Hindawi

Oxidative Medicine and Cellular Longevity
Volume 2021, Article ID 5595047, 10 pages
https://doi.org/10.1155/2021/5595047

Research Article

Lead-Induced Motor Dysfunction Is Associated with Oxidative
Stress, Proteome Modulation, and Neurodegeneration in Motor
Cortex of Rats

Luana Ketlen Reis Ledao®),! Leonardo Oliveira Bittencourt(,!

Ana Carolina Alves Oliveira®,' Priscila Cunha Nascimento (),
Maria Karolina Martins Ferreira(,' Giza Hellen Nonato Miranda ®,!

Railson de Oliveira Ferreira ©®),' Luciana Eiré-Quirino (,' Bruna Puty ,! Aline Dionizio (9,
Sabrina Carvalho Cartagenes ,> Marco Aurelio M. Freire ©,*

Marilia Afonso Rabelo Buzalaf(),” Maria Elena Crespo-Lopez,’

Cristiane Socorro Ferraz Maia(,> and Rafael Rodrigues Lima

1

!Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pard, Belém, Pard, Brazil
ZDepartment of Biological Sciences, Bauru Dental School, University of Sdo Paulo, Bauru, Sdo Paulo, Brazil

*Laboratory of Pharmacology of Inflammation and Behavior, Pharmacy Faculty, Institute of Health Sciences, Federal University
of Pard, Belém, Pard, Brazil

*Graduate Program in Health and Society, University of the State of Rio Grande do Norte, Mossord, Rio Grande do Norte, Brazil
*Laboratory of Molecular Pharmacology, Institute of Biological Sciences, Federal University of Pard, Belém, Pard, Brazil

Correspondence should be addressed to Rafael Rodrigues Lima; rafalima@ufpa.br
Received 17 January 2021; Revised 15 August 2021; Accepted 11 September 2021; Published 7 October 2021
Academic Editor: Alin Ciobica

Copyright © 2021 Luana Ketlen Reis Ledo et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Lead (Pb) is a toxic metal with great neurotoxic potential. The aim of this study was to investigate the effects of a long-term Pb
intoxication on the global proteomic profile, oxidative biochemistry and neuronal density in motor cortex of adult rats, and the
possible outcomes related to motor functions. For this, Wistar rats received for 55 days a dose of 50 mg/Kg of Pb acetate by
intragastric gavage. Then, the motor abilities were evaluated by open field and inclined plane tests. To investigate the possible
oxidative biochemistry modulation, the levels of pro-oxidant parameters as lipid peroxidation and nitrites were evaluated. The
global proteomic profile was evaluated by ultraefficiency liquid chromatography system coupled with mass spectrometry
(UPLC/MS) followed by bioinformatic analysis. Moreover, it was evaluated the mature neuron density by anti-NeuN
immunostaining. The statistical analysis was performed through Student’s t-test, considering p < 0.05. We observed oxidative
stress triggering by the increase in malonaldehyde and nitrite levels in motor cortex. In the proteomic analysis, the motor cortex
presented alterations in proteins associated with neural functioning, morphological organization, and neurodegenerative features.
In addition, it was observed a decrease in the number of mature neurons. These findings, associated with previous evidences
observed in spinal cord, cerebellum, and hippocampus under the same Pb administration protocol, corroborate with the motor
deficits in the rats towards Pb. Thus, we conclude that the long-term administration to Pb in young Wistar rats triggers
impairments at several organizational levels, such as biochemical and morphological, which resulted in poor motor performance.

1. Introduction The Institute for Health Metrics and Evaluation IHME) esti-
mated that, only in 2017, lead exposure accounted for 1.06
Lead is one of the most abundant elements found on Earth,  million deaths, with the highest burden impacting low- and

present as metallic form, lead salts, and organic lead [1-3].  middle-income countries [4]. Human exposure occurs
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through occupational process, drinking water, traffic pollu-
tion, lead extraction, coal burning, and also environment
due to the increased lead levels on ice and soil in some
regions [5-7]. In addition, lead is often used in pesticides
and fertilizers, gasoline, battery pigments, cosmetics, and
metal products such as ammunition, solders, and plumbing
pipes [8-10]. This metal is known as an important environ-
mental pollutant, non-biodegradable, and with toxic effects
frequently reported, turning it into a serious public health
problem [11].

Recently, we investigated the effects of long-term expo-
sure to lead from adolescence to adulthood on different
regions of the Central Nervous System (CNS) [12-14]. In
the hippocampus, an important region involved in cognitive
processes, we observed increased levels of lead, oxidative
stress, and altered modulation of proteins related to cell
protection, synaptic transmission, associated with intense
neuronal loss, and damages to cognitive functions [14].
Our data also showed high levels of lead on spinal cord
and cerebellum, and after long-term exposure, a reduction
of neurons density in both regions was associated with
motor changes [12, 13]. In fact, even these results showing
toxic effects of lead in CNS, the information about the toxic
effects on other areas of brain, such as the motor cortex,
mainly in stages of development, are rare.

Considering the brain regions responsible for movement
control, the motor cortex is responsible for motor planning
and programming, in addition to command both from the
spinal cord and brainstem that modulate reflexes and gross
movements [15, 16]. Thus, the better understanding of the
effects of lead exposure on the motor cortex can elucidate
how lead can affect motor control. Therefore, the aim of this
study was to investigate the effects of long-term administra-
tion to lead from adolescence to adulthood, on the motor
cortex of rats, examining oxidative balance, proteomic
profile, neuronal degeneration, and motor functions.

2. Materials and Methods

2.1. Animals and Experimental Design. This project was
approved by the Ethics Committee from Federal University
of Para with protocol number 2237110716, following the
NIH Guide for the Care and Use of Laboratory Animals.
For this, we used 50 male Wistar rats (Rattus norvegicus),
with 40 days old, weighing between 150 and 160 g. The ani-
mals were randomly divided into two groups, control and
treated, with different numbers of animal in each group for
the different analyses. In the treated group, it was adminis-
tered a daily dose of 50mg/kg of lead acetate (Sigma-
Aldrich, St Louis, MO, USA) for 55 consecutive days. The
control group received distilled water (the same propor-
tional volume) by intragastric gavage. During the intoxica-
tion period, water and food were given ad libitum, and the
animals were weekly weighed to dose adjustment.

This lead administration protocol was based on Gu
et al. [17] and reproduced in previous studies from our
group [12-14, 18]. The experimental design is summarized
in Figure 1.
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2.2. Behavioral Tests. Twenty-four hours after the adminis-
tration period, all the animals were conducted to the assay
room with attenuated sounds and controlled illumination,
in order to avoid stress during the habituation and behav-
ioral procedures.

2.2.1. Open Field. This behavioral assay investigated the
spontaneous locomotor activity [15]. The animals were indi-
vidually placed in the center of the apparatus, which consists
of an acrylic box (100 x 100 x 30 cm) virtually divided into
25 quadrants, with free exploration for 5 minutes. All
sessions were recorded and posteriorly analyzed by ANY-
maze (Stoelting Co., Wood Dale, IL, USA) software. The
parameters analyzed were total distance traveled, distance
traveled on peripheral area, and distance traveled on the
center. Following the open field test, the animals were
submitted to the inclined plane assay.

2.2.2. Inclined Plane. This test was performed according to a
previous protocol [19]. The animals were placed on the 0°
angled movable platform, which is composed of two rectan-
gular platforms [20]. One platform is fixed, and the other
one is angled movable (Insight, Sdo Paulo, Brazil). The
movable platform was covered with rubber to ensure animal
adhesion and movement. The inclination angle was gradu-
ally increased from zero up to the highest inclination in
which each animal was able to remain positioned for 5
seconds (every 5 seconds the angle was increased by 5
degrees) for 5 consecutive trials, with an intersession interval
of 60 seconds, and the average angle was measured.

2.3. Oxidative Biochemistry Analyses. At the end of the
behavioral tests, the animals from each group were ran-
domly divided to the different analyses and then euthanized.
Firstly, the animals (n=10/per group) were anesthetized
with a solution of ketamine hydrochloride (90 mg/kg, i.p)
and xylazine hydrochloride (10 mg/kg, i.p) and then eutha-
nized. The motor cortex was collected, frozen in liquid
nitrogen, and stored at -80°C until further analyses. Then,
the samples were thawed, resuspended in Tris-HCI buffer
(20mM, pH7.4), and disaggregated sonically. The samples
were separated into two aliquots: for nitrite and lipid peroxida-
tion determinations. The detailed protocol for nitrite measure-
ments was previously established by Green et al. [21] and for
lipid peroxidation, we used the method proposed by Esterbauer
and Cheeseman [22]. Both results were normalized by protein
concentration by Bradford’s method [23].

2.4. Proteomic Approach. All proteomic analyses were per-
formed according to protocols previously described else-
where [24, 25]. Nine animals per group were euthanized
and used in the proteomic approach. The samples of motor
cortex from two animals were pooled, and all the procedures
were carried out in triplicate. Briefly, the proteomic consists of
protein extraction by lysis buffer. Then, the samples were
reduced, alkylated, and finally digested by trypsin and desalted
by C18 spin column (Pierce, Thermo Fisher, USA). Afterward,
the samples were resuspended in the solution containing 12 yL
of alcohol dehydrogenase standard (1 pmol/uL) + 108 uL of
3% acetonitrile and 0.1% formic acid.
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FIGURE 1: Sample description and experimental steps: (a) sample description (1 = 25 per group) and lead administration protocol. After the
administration period to lead acetate, the behavioral evaluation through (1) open field and (2) inclined plane tests (25 animals per group).
Then, the euthanasia and brain collection for analyses in motor cortex: (b) oxidative biochemistry analyses through nitrite levels (nitrite) and
lipid peroxidation (LPO), with 10 animals per group; (c) proteomic profile performed by mass spectrometry with 9 animals per group; (d)
immunohistochemistry analysis by anti-NeuN (NeuN" cells) in M1 area of motor cortex with 6 animals per group.

The reading and identification of the peptides were per-
formed on a nanoAcquity UPLC-Xevo QTof MS system
(Waters Corporation, Wilmslow, UK), which were inter-
preted by Protein Lynx Global Server (PLGS) software
applying the Monte-Carlo algorithm. After comparing the
experimental groups, it was considered p < 0.05 for down-
regulated proteins and 1 — p > 0.95 for upregulated proteins.
It was used the Rattus norvegicus proteome downloaded
from Uniprot. After, the proteins identified were analyzed
by a bioinformatic approach using Cytoscape 3.6.1 (Java®)
with ClueGO plugin [26].

2.5. Histological Procedures. To evaluate morphological
changes in the motor cortex, the animals (n = 6/per group)
were anesthetized with a solution of ketamine hydrochloride
(90mg/kgi.p.) and xylazine hydrochloride (10 mg/kg, i.p.)
and perfused through the left ventricle of the heart with
solution heparinized 0.9% saline, followed by 4% parafor-
maldehyde. The samples were postfixed in Bouin solution
for 6 hours and then processed and embedded in paraplast
(McCormick Scientific, St Louis, MO, USA) [27].

After inclusion, the samples were sectioned by a micro-
tome to obtain sections with 5 ym of thickness. All histolog-
ical analyses were performed in M1 area of motor cortex,
specifically between layers 3 and 4 (pyramidal neurons
areas), through the coordinates: 2.5 mm lateral, 1.2 mm pos-
terior, and 4.5 mm below from the pial surface (at Bregma
0.20 mm and interaural 9.20 mm) [28].
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FIGURE 2: Body mass curve of experimental animals during the
experimental period. Control group (black-filled circle) and
treated group (yellow-filled square) from 1% day to 55 day of
lead administration (50 mg/kg/day). The results are expressed as
mean + standard errorof mean of body mass (g). Repeated
measures two-way ANOVA test, p > 0.05. 25 animals per group.

2.5.1. Immunohistochemical Analysis. The slides with sec-
tions were dewaxed and immersed in PBS for 3 min before
antigen retrieval in citrate buffer at 70°C for 25 min. After-
ward, the sections had endogenous peroxidase inhibited by
immersing in methanol-hydrogen peroxide solution (3%).
We used anti-NeuN antibody (1:100, Chemicon) for immu-
nolabeling of mature neurons [15, 29, 30]. We proceeded the
revelation was 3,3'-diaminobenzidine solution in PBS and
coverslipped with Entellan® (Merck, Darmstadt, Germany)
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F1GURE 3: Effects of the long-term administration of lead acetate (50 mg/kg) after 55 days (n = 10 animals per group). (a) Nitrite levels and
(b) malondialdehyde. Results are expressed (mean + SEM) of percentages of nitrite per microgram of protein in relation to the control group
and (B) percentages of milligram malondialdehyde per microgram of protein in relation to the control group. *Student ¢-test, p < 0.05.

[27, 31, 32]. The positive cells for anti-NeuN immunostain-
ing were analyzed by light microscopy (Nikon Eclipse E200,
Tokyo, Japan) with a 0.0625 mm? grid attached to the ocular
and using objective lens of 40x, evaluating the density of
anti-NeuN+ cells [15]. The photomicrographs were obtained
using the microscope Nikon Eclipse E500 with Moticam
2500® attached to it.

2.6. Statistical Analyses. Results were tabulated and analyzed
by GraphPad Prism 7.0 software (GraphPad Software Inc.,
La Jolla, CA, USA), and the Shapiro Wilk normality test
was performed. The hypotheses were tested by Student’s ¢
-test. In order to evaluate the body mass gain over the time,
we applied the repeated measures two-way ANOVA test.
The level of significance was set at p < 0.05.

3. Results

3.1. Long-Term Lead Administration Did Not Affect the Body
Weight Gain of Rats. At the end of the experiment, all ani-
mals increased the body mass as expected, and no difference
between groups was observed (p > 0.05; Figure 2).

3.2. Long-Term Lead Administration Triggers Oxidative
Stress on Motor Cortex of Adult Rats. The biochemical anal-
yses showed that long-term administration of lead increased
nitrite levels in motor cortex (p < 0.05, Figure 3(a)), as well
as MDA levels (p < 0.05, Figure 3(b)).

3.2.1. Long-Term Administration to Lead Modulates the
Motor Cortex Proteomic Profile of Rats. After the long-term
administration of lead, the motor cortex proteome was
affected, which resulted in the modulation of several biolog-
ical processes (BP). It was observed a total of 34 proteins that
were downregulated and 239, upregulated in Pb group, 112
proteins exclusively expressed in the control group, and 87
unique in the Pb group (Supplementary Tables 2 and 3).
Moreover, the bioinformatic analyses based on Gene
Ontology identified 23 BP, in which the top five were neuron
projection morphogenesis (18.7%), regulation of neuron
projection development (14.8%), axonogenesis (12.7%),
regulation of serine/threonine kinase activity (9.1%), glyco-
Iytic process (3.9%), and others, including others as cerebral

cortex development (3.6%) and negative regulation of
calcium ion transmembrane transport (2.7%) (Figure 4).

3.3. Long-Term Administration to Lead Decreases Mature
Neurons Cells in Motor Cortex of Rats. It was evidenced a
decreased number of anti-NeuN" cells in primary motor
area (M1) from motor cortex of rats that received lead when
compared to control group (p < 0.05; Figure 5).

3.4. The Accumulative Motor Cortex Damages Caused by
Long-Term Administration to Lead Reflected on Poor
Motor Performance in Adult Rats. Our results showed that
lead long-term lead administration affected horizontal spon-
taneous locomotion (Figures 6(a) and 6(b)), observed by the
decrease of the total distance traveled (Table S3, p = 0.0245,
Figure 6(c)) and the distance traveled on the peripheral
area (Table S3, p<0.05, Figure 6(d)), while no changes
on central distance traveled was observed (Supplementary
Table 3, p>0.05, Figure 6(e)). On the inclined plane
assay, the lead-intoxicated animals also displayed poorer
performance, reducing the fall angle parameter
(Supplementary Table 3, p <0.05, Figure 6(f)).

4. Discussion

This study reunites a combination of approaches that
provide the characterization of biochemical, proteomic,
and histological changes on motor cortex associated with
locomotor deficits induced by lead long-term administration
on adolescent rats. Our results showed that the lead chal-
lenge elicited oxidative stress, neurodegeneration and modu-
lation of important proteins associated with synaptic
communication, cell signaling, and survival, among others,
potentially related to the motor skills impairments observed.
These evidences reinforce out latest data regarding the metal
effects over spinal cord and cerebellum, two others regions
associated with higher motor command, unraveling new
evidences about lead neurotoxicity.

The motor cortex consists of the brain region responsible
for planning and spontaneous movement execution [33].
Although neural control of the movement starts on the pre-
frontal cortex and is modulated by the basal and cerebellar
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FiGurk 4: Functional distribution of proteins identified with differential expression in the motor cortex of rats administration of lead vs.
control group. 9 animals per group. Categories of proteins based on Gene Ontology annotation of the biological process. Terms
significant (kappa score = 0.4) and distribution according to the percentage of the number of genes. Protein access number was provided
by UNIPROT. The gene ontology was evaluated by ClueGO® plugin of Cytoscape® 3.8.2.
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FiGurek 5: Effects of the long-term administration of lead acetate (50 mg/Kg) on M1 area (a) morphology in motor cortex of young Wistar
rats (n = 6/animal per group). The results are expressed as mean + standard error of mean of NeuN" cells density (b). *Student #-test,

P <0.05. Scale bars: 30 ym.

ganglia, the motor cortex consists of the main effector area
for descending pathways and plays an essential function in
fine motor control and fractionation of movement sensori-
motor integration, besides acting in higher-order cogni-
tive-motor movements [34-36]. Thus, considering that the
motor cortex plays a fundamental role on motor function,
this brain area has been extensively studied to evaluate its
susceptibility to metal exposure [15, 37, 38].

Most part of studies about the effects of lead exposure on
animal models are performed via drinking water [39]. How-
ever, although lead concentration on drinking water is not
variable, it is not possible to assure the exact metal quantity
that the host was exposed over time. In this way, orogastric
gavage is a more reliable way since lead is administered
directly on stomach. In addition, although we have not per-
formed the determination of lead levels in motor cortex, the
levels observed in the exposed groups in the previous works
of our group with spinal cord [12] and cerebellum [13], asso-
ciated with the changes observed herein, we suggest that there
was a significant increase of the metal level in motor cortex.

In this perspective, considering the systemic distribution
of lead after intragastric administration, the motor cortex is
susceptible to changes on oxidative biochemistry, by increas-
ing MDA and nitrite levels. The increase on lipid peroxida-
tion, visualized by higher MDA levels, is associated with
the oxidation of polyunsaturated lipids present in cell and
organelles membrane by reactive oxygen species (ROS)
[40] that may significantly affect the cell integrity and
homeostasis, driving to cell death [41]. On the other hand,
nitrites are indirect markers for oxide nitric (NO) due its
short life that possesses several biological functions, but also
acts as an oxidative stress mediator [42]. In addition, the
proteomic revealed important components of redox balance

impaired by lead administration, as the upregulation of
Glutathione S Transferase (P04906), Superoxide Dismutase
(P07632), Peroxiredoxin 2 (P35704) and 5 (Q9R063), and
unique expression of Catalase (P04762) in the control
group. In this way, these data suggest that the breakdown
of oxidative biochemistry homeostasis may contribute to lead
toxicological mechanism of damage, also related to the prote-
omic alterations.

Looking to the proteomic approach, several proteins are
indicative of a redox status imbalance, as the heat shock pro-
teins (HSP), that have been present in several previous works
from our group which investigated the effects of metals on
CNS proteome [13, 14, 25, 43-46]. The lead administration
up-regulated the expression of HSP subunits as 71 (P63018),
75 (Q5XHZ0), and 90 alpha (P82995) and beta (P34058).
The HSP 70 (035162) was found exclusively expressed in
the Pb group. This family of chaperones exerts important
roles in cells, as a mechanism of stress response, to avoid mal-
function of protein folding, assembly, and transport, which
could drive to protein function loss and aggregation [47, 48].

Associated to the discussion raised above, the energy
metabolism process is intrinsically linked to both, oxidative
stress triggering and further cell loss of function and death
[49]. We observed the up-regulation of several ATP synthase
subunits (P15999, P10719, P31399, Q06647, and P21571),
Citrate Synthase (Q8VHEFE5), Cytochrome C Oxidase subunits
(P0O0406, P11240, and P10818), Pyruvate carboxylase
(P52873), and Pyruvate dehydrogenase (P26284) that are
involved in glucose metabolism and affect the cell energy bal-
ance, suggesting an impairment on cell energy metabolism.

The failure on energy metabolism may impact directly
the activity of neurons and glial cells due to its high demand
[50, 51]. In this perspective, our proteomic approach
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F1GURE 6: Effects of the long-term administration of lead acetate (50 mg/kg) on the exploratory activity and motor function of young Wistar
rats (25 animals per group). The results are expressed as mean + standard error of mean of open field and inclined plane tests. The animals’
performance on open field test is represented by the (a) tracking plot and (b) heat-map, (c) total distance traveled, (d) distance traveled in
the peripheral area, (e) distance traveled in the central area, and (d) fall angle in the inclined plane test. *Student ¢-test, p < 0.05.

suggests that lead triggers metabolic dysfunction that affects
the up-regulation of proteins as Excitatory amino acid trans-
porter 1 (P24942) and 2 (P31596), besides the synaptic com-
munication as shown by the up-regulation of Syntaxin 1B
(P61265) and Syntaxin-binding protein 1 (P61765), Synasin
1 (P09951), and 2 (Q63537). In addition to that, the pres-
ervation of myelin sheath structure is important to the
action potential, and it was observed an up-regulation of
CD9 antigen (P40241), Myelin Basic Protein (P02688),
and Myelin-Associated Glycoprotein (P07722); it was also
observed the down-regulation of Myelin Proteolipid Pro-
tein (P60203). Considering these components, we suggest
that neuroglial function might be compromised due to
several issues in the background, as energy metabolism,
oxidative stress, hence, synaptic communication and
signal transduction.

Regarding the synaptic activity, the proteomic approach
revealed the modulation of Synatogyrin-1 (Q62876, unique
in control group), that is, involved in short- and long-term
synaptic plasticity [52, 53]. Moreover, it was observed the
modulation of Synapsin-1 and 2 (P09951 and Q63537,
respectively) that are associated with neurotransmitter
release [54], and some evidences correlate this protein with
neurological disorders [55]. In this, we can hypothesize
that lead affects the neurotransmission system and triggers
motor impairments related to motor cortex observed in
our behavioral tests.

Interestingly, it is worthy to point out that in previous pro-
teomic data of hippocampus [14] after the same lead exposure
model, the Apolipoprotein E (P02650, unique in control
group) showed the same status of regulation in hippocampus,
while Protein SI00B (P04631) was up-regulated in motor



cortex and down-regulated in hippocampus, on the other
hand, these proteins were not changed in cerebellum [13].
However, the CBI cannabinoid receptor-interacting protein 1
(Q5M7A7) found up-regulated in this study was exclusively
expressed in the control group in cerebellar global proteomic
profile. These are very distinct proteins involved mainly in
lipid transport (P02650) [56], glial and neuronal trophic factor
(P04631) [57], and neurotransmission processes (Q5M7A7)
by interacting with CB1 cannabinoid receptor [58]. Although
these proteins play different roles, they have been associated
with neurological conditions of injuries and diseases [59-61],
and synaptic plasticity [58] suggesting as important target pro-
teins, and possible biomarkers, for new investigations regard-
ing their status of regulation, anatomical region, and roles.

The literature has extensively described the mechanism
of lead neurotoxicity related to the- interaction with Ca®™,
and due to that, several processes as energy metabolism, cell
signaling, neurotransmitter release, and apoptosis may be
affected [62]. When looking for possible tissue changes that
would show the repercussion of the biochemical (oxidative
stress triggering) and proteomic changes found, our immu-
nohistochemical analysis showed a reduction in the density
of mature neurons in M1 area. Mature neurons in the
motor cortex have been shown to be sensitive to other
models of toxicological exposure to metals, such as expo-
sure to inorganic mercury [37] and methylmercury [15,
16], and the reduction in density is associated with
decreased spontaneous exploratory capacity, with impaired
balance and motor coordination. The neurons present in
primary motor area from motor cortex send outputs
through corticofugal fibers of the pyramidal tract, which
plays an important role in motor function. Moreover, this
tract not only has a pivotal role in coordination of move-
ment and posture but also is related to movements of eyes,
limb musculature, and trunk, e.g., [63].

Our behavioral tests support the evidence that the neu-
rodegeneration and modulation of synaptic communication
proteins observed in the motor cortex were reflected in etho-
logical behavior alteration, with a reduced spontaneous
exploration profile. This first evidence is supported by the
results of the open field test, in which the decrease in the
total distance, with changes in the peripheral distance. It is
noteworthy that the central distance traveled was not modi-
fied by lead administration, which reflects that the motor
impairment observed was not accompanied of anxiogenic-
like behavior. In addition, our results showed that lead
administration decreased fall angle on the inclined plane
task. Such result leads to other evidence of cortical damage
and motor repercussion, with negative reflexes on the index
of hind limb strength.

5. Conclusion

Considering all the changes observed in our study, we
conclude that the long-term lead administration at a dose
of 50mg/kg/day causes poor motor performance associ-
ated with molecular and morphological impairments in
motor cortex of adult Wistar rats. The lead administration
triggered oxidative stress, modulated the global proteomic
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profile, including key proteins related to neurotransmis-
sion, cell metabolism, and signaling, leading to a motor
function impairment.
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