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Comparing metagenomic samples is a critical step in understanding the relationships 
among microbial communities. Recently, next-generation sequencing (NGS) technologies 
have produced a massive amount of short reads data for microbial communities from 
different environments. The assembly of these short reads can, however, be time-
consuming and challenging. In addition, alignment-based methods for metagenome 
comparison are limited by incomplete genome and/or pathway databases. In contrast, 
alignment-free methods for metagenome comparison do not depend on the completeness 
of genome or pathway databases. Still, the existing alignment-free methods, dS

2  and d2
* , 

which model k-tuple patterns using only one Markov chain for each sample, neglect 
the heterogeneity within metagenomic data wherein potentially thousands of types of 
microorganisms are sequenced. To address this imperfection in dS

2  and d2
* , we organized 

NGS sequences into different reads bins and constructed several corresponding Markov 
models. Next, we modified the definition of our previous alignment-free methods, dS

2  
and d2

* , to make them more compatible with a scheme of analysis which uses the 
proposed reads bins. We then used two simulated and three real metagenomic datasets 
to test the effect of the k-tuple size and Markov orders of background sequences on the 
performance of these de novo alignment-free methods. For dependable comparison of 
metagenomic samples, our newly developed alignment-free methods with reads binning 
outperformed alignment-free methods without reads binning in detecting the relationship 
among microbial communities, including whether they form groups or change according 
to some environmental gradients.

Keywords: alignment-free methods, metagenomic samples, Markov model, reads binning, beta-diversity

INTRODUCTION
Understanding the impact of environmental factors on the composition of microbial communities, 
along with the effects of microbes on their hosts, is a crucial problem in microbiological studies. 
Traditional culture-dependent techniques can obtain pure isolates of individual microbes, but such 
techniques are low-throughput and can capture only a tiny fraction of microbes in a microbial 
community. With the rapid development of next-generation sequencing (NGS) technology, whole 
metagenome shotgun sequencing (WMGS) has become a widely used and powerful approach 
to investigate complex microbial communities (Qin et al., 2010; Qin et al., 2012; Xie et al., 2016; 
Mehta et al., 2018). Several large scale international metagenomics projects including the Human 
Microbiome Projects (HMP) (Lloyd-Price et al., 2019) and TARA ocean project (Brum et al., 
2015; Sunagawa et al., 2015) have been carried out and most of the metagenomic samples have 
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metadata available. Metagenomic data provide the whole genetic 
information from microbial communities. A metagenomic 
sample usually contains millions of short reads, consisting of 
several hundred of base pairs, and each read is randomly sampled 
from a genomic region of a microbial genome in the community. 
Given the massive amount of metagenomic data, computational 
methods are in great demand to infer the relationships 
between microbes and environmental factors/hosts. Accurately 
quantifying the similarities and differences among microbial 
communities from multiple environments/hosts is one of the 
most important steps in metagenomic data analysis.

The general approach to analyze metagenomic data is 
based on alignment methods, such as the Smith-Waterman 
algorithm (Smith and Waterman, 1981) and BLAST (Altschul 
et al., 1990), both of which first map NGS reads to known 
genomes or pathways in existing public protein databases, such 
as non-redundant (NR), Kyoto Encyclopedia of Genes and 
Genomes (KEGG), and evolutionary genealogy of genes: Non-
supervised Orthologous Groups (eggNOG), and then compare 
the abundance of different microbial organisms or functional 
categories between samples (Qin et al., 2010; Muegge et al., 2011; 
Qin et al., 2012). However, many microbial genomes and gene 
families are unknown, making it impossible to map all reads to 
the known genomes or pathways in many environments, in turn 
making the comparison of metagenomic samples incomplete, as 
suggested above. Based on the current literature, about 40% of 
unassigned reads, on average, exist in the human gut microbiome 
(Qin et al., 2010; Qin et al., 2012), and up to 50% of reads cannot 
be assigned to reference databases in ocean samples (Marchetti 
et al., 2012). Apart from alignment-based methods, assembly-
based analytical methods reconstruct bacteria genomes by 
assembling short reads. However, assembly is time-consuming 
and challenging, especially for metagenomic samples because 
bacteria genomes can share similar regions, and a short read is 
not long enough to resolve the ambiguity. These limitations leave 
alignment-free methods as promising alternative approaches 
for microbial community comparison by eliminating the 
requirements of reference sequences or de novo assembly.

Although alignment-free methods can be defined as any 
methods that do not depend on sequence alignment, one of 
the major types of alignment-free methods is based on the 
frequencies of k-tuples (k-words or k-mers) as recently reviewed 
(Song et al., 2014; Zielezinski et al., 2017; Ren et al., 2018). A 
k-tuple is a segment consisting of consecutive nucleotide bases of 
length k. The effectiveness of these alignment-free methods for 
genome and metagenome comparison was based on the fact that 
relative k-tuple frequencies were similar across different regions 
of the same genome, but differed between genomes (Karlin et al., 
1997). Similarly, the relative k-tuple frequencies for closely related 
genomes would be more similar than those between distantly 
related genomes. The alignment-free dissimilarity measures, 
dS

2  and d2
* , were developed for high-throughput sequencing 

data comparison, and they were then used for phylogenetic 
tree construction (Song et al., 2013), followed by successful 
applications in the comparison of metagenomic samples (Jiang 
et al., 2012; Liao et al., 2016) and gene regulatory regions (Song 
et al., 2013), identification of horizontal gene transfer (Tang et al., 

2018b) and virus-host interactions (Ahlgren et al., 2017), and 
improving contig binning for metagenomes (Wang et al., 2017). 
Recently, they have also been used to identify the geographic 
origin of white oak trees (Tang et al., 2018a) and sources of viruses 
(Li and Sun, 2018). A user-friendly interface for alignment-free 
genome and metagenome comparison, aCcelerated Alignment-
FrEe (CAFÉ) (Lu et al., 2017b), has now been developed. Many 
other alignment-free methods have been developed including 
the delta-distance between dinucleotide relative frequencies of 
different genomes (Kariin and Burge, 1995; Karlin and Mrázek, 
1997) and CVTree (Qi et al., 2004a; Qi et al., 2004b). Ren et al. 
(2018) and Zielezinski et al. (2017) presented the most recent 
reviews of alignment-free methods for genome and metagenome 
comparisons and their many applications (Zielezinski et al., 2017; 
Ren et al., 2018). Zielezinski et al. (2019) recently compared the 
performance of 74 alignment-free methods for protein sequence 
classification, gene tree inference, regulatory element detection, 
genome-based phylogenetic inference, and reconstruction of 
species trees under horizontal gene transfer, and recombination 
events. However, the authors did not evaluate their performance 
on metagenome comparison (Zielezinski et al., 2019).

While the previous alignment-free methods were successful 
in comparing metagenomic samples, these methods (Jiang 
et al., 2012; Liao et al., 2016) only considered metagenomics 
sequencing data as a whole from which to extract k-tuple 
frequencies and calculate their expectations using a common 
Markov model. However, microbial communities contain 
thousands of microorganisms and the relative abundance 
profiles of the microbial communities were shown to change 
across many environmental factors, such as geographic distance, 
temperature, oxygen, pH, and biotic factors (Lozupone and 
Knight, 2007; Steele et al., 2011; Philippot et al., 2013). Different 
microbial organisms have varied nucleotide frequencies; 
therefore, it is unreasonable to use only one Markov Chain to 
model the sequences in a microbial community and to calculate 
the probability of k-tuples. Instead, the present study posits 
that different Markov models can be used; accordingly, we 
first organized sequenced bacterial genomes and used them to 
construct the Markov models. These models were then used for 
grouping NGS reads into different bins, followed by extracting 
the k-tuples and calculating their expectation in each bin. 
Markov models have been used extensively for genome modeling 
(Narlikar et al., 2013), motif discovery (D'haeseleer, 2006), 
computational gene search (Lomsadze et al., 2005), classification 
of metagenomic sequences (Brady and Salzberg, 2009) and 
alignment-free sequence comparison (Chang and Wang, 2011). 
Next, we extended the definition of our previous alignment-free 
measures, dS

2  and d2
* , to make them more compatible with a 

scheme of analysis that uses the proposed reads binning datasets. 
We then used two simulated and three real metagenomic datasets 
to test the effect of k-tuple size and Markov orders of background 
sequences on the performance of these de novo alignment-free 
methods. For dependable comparison of metagenomic samples, 
our alignment-free methods with reads binning outperformed 
alignment-free methods without reads binning in detecting the 
relationships among metagenomic samples whether they form 
groups or change according to environmental gradients. For 
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detecting group relationship among samples, the triplet distance 
between the inferred tree and the gold standard tree is reduced 
by over 10%. For detecting gradient relationship among the 
samples, the Pearson correlation coefficient (PCC) between the 
first principal coordinate and the gradient is increased by 10%. 
The software is available at https://github.com/songkai1987/
MetaBin.

MATeRIAls AND MeThODs
The framework of our method is given in Figure 1. First, the 
bacterial sequences were divided into several bins and a Markov 
model is used to model the sequences in each bin. Second, each 
read in the metagenomics samples was assigned to the bin that 
has the highest probability of generating the sequence. Third, the 
k-tuple counts and their expectations were calculated in each bin 
of the NGS reads. The dS

2  and d2
*  (Eq. 1 and 2) were calculated 

between each pair of samples. Finally, the samples are clustered 
using the dissimilarity matrix obtained from dS

2  and d2
*  Details 

of each of the steps are given below.

The k-Tuple Count Vectors and Alignment-
Free Comparison Measures
In our previous studies (Jiang et al., 2012; Song et al., 2013), 
the first step toward comparing metagenomic samples 

involved counting the number of occurrences of each k-tuple. 
Since a read could be from the forward or reverse strand of a 
genome, we considered each read together with its complement 
when calculating the occurrences of each k-tuple. Thus, for 
metagenomic data, we have a finite alphabet set S={A,C,G,T} 
and consider all possible k-tuples in the reads of metagenomic 
samples. Let X X k= ( , X ,..., X )1 2 4

 and Y Y Y k= ( , , ..., Y )1 2 4
 be the 

k-tuple count vectors of two metagenomic samples X and Y, 
respectively. Then, we define the centralized count variables by 
using Markov model-based expectation as 

 X X n pi i X X i= − ,  

 Y Y n pi i Y Y i= − ,  

where nX is the total count of k-tuples, and pX,i is the probability 
of i-th k-tuple under the Markov model of order r. The idea 
behind subtracting the expected k-tuple count from the observed 
count is that the k-tuples responsible for the similarity between 
microbial communities will stand out after subtraction. Then, the 
two measures dS

2  and d2
*  can be defined as
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The first statistic DS
2  is based on the observation by Shepp 

(Shepp, 2006) that for two independent normal random 
variables X and Y with mean zero, XY X Y/

2 2+  is also 
normally distributed. The second statistic D2

*  is motivated 
by Pearson correlation where the mean and variance of each 
tuple are calculated based on Poisson distribution assumption 

FIgURe 1 | The work flow of our approach. First, the Markov model for 
each bin is trained using the bacterial genomic sequences. Then, the 
metagenomic reads are binned to the group under which the sequence 
has the highest likelihood. The k-tuple counts and their expectations are 
calculated in each bin of the NGS reads. The dS

2  and d2
*  are calculated 

between each pair of samples. Finally, the samples are clustered using the 

dissimilarity matrix obtained from dS
2  and d2

* .
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for the k-tuples. When the two samples are more similar, the 
k-tuple frequency profiles are more similar and the values of 
DS

2  and D2
*  are higher. The ranges of DS

2  and D2
*  can depend 

on the nucleotide frequencies. In order to make their range 
independent of nucleotide frequencies, we normalize them to 
dissimilarities, dS

2  and d2
* , respectively, so that they have a 

range between 0 and 1 according to the Cauchy inequality. 
When two samples are similar, the values of dS

2  and d2
*  are 

close to 0.

The Alignment-Free Measures Based on a 
Mixture of Markov Models learned From 
Reads Bins
Metagenomic samples consist of a mixture of many different 
microbial genomes; thus, it is unreasonable to expect that all 
these reads can be modeled using only one single Markov model 
for each sample. To address this difficulty, we first group these 
reads into different bins. Then, we count the k-tuple vectors 
and obtain the expectation of each k-tuple for the reads in each 
bin individually.

We used the bacterial genomic sequences to train the 
Markov models. First, we calculated the guanine-cytosine 
(GC) frequency of each bacterial genomic sequence and then 
grouped these bacterial genomic sequences into different bins 
using the quantiles of the GC frequency distribution. Each bin 
has the same number of bacterial genomes. The Markov model 
for each bin was then constructed using the k-tuple vectors 
counted from all the genomic sequences in that bin. For a set 
of genomic sequences in a bin, let Xw be the count of k-tuple w 
of all these genomes and their complementary sequence. The 
Markov model of order r is defined as a 4r×4 matrix of transition 
probabilities. The transition probabilities can be estimated based 
on the r-tuples and (r−1)-tuples, and the estimated probability of 
observing nucleotide wr+1 given preceding nucleotides w1w2···wr 

is P w w w w
X

XM r r
w w w w

w w w

r r

r

( | )+ = +
1 1 2

1 2 1

1 2







, where Xw w wr1 2
 and 

Xw w w wr r1 2 1 +
 are the counts of r-tuple w1w2···wr and (r+1)-tuple 

w1w2···wrwr+1, respectively.
Once we have C different Markov models of order r, 

( , , , )M M Mr r r
1 2



C , to model the bacterial genomic sequences, we 
classify the reads in a metagenomic sample to the bins with the 
highest log-likelihood scores. In particular, suppose Y=y1y2···yN 
represents a read of length N in a metagenomic sample; then, the 
log-likelihood of the read under the Markov chain Mr could be 
calculated as

 
LL Y M P y y y yr M i r i i i r

i

N r

r
( ) log ( )= + + + −

=

−∑ 1 1
1



 

Then, the classification of read could be defined as the model 
having the largest probability, or

 
l LL Y M

c L C
r
c=

=
argmax ( )

, ,1

 (3)

where λ is the predicted bin to which the read belongs.
Next, we calculate the k-tuple count and its expectation 

in each bin of NGS reads. The centralized count variables by 
using Markov model-based expectation such that all C bins are 
combined are as follows:and 

 
X X n pw w

c
X
c

c

C

X w
c= −

=
∑( ),

1

 (4)

 
Y Y n pw w

c
Y
c

c
Y w
c= −

=
∑( ),

1

C

 

where c represents the calculation based on the c-th bin. 
Therefore, the two measures dS

2  and d2
* , could be defined using 

the new version of X w  and Y w .

Comparison With Other Reads Binning 
Approaches Without Reference genomes
In addition to the above reads binning method, we also considered 
creating reference-free reads binning by first assembling reads 
into contigs and grouping contigs into bins. Metagenomic reads 
are then classified to different bins based on their similarity to the 
contigs in those bins. MetaSPAdes (Bankevich et al., 2012; Nurk 
et al., 2017) was used to cross-assemble the reads in the simulated 
datasets using the default setting. Contig coverages [Fragments 
Per Kilobase per Million reads (FPKMs)] were determined by 
mapping reads with Bowtie2 (Langmead and Salzberg, 2012), 
using the default settings, and were averaged for each bin. 
Sequence COmposition, read CoverAge, CO-alignment, and 
paired-end read LinkAge (COCACOLA) (Lu et al., 2017a) and 
MetaBAT (Kang et al., 2015) were used to cluster these assembled 
contigs (≥500 bp) based on sequence tetra-nucleotide frequencies 
and contig coverages normalized by contig length and number 
of mapped reads in samples, respectively. MetaBAT performed 
better than other approaches in the CAMI study (Meyer et al., 
2018). The simulated reads were mapped to the set of contigs 
using Burrows-Wheeler-Aligner (BWA) software (Li and Durbin, 
2009) to obtain the classification labels. The unmapped reads 
were binned together as an extra bin. We calculated the k-tuple 
counts and their expectation in each bin and then calculated the 
values of dS

2  and d2
* .

Comparison With Other Reads Binning 
Approaches With Reference genomes
We compared our method with two reference genome-based 
reads binning approaches, Kraken (Wood and Salzberg, 2014) 
and MBMC (Wang et al., 2016), to classify the metagenomic 
reads. Kraken is a program for assigning taxonomic labels to 
metagenomic DNA sequences and it has been shown to perform 
better than other binning approaches, such as Megablast 
(Chen et al., 2015), PhymmBL (Brady and Salzberg, 2009), 
NBC (Rosen et al., 2008) and MetaPhlAn (Segata et al., 2012). 
The core of Kraken is a database consisting of k-tuples and the 
lowest common ancestor (LCA) of all organisms whose genomes 
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contain the k-tuples. Sequences are classified by querying the 
database for each k-tuple in a sequence, and then using the 
resulting set of LCA taxa to determine an appropriate label for 
the sequence. To compare with our method, the 100 bacterial 
genomes in simulations were used to construct the genome 
library for k-tuples and their LCAs in Kraken. MBMC is a recent 
approach for binning reads by measuring the similarity of reads 
to the trained Markov chains for different taxa using the ordinary 
least squares (OLS) method. Similarly, the 100 bacterial genomes 
in simulations were also used for constructing the Markov chains, 
respectively. Each of the two approaches was then used to classify 
reads into different bins individually. We calculated the k-tuple 
counts and their expectations in each bin to then calculate the 
values of dS

2  and d2
* .

Beta-Diversity Analysis and evaluation 
Methods
Detection of group relationships among metagenomic samples 
and the identification of external gradients driving shifts in 
microbial community structure are two major types of analytical 
tasks in microbial community comparison. Therefore, we 
evaluated the performance of our new alignment-free measures 
in metagenomic sample comparison by assessing how well they 
would detect the known group relationships or identify known 
environmental gradients.

For clustering analysis, we used the unweighted pair-group 
method with arithmetic means (UPGMA) algorithm (Murtagh, 
1984) to cluster metagenomic samples based on the pairwise 
dissimilarity defined using our alignment-free measures, 
and then we compared the clustering tree with the true group 
relationship among the samples. We used the R package 
“phangorn” (Schliep, 2011) for clustering samples given the input 
of the pairwise dissimilarity matrix. The triplet distance was 
used to measure the distance between the tree built using our 
methods and the ground truth. Triplet distance was proposed by 
(Critchlow et al., 1996) as a measure for the distance between 
two rooted bifurcating phylogenetic trees, and it can be used for 
measuring the distance between binary (Critchlow et al., 1996) 
or non-binary trees (Bansal et al., 2011). This measure first 
decomposes the topologies of the input trees into triplets, i.e., all 
three-element subsets of the set of leaves, and then computes how 
many triplets of the two trees have different topologies. Because 
triplets are the basic building blocks of rooted and unrooted 
trees, in the sense that they are the smallest topological units that 
completely identify a phylogenetic tree, triplet-based distances 
provide a robust and fine-grained measure of the dissimilarities 
between trees (Bansal et al., 2011). This was finally developed 
into the TreeCmp toolbox (Bogdanowicz et al., 2012).

For the study of gradient relationships among the samples, the 
shift of metagenomic samples is visualized by PCoA (Principal 
Coordinates Analysis), which is a multidimensional scaling 
(MDS) method that converts between-sample dissimilarity 
matrix into two-dimensional, or three-dimensional, ordinates 
of samples and arranges the samples in ordinate space. We 
used the MASS package in R for PCoA (Anderson, 2003). 
Then, the influence of environmental gradient(s) on microbial 
communities could be investigated by calculating correlation, 

such as PCC, between the first principal coordinate and the 
gradient axis. In this way, the performance of the alignment-
free methods could be evaluated, as long as the gradient driving 
microbial communities is known.

simulated Metagenomic Datasets
We simulated two NGS metagenomic datasets using Next-
generation Sequencing Simulator for Metagenomics (NeSSM) 
(Jia et al., 2013), which supports single-end and paired-end 
sequencing for both 454 and Illumina platforms, with paired-end 
short reads of length 150 bp in an Illumina MiSeq setting mode 
based on abundance profiles. Since 1) the database for reference 
genome is not complete and 2) new genomes can be discovered 
in the future, we mimic the situation by splitting the reference 
genomes by May 2015 such that the genomes before this date 
were used for training the Markov chain models, and the genomes 
after this date were used to simulate the metagenomic datasets 
for testing. A set of 100 bacterial species randomly sampled from 
the 5,865 sequenced bacterial reference genomes from NCBI 
was used for simulation (Table S1). We designed two sets of 
metagenomic samples representing the two types of relationships 
among samples as has been done in (Jiang et al., 2012): the group 
relationship involving species abundance levels of the samples 
belonging to different groups and the gradient relationship 
involving species abundance levels that change continuously with 
some environmental variables, such as temperature or location.

In Simulation 1, we simulated 60 samples belonging to three 
groups. For each group, we randomly chose 100 genomes and 
assigned the i-th genome with relative abundance generated 
from the power-law (Zipf ’s) distribution as f m N m

n
n

N( ; , ) /

/

α
α

α

=

=
∑

1

1
1

, 

m = 1, 2, …, N, where N = 100, and α is the value of the exponent 
characterizing the distribution. We set α=0.3and generated three 
relative abundance vectors from power-law distribution by 
randomly ordering the 100 genomes as the centers of the three 
groups. We next added to each component the absolute value 
of a Gaussian noise with mean zero and variance equal to 10 
times each component and then renormalized each component 
to sum to 1. Each relative abundance vector was randomized 
and renormalized 20 times, and a total of 60 relative abundance 
vectors were obtained. Then, we used the relative abundance 
vectors to simulate 60 metagenomic samples.

In Simulation 2, we generated 20 samples consisting of 
the same 100 genomes, and the relative abundance vector 
of 100 genomes was generated by the power law (Zipf ’s law) 
distribution as defined in the above simulation. In order to mimic 
the gradient model, the relative abundance vector shifts along a 
gradient axis of αfrom 0.30 to 0.70 by step 0.02. Again, absolute 
values of Gaussian noises were added to each component of the 
20 abundance vectors with mean 0 and standard deviation equal 
to the value of that component. The vectors were renormalized 
after adding the noises. We generated 20 metagenomic samples 
according to these relative abundance vectors using NeSSM.

In all simulations, we generated datasets at two sequencing 
depths: 0.1M and 0.5M sequencing reads per sample. At each 
setting, we generated 30 duplicated datasets to simulate possible 
stochastic effects in real NGS data.
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Real Metagenomic Datasets
We analyzed three real shotgun metagenomic sequencing 
datasets published in recent years. For real datasets, we used all 
genomic sequences to train the Markov models.

The human gut Datasets
The first dataset includes 107 fecal microbiome samples from 
Asia (Kurokawa et al., 2007; Qin et al., 2012), Europe (Qin et al., 
2010) and North America (Turnbaugh et al., 2009). The dataset 
includes samples from two countries (China and Japan, n = 45 
and 13) in Asia, two countries (Denmark and Spain, n = 21 and 
10) in Europe, and one country (USA, n = 18) in North America. 
The accession numbers for the samples are given in Table S2 in 
the supplementary material. We investigated this dataset at two 
levels. First, we considered the samples from different continents 
and studied the relationships among these samples. Then, we 
considered the samples from different countries and studied the 
relationships among these samples with respect to their countries 
of origin.

The human Microbiome Datasets
The second dataset includes 60 microbiome samples from four 
body sites: buccal mucosa, supragingival plaque, tongue dorsum 
and stool (Lloyd-Price et al., 2017). The accession numbers for 
the samples are given in Table S3 in the supplementary material. 
We investigated the relationships among these microbial samples 
from different body sites.

The soil Metagenomic Dataset
This dataset includes 16 soil metagenomic samples from 16 sites: 
3 from hot deserts, 6 from Antarctic cold deserts, and 7 from 
temperate and tropical forests, a prairie grassland, a tundra, and a 
boreal forest (Fierer et al., 2012). The accession numbers of these 
samples are given in Table S4 in the supplementary material. 
The sites span a wide range of ecologically distinct microbiomes 
to examine how cold desert soils compare with those from 
hot deserts, forests, prairie, and tundra. We investigated the 
relationships among these different ecologically distinct 
microbiomes and explored their relationship to environmental 
factors, such as pH values.

ResUlTs
We conducted a series of computational experiments including 
both intensive simulations and real dataset analyses to study the 
effect of k-tuple-based alignment-free methods with or without 
reads binning on identifying group and gradient relationships of 
metagenomic samples. To accomplish this, we first simulated two 
types of metagenomic datasets to investigate the performance of 
our newly developed alignment-free measures dS

2  and d2
* , and 

the effect of several factors, such as the k-tuple size and Markov 
orders of background sequences, on their performance. The 
simulated datasets were generated based on sampling reads from 
one hundred bacterial genomes randomly chosen from those 

detected after June 2015 with different abundance levels. The 
genomes discovered before May 2015 were used for training the 
Markov models for reads binning. We binned bacterial genomes 
by their GC content, and then, for each bin, we trained a Markov 
chain to model sequences in that bin. For reads in the simulated 
metagenomic samples, we classified them into different bins 
based on their likelihood evaluated under the corresponding 
Markov models [Eq. (3)]. The k-tuple frequency vectors were 
counted and normalized individually for each group [Eq. (4)]. 
Finally, the pairwise alignment-free dissimilarities, dS

2  and 
d2

* , were computed between samples based on Eq. (1, 2), and 
β-diversity analysis was implemented to evaluate how well the 
true underlying relationship among samples could be recovered 
by our method. We also compared our newly developed methods 
with the original version of the alignment-free measures in (Jiang 
et al., 2012; Song et al., 2013) which were based on k-tuples, 
but without reads binning. In addition, we also compared our 
approach with two reference-free binning methods, COCACOLA 
and MetaBAT, and two other reference-based binning methods, 
Kraken and MBMC.

simulation 1: Detecting group 
Relationships Among Metagenomic 
samples
In some situations, metagenomic samples may form different 
groups. For example, gut samples may group based on diet, and 
soil samples may group based on locations. In order to evaluate 
the ability of dissimilarity measures to detect such group 
relationships, we simulated datasets of 60 metagenomic samples 
belonging to three different groups (20 samples in each group) 
similar to the simulation design of (Jiang et al., 2012). Each 
sample was generated by simulating NGS reads from a mixture 
of 100 bacterial genomes detected after June 2015 with different 
abundance levels (see Materials and Methods for details).

We applied our newly developed alignment-free measures 
dS

2  and d2
*  to detect group relationships of the 60 samples 

by clustering analysis. We studied various factors, including 
the number of bins, the order of the Markov model for the 
background sequences, the tuple size k, and sequencing depth, all 
affecting the performance of dS

2  and d2
*  in recovering the group 

relationships among the samples. Figure 2 showed that both dS
2  

and d2
*  dissimilarity measures with reads binning outperform 

the original versions without reads binning. The best clustering 
result with the smallest triplet distance is obtained by dS

2  with 
reads binning using tuple size k = 5, Markov order 3 (Figure 3). 
To test if the lowest triplet distance is statistically significantly 
lower than the second lowest triplet distance, we generated 10 
duplicated datasets to simulate possible stochastic effects in real 
NGS data and obtained the triplet distances between the inferred 
clustering and the reference cluster for each duplication. Using 
paired t-test, the resulting one side p-value is less than 0.0005 
indicating that the lowest and the second lowest triplet distances 
are statistically significantly different. In Table 1, we fixed the 
tuple size at 5 for dS

2  and d2
* , and compared the effect of reads 

binning number on recovering group relationships. The results 
showed that alignment-free methods without reads binning had 
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FIgURe 2 | The relative performance (triplet distance) of various reads binning methods in recovering group relationships of the metagenomic samples for 
Simulation 1 at sequencing depth of 500,000 NGS paired-end reads. The background sequence Markov orders were two (a1, a2), three (b1, b2), and four (c1, c2). 
The dissimilarity measures dS

2  and d2
*  with binning into 4 bins outperform other binning methods in most situations. The corresponding figures based on Markov 

order zero and one are presented as Figure s2 in supplementary Material.
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the largest values of triplet distance, i.e., the worst performance, 
compared to alignment-free methods with reads binning from 2 
to 5 bins, which improved performance. Reads binning from 3, 
4, or 5 bins could achieve similar performance. The simulations 

using a relatively shallow sequencing with 100,000 paired-end 
reads also gave results similar to those of deeper sequencing with 
500,000 paired-end reads (Figure S3).

We next investigated the effects of sequencing errors on 
the performance of our methods and the results are shown in 
Figure S1(a, b) in the supplementary material. As expected, 
the sequencing errors could affect the accuracy of the reads 
assembly and contig binning, which in turn affect the clustering 
results. The triplet distance did not increase with sequencing 
error rate significantly until the sequencing error rate equals to 
0.05 (Figure S1, p-value < 0.05 for t-tests). For reference, the 
sequencing error rates of Illumina and 454 platforms are ~0.001 
or 0.01, respectively (Glenn, 2011), so sequencing errors only 
slightly impact the performance of the measures at the reported 
error rates for the NGS technologies.

We next considered other reference-independent and 
reference-dependent ways to construct Markov chain models. We 
cross-assembled the reads from the 60 metagenomic samples and 
used COCACOLA (Lu et al., 2017a) and MetaBAT (Kang et al., 
2015), two reference-independent contig binning methods, to 

FIgURe 3 | The best clustering tree for the 60 simulated metagenomic samples in Simulation 1 based on the newly developed dissimilarity measure dS
2  with reads 

grouped to 4 bins, tuple size k = 5, and background sequence Markov order = 3.

TABle 1 | The triplet distances between the reference and the clustering trees 
using various numbers of bins for the reads with tuple size k = 5 and background 
sequence Markov order from 0 to 3 for Simulation 1 at sequencing depth of 
500,000 next-generation sequencing paired-end reads. 

No 
binning

2 bins 3 bins 4 bins 5 bins

dS
2 order 0 3,535 2,634 2,635 2,634 2,633

order 1 4,123 3,472 3,593 3,619 3,666
order 2 4,043 2,867 2,846 2,737 2,726
order 3 2,647 1,852 1,856 1,853 1,875

d2
* order 0 3,723 2,629 2,668 2,676 2,663

order 1 4,183 3,833 3,977 3,992 4,042
order 2 3,893 2,987 2,971 2,950 2,943
order 3 2,986 2,087 2,020 2,050 2,045

The two lowest triplet scores are in boldface.
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bin these contigs, respectively. We also used two reference-based 
reads binning methods, Kraken (Wood and Salzberg, 2014) and 
MBMC (Wang et al., 2016), based on bacterial genomes to group 
the metagenomic reads into different bins. Then, Markov chain 
models were constructed for each contig bin, and reads were 
then classified in the same way to each contig bin based on their 
likelihood under different Markov models. We compared these 
reads binning schemes with our approach. Figure 2 show the 
corresponding results. It can be seen that all these reads binning 
schemes are better than the original version without any reads 
binning procedure, but they do not perform as well as the above 
scheme based on binning from Markov chains.

simulation 2: Revealing environmental 
gradients From Metagenomic samples
The second simulation experiment was designed to evaluate 
the effectiveness of the alignment-free methods for analyzing 
gradient variation of microbial communities. A set of 20 
metagenomic samples was generated by simulating NGS reads 
from 100 bacterial species also used in the above simulations 
with varying abundance levels. We designed the proportion 
of the 100 genomes to vary from sample 1 to sample 20 in a 
way that would mimic gradient variation across the samples, 
and then, we evaluated the performance of the alignment-free 
methods in terms of revealing such gradient variations from the 
metagenomics data.

Dissimilarity matrices were calculated using the alignment-
free methods with different k-tuple sizes and Markov orders of 
background sequences as above. PCoA (Anderson, 2003), an 
effective approach to display β-diversity among multiple samples, 
mapped the 20 samples to a two-dimensional space. Then, the 
PCC was calculated between the first principal coordinate (PC1) 
given by PCoA and the predetermined gradient axis built into the 
simulation model. PCC can be taken as an index of how well the 
alignment-free method reveals the gradient variation in samples 
(see Materials and Methods for details). A higher PCC indicates 
better performance of the dissimilarity measure in recovering the 
gradient among the microbial samples.

Similar to Simulation 1, we generated two sequencing depths 
of 100,000 and 500,000 paired-end reads per sample. Figure 4 
showed the average PCC of the different dissimilarity measures 
at different tuple sizes and Markov orders of background 
sequences. Similar to the results in Simulation 1, reads binning 
improved the results compared to no binning for both alignment-
free measures, dS

2  and d2
* . The PCC values increased with tuple 

size and Markov order. For a fixed bin number of reads and tuple 
size, the PCC values increased more than 0.10 from order 0 to 
order 4, indicating that higher order Markov chains could model 
the genomic sequences better. The performance of d2

*  is slightly 
better than that of dS

2  for gradient detection. The best result with 
the largest PCC value was obtained by d2

*  with reads binning 
using tuple size k = 9 and background Markov order 4. To test if 
the highest PCC is statistically significantly higher than the second 
highest PCC, we generated 10 duplicated datasets to simulate 
possible stochastic effects in real NGS data and obtained the PCC 
for each duplication. Using paired t-test, the resulting one-sided 

p-value is less than 0.0005. In Table 2, we fixed the tuple size as 
9 for dS

2  and d2
* , and compared the effect of number of read 

bins on recovering gradient relationships. Again, results showed 
that the alignment-free methods without reads binning had the 
lowest values of PCC, i.e., worst performance, while methods 
with reads binning into 2 to 5 bins improved performance. For a 
given order of Markov chain, the PCCs corresponding to binning 
reads to 3, 4, or 5 bins are similar, indicating that that the number 
of reads bins does not markedly affect the performance of our 
methods when the bin number is at least 3. The simulations 
using a relatively shallow sequencing with 100,000 paired-end 
reads also gave results similar to those of deeper sequencing with 
500,000 paired-end reads (Figures S4 and S5). Figure S1(c, d) 
showed that the PCC values only decreased significantly when 
the sequencing error was 0.05 suggesting that sequencing errors 
only slightly impact the performance of the measures. Figure 4 
shows that all these reads binning schemes are better than the 
original version without any reads binning, but they do not 
perform as well as the above scheme based on binning from 
Markov chains.

Detecting group Relationships Among 
human gut samples
We applied the alignment-free methods to analyze human gut 
metagenomic datasets from different countries. These datasets 
include 107 fecal microbiome samples from Asia (Kurokawa 
et  al., 2007; Qin et al., 2012), Europe (Qin et al., 2010) and 
North America (Turnbaugh et al., 2009). Two countries 
(China and Japan, n = 45 and 13) are from Asia, two countries 
(Denmark and Spain, n = 21 and 10) are from Europe, and 
one country (USA, n = 18) is from North America. In the 
simulation results, we found that the triplet distance and PCC 
values of the alignment-free dissimilarity measures dS

2  and d2
*  

could achieve the best performance when the NGS reads were 
classified to four bins. Consequently, in the real data analysis, 
we used all the bacterial genomic sequences both before May 
2015 and after June 2015 to construct four different Markov 
Models to bin these NGS reads.

TABle 2 | The Pearson correlation between the first principal coordinate and the 
simulated environmental gradient using different numbers of bins for the reads 
with tuple size k = 9 and Markov order from 0 to 4 for Simulation 2 at sequencing 
depth of 500,000 next-generation sequencing paired-end reads.

No 
binning

2 bins 3 bins 4 bins 5 bins

dS
2 order 0 0.721 0.782 0.791 0.787 0.787

order 1 0.769 0.855 0.852 0.851 0.849
order 2 0.746 0.860 0.863 0.864 0.861
order 3 0.805 0.896 0.893 0.887 0.844
order 4 0.840 0.899 0.907 0.907 0.906

d2
* order 0 0.617 0.766 0.760 0.757 0.755

order 1 0.724 0.871 0.870 0.871 0.871
order 2 0.738 0.887 0.880 0.880 0.880
order 3 0.807 0.904 0.903 0.904 0.901
order 4 0.845 0.903 0.914 0.913 0.914

The two highest Pearson correlations are in boldface.
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First, we used alignment-free measures, dS
2

 and d2
* , with tuple 

size 9 and Markov order 4 to explore the relationship among these 
human gut metagenomic samples. Similar to the simulation studies, 

we used UPGMA to cluster the samples based on the dissimilarity 
matrix, as defined by different dissimilarity measures based on 
sequence signatures. Figure S6 showed that these human gut 

FIgURe 4 | The relative performance (Pearson correlation coefficient) of various reads binning methods in recovering gradient relationships of the metagenomic 
samples for Simulation 2 at sequencing depth of 500,000 next-generation sequencing paired-end reads. The background sequence Markov orders were two (a1, 
a2), three (b1, b2) and four (c1, c2). The dissimilarity measures dS

2  and d2
*  with binning into 4 bins outperform other binning methods in most situations. The 

corresponding figures based on Markov order zero and one are presented as Figure s4 in supplementary Material.
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samples could be clustered into four different groups labeled with 
different colors. The Japanese and American samples could be 
clearly separated from other groups with no overlaps. Most Chinese 
and European samples could be grouped separately, but with 
some overlaps. The samples from Denmark and Spain could not 
be distinguished from each other. A previous study (Costea et al., 
2018) showed that the gut microbial community of both Chinese 
and European samples was enriched with Firmicutes, Bacteroides 
and Prevotella; however, the American samples all indicated a high-
fat diet and were enriched with only Bacteroides. Therefore, both 
Chinese and European samples had similar microbial composition 
and should first be clustered together and then clustered again with 
the Japanese samples. The American samples have distinct gut 
microbial composition and should be separated from other samples.

We next calculated the triplet distance based on the four divided 
groups for dS

2  and d2
* . The results of triplet distance scores for 

the different dissimilarity measures are summarized in Table 3. 
The smallest triplet distance score was achieved with dS

2  coupled 
with tuple size k = 6 and the fourth order Markov chain model 
of background sequences. When the order of Markov chains was 
four, the triplet distances were all lower than 30,000 for tuple size k 

from 6 to 9. In addition, triplet distance decreased with increasing 
Markov order for any fixed tuple size. The best performance was 
achieved when tuple size was k = 6 or 7 and Markov order = 4, 
similar to the k-tuple in Simulation 1. Figure 5 showed the cluster 
tree using UPGMA for dS

2  with tuple size k = 6 and Markov  
order 4. Table S5 showed the confusion matrix for dS

2  with tuple 
size k = 6 and Markov order 4. Figure S7 showed the PCoA plot 
of these 107 samples. In this rooted tree, we found that American 
samples were separated from other samples and that the Japanese 
samples were separated from the Chinese and European samples. 
Although some European samples were mixed with the Chinese 
samples, most European samples clustered together.

Detecting group Relationships Among 
human Body sites
We applied the alignment-free methods to analyze human 
metagenomic datasets from four body sites: buccal mucosa, 
supragingival plaque, tongue dorsum, and stool (Lloyd-Price 
et al., 2017). Each body site had fifteen samples. We calculated 
the pairwise dS

2  and d2
*  dissimilarities for any pair of samples 

FIgURe 5 | The best clustering tree for the 107 human fecal metagenomic samples based on the newly developed dissimilarity measure dS
2  with tuple size k = 6 

and background sequence Markov order = 4. Red squares: Chinese samples; blue squares: European samples; purple squares: Japanese samples; green squares: 
American samples.
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and build a hierarchical clustering tree. We next calculated the 
triplet distance between the clustering tree with the four divided 
groups based on body sites. Table 4 showed that the smallest 
triplet distance score was achieved with dS

2  coupled with tuple 
size k = 6 and the fourth order Markov model of background 
sequences. Figure 6 showed the cluster tree using UPGMA for 
dS

2  with tuple size k = 6 and Markov order 4. Table S6 showed 
the confusion matrix for dS

2  with tuple size k = 6 and Markov 
order 4. In this rooted tree, we found that supragingival plaque 
and tongue dorsum samples were first grouped together and then 
clustered with the stool samples and buccal mucosa samples, 
consistent with the results from a previous study (Lloyd-Price 
et al., 2017).

Detecting group and gradient Variations 
in soil Metagenomic Data
We next applied the alignment-free methods to analyze the 
metagenomic data of soil microbial communities collected 
from different geographic locations, spanning a wide range of 
ecologically distinct biomes, to examine how cold desert soils 
would compare with hot desert soils, forests, prairie, and tundra 
(Fierer et al., 2012).

The 16 soil samples form three ecologically distinct groups: 
hot deserts (n = 3), cold deserts (n = 6), and worldwide forests 
(n  = 7). We conducted clustering analysis with sequence 
signatures of these samples and used triplet distance to study how 
well the grouping information was revealed (Table 5). Again, for 
all tuple size values, it can be seen that the performance of the 

alignment-free methods improved along with reads binning. 
Under reads binning, d2

*  coupled with tuple size k = 6 and the 
fourth order Markov model of background sequences achieved 
the best performance (Tables 5 and S7, Figure 7). We observed 
that the three major groups identified by the alignment-free 
methods, dS

2  and d2
* , reflected three major ecologically 

distinct conditions. The main factor that differentiates these 
soil samples is pH which, in polar and hot deserts, is higher 
than 7.00, but in worldwide forests lower than 7.00. These three 
groups of samples had different ranges of pH values. The pH of 
polar desert ranged from 8.15 to 9.95, while the pH values of 
hot desert ranged from 7.90 to 8.38. The pH values of worldwide 
forests ranged from 4.12 to 6.37. In the forest soil samples, the 
two samples from tropical forest (PE6) and Arctic tundra (TL1) 
with lowest pH values (4.12 and 4.58) were first clustered together 
and then clustered again with other forest samples. In order to 
test whether pH was the main environmental driver of microbial 
community composition, we tested the correlation between pH 
values and the first principal coordinate of these samples, and a 
highly significant negative correlation was found, as shown in 
Figure S8 (Pearson correlation = −0.856, p-values = 0.0001). 
We also examined the correlation among the first to fourth 
principal coordinate of these samples with other environmental 
factors, including mean annual precipitation (MAP), mean 

TABle 4 | The triplet distance between the reference and the clustering trees for 
the 60 human metagenomic samples across four body sites using various reads 
binning methods with tuple size k = 5–9 and background sequence Markov 
order from 0 to 4. 

K 5 6 7 8 9

dS
2  without 

reads 
binning

order 0 4,536 4,153 3,696 3,306 2,986

order 1 4,245 3,906 3,887 3,598 3,243
order 2 3,945 3,657 3,257 3,010 2,798
order 3 3,116 2,954 2,779 2,638 2,497
order 4 – 2,215 2,275 2,315 2,382

dS
2  with 4 

bins

order 0 4,342 3,982 4,407 4,073 3,672

order 1 4,048 3,803 3,544 3,263 3,010
order 2 3,843 3,541 3,248 3,061 2,868
order 3 2,960 2,812 2,697 2,573 2,469
order 4 – 2,167 2,180 2,206 2,261

d2
*

 without 
reads 
binning

order 0 5,281 5,533 6,068 6,419 6,827

order 1 4,534 5,244 6,069 6,610 6,841
order 2 4,409 4,744 5,235 5,611 6,254
order 3 3,800 4,286 5,034 5,861 6,387
order 4 – 4,057 4,898 5,719 6,269

d2
*  with 4 

bins

order 0 4,640 5,104 5,907 6,436 6,871

order 1 4,527 5,034 5,837 6,178 6,658
order 2 4,313 4,978 5,895 6,553 6,879
order 3 3,496 4,080 4,907 5,836 6,396
order 4 – 3,823 4,726 5,683 6,315

The two lowest triplet distances are in boldface

TABle 3 | The triplet distance between the reference and the clustering trees for 
the 107 human fecal metagenomic samples using various reads binning methods 
with tuple size k = 5–9 and background sequence Markov order from 0 to 4.

k 5 6 7 8 9

dS
2  without 

reads binning
order 0 39,281 36,237 34,049 32,908 32,192

order 1 38,129 35,070 33,306 32,455 32,149
order 2 34,430 32,511 31,631 31,308 31,645
order 3 32,124 31,154 31,629 31,738 32,162
order 4 – 29,841 30,576 31,246 32,063

dS
2  with 4 

bins
order 0 36,468 33,781 31,822 30,735 30,335

order 1 35,568 32,215 30,569 30,114 30,287
order 2 29,511 29,006 28,556 28,625 29,436
order 3 31,112 30,130 29,350 29,468 30,256
order 4 – 26,890 26,962 28,102 29,587

d2
*  without 

reads binning
order 0 49,732 46,565 42,415 37,998 34,036

order 1 48,002 45,070 41,444 38,009 33,151
order 2 43,132 40,134 38,055 33,539 32,171
order 3 39,180 37,056 34,468 32,912 32,183
order 4 – 34,656 33,829 33,215 33,054

d2
*  with 4 

bins
order 0 46,942 44,312 40,504 36,556 32,285

order 1 44,447 41,995 38,726 35,658 31,474
order 2 37,515 35,859 33,896 30,249 30,154
order 3 38,555 35,964 32,126 30,965 30,689
order 4 – 31,816 30,064 30,031 30,799

The two lowest triplet distances are in boldface.
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annual temperature (MAT), organic Carbon content (%C), 
Nitrogen content (%N), and Carbon : Nitrogen ratio (C:N 
ratio). The first principal coordinate was also associated with 
the %C, %N, and C:N ratio (p-values < 0.01). But for the second, 
third, and fourth principal coordinates, the associations were 
not significant (Table S8).

DIsCUssION
In this study, we developed new alignment-free measures 
dS

2  and d2
*  for the comparison of metagenomes that model 

metagenomic reads as from a mixture of multiple Markov 
chains. We investigated the applications of the new alignment-
free measures to compare metagenomic samples. Because of 
the high complexity of metagenomic data, the previous version 
of alignment-free measures dS

2  and d2
*  in (Jiang et al., 2012) 

that used only one background Markov model could not 
capture data heterogeneity. We proposed to first group reads in 
metagenomic samples into various bins using different Markov 

models. Then, k-tuple frequency vectors were counted and 
normalized individually in each bin. With the newly developed 
mixture model for computing the k-tuple expectations, we 
found that the modified dS

2  and d2
*  measures with reads 

binning outperformed the old ones in terms of recovering 
group and gradient relationships among samples from different 
environments. We extensively tested the methods on two sets of 
simulated metagenomic data and two sets of real metagenomic 
data, including metagenomes of human gut samples and 
worldwide soil samples. The effects of tuple size k, Markov order, 
and the bin number on the performance of our newly developed 
alignment-free measures were investigated, and the optimal 
ranges of those parameters were obtained.

There are several limitations of the current study. First, 
the performance of the new dS

2  and d2
*  measures depends 

on the number of bins for the reads. In this study, we let the 
number of bins be 1 to 5 and found that the optimal number 
of bins for the reads is between 3 and 5 in both simulation 
and real studies. In practice, we suggest setting the number 
of bins for the reads as 4. More studies are needed to see if 

FIgURe 6 | The best clustering tree for the 60 human microbiome samples from four body sites based on newly developed dissimilarity measure dS
2  with tuple 

size k = 6 and background sequence Markov order = 4. Red squares: Tongue dorsum; Blue squares: Buccal mucosa; Purple squares: Supragingival plaque; Green 
squares: Stool.
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this conclusion is robust for most comparative studies of 
metagenomic datasets. Second, the tuple size k can markedly 
impact the performance of the new dS

2  and d2
*  measures, and 

the optimal range of k can increase with sequencing depth. In 
general, the tuple size from 6 to 9 can give reasonable results. 
Third, the optimal range of Markov order is between 3 and 
4 in most of our studies. Finally, dS

2  and d2
*  have similar 

performance, but dS
2  slightly outperforms d2

*  in most studied 
scenarios. This result is consistent with the finding that the 
old version of dS

2  slightly outperforms the old version of d2
*  

without reads binning.
In this study, we focused on the comparison of metagenomic 

samples using alignment-free methods with reads binning. 
However, compared to alignment-based methods for mapping 
the reads to known genome or pathway databases and then 
comparing the genome and pathway abundance profiles, 
alignment-free methods cannot give insights about genomes 
and pathways responsible for the differences. From this 
perspective, we can say that alignment-free and alignment-
based methods for metagenome comparison complement 
each other and should be used interactively to understand the 
dynamics of microbial communities.
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TABle 5 | The triplet distance between the reference and the clustering trees for 
the 16 soil metagenomic samples from three ecologically distinct groups using 
various reads binning methods with tuple size k = 5–9 and background sequence 
Markov order from 0 to 4. 

k 5 6 7 8 9

dS
2  without 

reads binning
order0 127 121 117 115 115

order1 110 111 112 113 110
order2 113 118 116 115 115
order3 114 113 119 120 123
order4 – 117 117 118 124

dS
2  with 4 bins order0 129 124 124 124 122

order1 120 121 119 119 118
order2 114 116 119 121 123
order3 108 111 119 121 123
order4 – 108 117 115 121

d2
*  without 

reads binning
order0 115 125 124 120 116

order1 119 110 111 117 117
order2 122 120 119 121 141
order3 124 116 123 136 140
order4 – 116 130 142 149

d2
*  with 4 bins order0 129 126 124 122 116

order1 122 119 117 119 135
order2 121 120 120 129 144
order3 112 112 121 142 143
order4 – 119 135 145 153

The two lowest triplet scores are in boldface
FIgURe 7 | The best clustering tree for the 16 soil metagenomic samples 
from three ecologically distinct groups based on the newly developed 
dissimilarity measure dS

2  coupled with tuple size k = 6 and background 
sequence Markov order = 4. Red squares: polar desert samples; blue 
squares: hot desert samples; green squares: forest samples.
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