral activity at various con-
centrations (Shahat et al., 2004; Sunita et al., 2011). 3,5-Di-O-caf-
feoylquinic acid possessed potent anti-respiratory syncytial virus
activity (IC50 of 2.33mM), antibacterial activity against Vibrio
cholera, Vibrio parahaemolyticus, Bacillus cereus (Li et al., 2005;
Ooi et al., 2006) and strongest DPPH radical scavenging activity
(Devrnja et al., 2017). The role of Quercetin as potential antiviral
agents is well known since 1951 and it is also found to dimin-
ish infectivity of bovine and human coronaviruses, NCDCV and
OC43, respectively, by half at a concentration of 60lg/mL.
Quercetin, have ability to block the entry of SARS-CoV into host
cells. Quercetin antagonized HIV-luc/SARS pseudo typed virus
entry (EC50 of 83.4lM) (Meyer-Almes, 2020; Russo et al., 2020).

The screened chemical constituents displayed higher
docking scores, stronger binding energies, and better interac-
tions with the conserved catalytic residue than Remdesivir.
To further prove the effectiveness of phytoconstituents for
COVID-19 therapy, the best three compounds having the
highest docking scores based on XP docking method,
namely 3,5-Dicaffeoylquinic acid, Remdesivir and Quercetin
were selected for MD simulation studies.

3.2. Molecular dynamic simulation studies

MD simulation studies were carried out to understand the
stability of protein ligand interaction. As discussed earlier,

Figure 3. 1) RMSD of the protein backbone along the simulation trajectory for the protein and all the docked complexes. The overall structure of Mpro did not
change much after the binding of (A) Remdesivir B) Quercetin and C) 3, 5-Dicaffeoylquinic acid.

Figure 4. RMSF of the amino acids comprising the Mpro. No abrupt fluctuations were observed in any region of the protein with the three ligands A) Remdesivir B)
Quercetin and C) 3, 5-Dicaffeoylquinic acid.

Figure 5. Hydrogen bond occupancy of various important residues of the main protease during the simulation run in case of binding with A) Remdesivir B)
Quercetin and C) 3,5-Dicaffeoylquinic acid.

Table 3. MM-GBSA values for the selected ligands.

Ligands MM-GBSA DG bind (kcal/mol)

3.5-Dicaffeoylquinic acid �45.62
Remdesivir �50.14
Quercetin �40.64
Shikonin �25.29
Scopoletin �21.34
Tideglusib �30.59
Disulfiram �10.27
Syringaresionol �28.11
N3 �34.54
PX12 �11.38
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Table 4. Toxicological data of selected active phytoconstituents (QSAR Models).

Toxicity study Toxicity test 3,5-Dicaffeoyl quinic acid Quercetin Remdesivir

Mutagenicity Mutagenicity (Ames test)
CONSENSUS model – assessment

NON-Mutagenic (Consensus
score: 0.5)

Mutagenic
(Consensus score: 1)

Mutagenic
(Consensus score: 0.1)

Mutagenicity (Ames test)
CONSENSUS model – prediction

NON-Mutagenic Mutagenic Mutagenic

Mutagenicity (Ames test) model
(CAESAR) – assessment

0.823�� 1.0��� 0.505�

Mutagenicity (Ames test) model
(CAESAR) – prediction

NON-Mutagenic Mutagenic NON-Mutagenic

Mutagenicity (Ames test) model
(SarPy/IRFMN) – assessment

0.745�� 0.5� 0.559�

Mutagenicity (Ames test) model
(SarPy/IRFMN) – prediction

NON-Mutagenic NON-Mutagenic NON-Mutagenic

Mutagenicity (Ames test) model
(ISS) – assessment

0.737�� 0.85�� 0.506�

Mutagenicity (Ames test) model
(ISS) – prediction

NON-Mutagenic Mutagenic Mutagenic

Mutagenicity (Ames test) model
(KNN/Read-Across) – assessment

0.645� 1.0��� 0.619�

Mutagenicity (Ames test) model
(KNN/Read-Across) – prediction

NON-Mutagenic Mutagenic Mutagenic

Carcinogenicity Carcinogenicity model (CAESAR)
– assessment

outside applicability domain
of the model

0.793�� 0.156�

Carcinogenicity model (CAESAR)
– prediction

Carcinogen NON-Carcinogen NON-Carcinogen

Carcinogenicity model (ISS)
– assessment

0.5� 0.85�� 0.506�

Carcinogenicity model (ISS)
– prediction

NON-Carcinogen Carcinogen Carcinogen

Carcinogenicity model (IRFMN/
ISSCAN-CGX) – assessment

0.666�� 1.0��� 0.492�

Carcinogenicity model (IRFMN/
ISSCAN-CGX) – prediction

Possible NON-Carcinogen Carcinogen Carcinogen

Carcinogenicity oral classification
model (IRFMN) – assessment

0.5� 0.525� 0.354�

Carcinogenicity oral classification
model (IRFMN) – prediction

NON-Carcinogen Carcinogen Carcinogen

Carcinogenicity oral Slope Factor
model (IRFMN) – assessment

0.85�� 0.541� 0.199�

Carcinogenicity oral Slope Factor
model (IRFMN) – prediction
[log(1/(mg/kg-day))]

1.26 0.8 3.59

Carcinogenicity inhalation
classification model (IRFMN)
– assessment

0.5� 0.75�� 0.287�

Carcinogenicity inhalation
classification model (IRFMN)
– prediction

NON-Carcinogen Carcinogen Carcinogen

Carcinogenicity inhalation Slope
Factor model (IRFMN)
– assessment

0.85�� 0.394�� 0.199�

Carcinogenicity inhalation Slope
Factor model (IRFMN) –
prediction [log(1/(mg/kg-day))]

0.03 1.22 1.21

Developmental Toxicity Developmental Toxicity model
(CAESAR) – assessment

0.74�� 0.886�� 0.5�

Developmental Toxicity model
(CAESAR) – prediction

NON-Toxicant Toxicant NON-Toxicant

Developmental/Reproductive
Toxicity library (PG)
– assessment

0.5� 0.881�� Toxicant
(low reliability)

Developmental/Reproductive
Toxicity library (PG) – prediction

NON-Toxicant Toxicant Toxicant

Zebrafish Zebrafish embryo AC50 (IRFMN/
CORAL) – assessment

520.15 ug/L
(low reliability)

179309.14 ug/L
(low reliability)

192108.37 ug/L
(low reliability)

Zebrafish embryo AC50 (IRFMN/
CORAL) – prediction [log(umol/l)]

0 2.77 2.5

Oestrogen Estrogen Receptor Relative Binding
Affinity model (IRFMN)
– assessment

0.866��� 0.99��� 0.354�

Estrogen Receptor Relative Binding
Affinity model (IRFMN)
– prediction

Inactive Active Inactive

Estrogen Receptor-mediated effect
(IRFMN/CERAPP) – assessment

0.868��� 0.797�� 0.724��

(continued)
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three best ligands having highest docking score were
selected for MD simulations studies.

Remdesivir was considered as the standard drug molecule in
the treatment of covid-19 (Costanzo et al., 2020; C. J. Gordon
et al., 2020; Jean & Hsueh, 2020; Wu et al., 2020). Backbone
root mean square deviation (RMSD) analysis was carried out to
evaluate the stability of Remdesivir into the binding pocket of
Mpro protein. 100ns MD simulations of Remdesivir showed that
simulations converged after �60ns yielding final RMSD within
3Å. Thus, the last 40ns simulations were considered for further
calculations. It was observed that Remdesivir formed H-bond
with various amino acid residues such as LEU4, THR24, THR25,
GLU166 and GLN189 whereas hydrophobic bond interaction
with VAL3, MET49, LEU50 and PRO168. The RMSD and RMSF
plot of protein–ligand and the ligand protein contacts for
Remdesivir are shown in Figures 3 and 4, respectively.

Similarly, the interactions of 3,5-Dicaffeoylquinic acid at
different time intervals were analysed and check for the sta-
bility which showed that, at 40 ns, the proteins got stabilized
and ligand was forming interaction with the protein (RMSD
difference ¼ 2.5 Å). 3,5-Dicaffeoylquinic acid was forming H-
bond interactions with LEU4, MET49, GLN189, THR190,
GLN256, ALA255, VAL297 and SER301 while hydrophobic
interactions with ALA2, LEU50, ARG188 and PHE305. The
RMSD of 3,5-Dicaffeoylquinic acid is shown in Figure 3.

On the other hand, Quercetin was showing stable interac-
tions throughout the simulation period (100 ns) which indi-
cates the stability of the ligand in the binding site pocket of
the protein (RMSD Difference ¼ 2.8 Å). Quercetin was inter-
acted with different amino acid such as THR24, THR26,
ASN28, HIS41, ASN119, ASN142 and GLN189 residues by
forming H-bond interactions. The RMSF plot for Quercetin is
shown in Figure 4.

Even though hydrogen bonds are weaker compared to
ionic and covalent bonds, they are exploited the most for
design of new drug candidate (Bhardwaj et al., 2020; Yunta,
2017). H-bonds are important contributor for the specificity
of molecular recognition. The free energy for H-bonds usually
ranges from of �12 to �20 kJ/mol, and the binding potential
of a ligand rises by almost one order of magnitude per H-
bond. Therefore, we observed into the H-bonding pattern of
Remdesivir, 3,5-Dicaffeoylquinic acid and Quercetin over the
entire 100 ns simulation trajectory.

MD simulations trajectories revealed that 3,5-
Dicaffeoylquinic acid (Figure 5(C)) was making more H-bonds
in comparison to Remdesivir (Figure 5(A)) and Quercetin
(Figure 5(B)) over the entire simulation trajectory. All the
selected molecules (3,5-dicaffeoylquinic, Remdesivir and
Quercetin) maintained the molecular interactions with the
protein. Overall, the interactions analysis showed that at any
fraction of time, 3,5-Dicaffeoylquinic acid was making better
contacts and better consistency compared to Remdesivir.
This suggests that 3,5-Dicaffeoylquinic acid has good affinity
towards the substrate-binding pocket of Mpro and could
probably be natural and readily available drugs for the inhib-
ition of SARS-CoV-2 functional activity. Refer Table S1 for lig-
and interactions with amino acid residues of protein at
different time intervals.

Furthermore, we also carried out MM-GBSA calculations to
estimate binding energies or affinity (dG Bind) of ligands.
The results of MM-GBSA calculations are shown in Table 3.

Based on the MM-GBSA calculation, the dG bind values
for top three molecules such as Remdesivir, 3.5-
Dicaffeoylquinic acid and Quercetin was found to �50.14,
�45.62 and �40.64, respectively. The obtained binding ener-
gies of 3.5-Dicaffeoylquinic acid is closed to Remdesivir

Table 4. Continued.

Toxicity study Toxicity test 3,5-Dicaffeoyl quinic acid Quercetin Remdesivir

Estrogen Receptor-mediated effect
(IRFMN/CERAPP) – prediction

NON-active Active NON-active

Androgen Androgen Receptor-mediated effect
(IRFMN/COMPARA) – assessment

0.872��� 0.5� 0.612�

Androgen Receptor-mediated effect
(IRFMN/COMPARA) – prediction

NON-active Active NON-active

Thyroid Thyroid Receptor Alpha effect
(NRMEA) – assessment

0.958��� 0.94��� 0.866���

Thyroid Receptor Alpha effect
(NRMEA) – prediction

Inactive Inactive Inactive

Thyroid Receptor Beta effect
(NRMEA) – assessment

0.958��� 0.94��� 0.866���

Thyroid Receptor Beta effect
(NRMEA) – prediction

Inactive Inactive Inactive

Skin sensitivity Skin Sensitization model (CAESAR)
– assessment

0.706�� 0.368� 0.5�

Skin Sensitization model (CAESAR)
– prediction

NON-Sensitizer Sensitizer NON-Sensitizer

Skin Sensitization model (IRFMN/
JRC) – assessment

outside applicability
domain of the model

0.5� 0.5�

Skin Sensitization model (IRFMN/
JRC) – prediction

Sensitizer NON-Sensitizer Sensitizer

Hepatotoxicity Hepatotoxicity model (IRFMN)
– assessment

0.801��� 0.781�� 0.5�

Hepatotoxicity model (IRFMN)
– prediction

NON-Toxic Toxic Toxic

[�low reliability prediction; ��medium reliability prediction; and ���high reliability prediction].
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indicating stronger binding to Mpro protein. Based on both
the results, the order of binding affinity was found to be
Remdesivir, 3.5-Dicaffeoylquinic acid and Quercetin.
Therefore, 3.5-Dicaffeoylquinic acid and Quercetin might be
a novel therapeutic for Mpro inhibition and could be helpful
in the treatment of coronavirus infection.

3.3. Toxicity results

To access toxicological data, QSAR modelling method per-
formed using VEGA-QSAR (Table 4). The software incorpo-
rated algorithm provides evaluation of reliability prediction
as Applicability domain index (ADI) value. We used positive
results with ADI >0.5, as indicators of reliability effect; low
(0.5 < ADI < 0.6), medium (0.6 < ADI < 0.8) and high (0.8 <

ADI < 1). The dicaffeolquinic acid does not show mutagenic-
ity (CONSENSUS model, CAESAR, SarPy/IRFMN, ISS and KNN/
Read-Across, assessment and prediction) (Votano et al.,
2004), does not have carcinogenicity (ISS model, IRFMN/
ISSCAN-CGX, IRFMN (oral, inhalation and slope factor model)
assessment and prediction) (Fjodorova et al., 2010), do not
show developmental toxicity (CAESAR model, PG model
assessment and prediction) (Simms et al., 2020), no adverse
health effects to humans and ecological species (IRFMN/
COMPARA, assessment and prediction) (Mansouri et al.,
2020), Inactive for oestrogen and androgen mediated effect
(IRFMN/CERAPP, assessment and prediction) (Cotterill et al.,
2019; Mansouri et al., 2020) and found to be inactive for
Thyroid hormone receptor a/b (NRMEA, assessment and pre-
diction). compounds does not have skin sensitivity (CAESAR
model, assessment and prediction) (Chaudhry et al., 2010).
No hepatotoxic potential (IRFMN, assessment and prediction).
Thus, overall 3,5-Dicaffeoylquinic acid can be suitable candi-
date for further in vitro and in vivo assessment for its inhibi-
tory potential against SARS-CoV-2.

4. Conclusion

In summary, results obtained by molecular docking revealed
that 3, 5-Dicaffeoylquinic acid from Cressa cretica shows
highest binding energy as compared to Remdesivir and may
inhibit Mpro protein required to cut mRNA and for viral
assembly. Likewise, the interaction with various amino acid
residues of Mpro were maintained throughout the 100 ns of
molecular dynamic simulations. 3,5-Dicaffeoylquinic acid
showed best affinity towards COVID-19 main protease (Mpro)
of SARS-CoV-2 suggesting it to be novel research molecule.
Thus, chemical constituents of Cressa cretica become effect-
ive to fight against the new corona virus and provide an
imminent research attention as they mark the desire inter-
action with main protease (Mpro), which implies a possible
antiviral activity. These results encourage further in vitro and
in vivo investigations and also encourage traditional use of
Cressa cretica preventively and will provide vital information
on novel scaffolds for further lead optimization.
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