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Overcoming tumor resistance
mechanisms in
CAR-NK cell therapy
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Despite the impressive results of autologous CAR-T cell therapy in refractory B

lymphoproliferative diseases, CAR-NK immunotherapy emerges as a safer,

faster, and cost-effective approach with no signs of severe toxicities as

described for CAR-T cells. Permanently scrutinized for its efficacy, recent

promising data in CAR-NK clinical trials point out the achievement of deep,

high-quality responses, thus confirming its potential clinical use. Although

CAR-NK cell therapy is not significantly affected by the loss or

downregulation of its CAR tumor target, as in the case of CAR-T cell, a

plethora of common additional tumor intrinsic or extrinsic mechanisms that

could also disable NK cell function have been described. Therefore,

considering lessons learned from CAR-T cell therapy, the emergence of

CAR-NK cell therapy resistance can also be envisioned. In this review we

highlight the processes that could be involved in its development, focusing on

cytokine addiction and potential fratricide during manufacturing, poor tumor

trafficking, exhaustion within the tumor microenvironment (TME), and NK cell

short in vivo persistence on account of the limited expansion, replicative

senescence, and rejection by patient’s immune system after lymphodepletion

recovery. Finally, we outline new actively explored alternatives to overcome

these resistance mechanisms, with a special emphasis on CRISPR/Cas9

mediated genetic engineering approaches, a promising platform to optimize

CAR-NK cell function to eradicate refractory cancers.

KEYWORDS

chimeric antigen receptor (CAR), CAR NK cells, hematologic tumor, genome editing,
CRISPR/Cas9, tumor microenvironment, tumor resistance, CAR persistence
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Introduction

Over the last decade, autologous CAR-T therapy has

revolutionized the treatment of hematological tumors as reflected

in six different CAR-T treatments that have received marketing

authorization so far to treat multiple myeloma (MM) and CD19+ B

cell malignancies, and are now routinely used in the clinic (1–7).

Despite their undoubtedly clinical success in the relapsed and

refractory setting, CAR-T real-world clinical experience reveals

challenges such as cumbersome manufacturing and high-grade

toxicities (8) as well as sub-optimal long-term disease control for

many patients (1, 3, 9), associated with different mechanisms of

resistance that have been extensively reviewed in Shah et al. (10) and

in this article collection. Moreover, outcomes for patients who

finally progress after CAR-T cell therapy are dismal (11). These

limitations highlight the need to investigate alternative immune

effector cells as potential vehicles for CAR engineering.

CAR-NK cells emerge as strong candidates due to the unique

biological properties and multiple mechanisms of action of

conventional Natural Killer (NK) cells. NK cells are innate

effector lymphocytes but can also exhibit features of memory-like

or adaptive response (12–14). The main function of NK cells is to

identify and rapidly discriminate and kill virally infected, stressed,

or senescent cells and control several types of tumor cells and

metastases (15–17). Human NK cells have been traditionally

subclassified into immature immunomodulatory NK cells

(CD56b r i g h tCD16 - / d im ) and th e ma tu r e NK ce l l

(CD56dimCD16bright) subset, which mediates the cytolytic function

(18, 19). In contrast to T cells, adoptive NK or CAR-NK therapy

does not cause serious adverse events, such as on-target off-tumor

toxicities, cytokine release syndrome (CRS), or immune effector

cell‐associated neurotoxicity syndrome (ICANS), which may

increase hospitalization length and raise therapy cost (20–22).

The short NK lifespan in vivo and the different spectrum of

cytokines and growth factors released during NK cell killing (e.g,

TNF-a, IFN-g, GM-CSF, and IL-3), are probably responsible for

these advantages (23, 24). Allogeneic NK products surpass the

expensive and lengthy procedure of autologous CAR-T

manufacturing (25). Besides, they are also exempt from ex vivo

expansion failures reported in heavily pre-treated patients (10-30%)

(1) and tumor contamination events occurring during autologous

CAR-T cell productions (26). Allogenic NK and CAR-NK cells

constitute an “off‐the‐shelf” product for immunotherapy that can be

applied to different patients and generated from multiple sources

(20–22, 27). This potential arises due to their minimal risk to cause

graft‐versus‐host disease (GvHD). NK cells are functionally similar

to CD8+ T cells but do not require prior sensitization and lack TCR

expression thereby their responses are not human leukocyte antigen

(HLA)-restricted. Instead, NK cell function depends on the balance

between activating and inhibitory signaling generated by several

germline‐encoded receptors (see review in Sivore et al. and Xie

et al.) (Figure 1) (28, 29). Thus, NK cells retain CAR-independent
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killing capacity through these innate receptors even in a tumor

escape scenario characterized by CAR antigen loss or down-

regulation. NK cells could eliminate tumor cells through CD16-

mediated antibody-dependent cell-mediated cytotoxicity (ADCC),

direct target killing by cytolytic granules, (e.g. perforin and

granzymes), or via engagement of death receptors (e.g. FASL or

TRAIL) (30). Additionally, NK cells efficiently produce cytokines

and chemokines that modulate other immune mediators of

cytotoxicity (31). Therefore, re-directing NK cells to express a

CAR potentially synergizes to kill heterogeneous tumors and

reduce the risk of relapse due to CAR-dependent mechanisms.

A large number of CAR-NK preclinical studies have been

revealed to be effective in cancer therapy, particularly in the

treatment of hematological malignancies (see Gong et al. and

Daher et al., for exhaustive review) (32, 33). Up to now, 31

clinical trials are registered with 11 different CAR targets (CD19,

CD20, CD22, NKG2D-L, CD33, and BCMA on the top) to address

the clinical efficacy of CAR-NK cells in hematologic tumors

(Table 1) (22, 34). The most promising data reported arise from

first-in-human phase I/II CAR-NK clinical trials based on primary

umbilical cord blood (UCB) CAR-NK and induced pluripotent

stem cell (iPSC)-derived CAR-NK cell products (35). Rapid and

impressive responses (ORR: 73% CR: 64%) were achieved with a

bicistronic CD19-28-z CAR/IL-15 UCB NK cells in chronic

lymphocytic leukemia (CLL) and lymphoma refractory and

relapsed setting (NCT03056339). However, the durability of the

response in this study could not be completely assessed in some

patients because other therapies were administered 30 days after the

infusion of CAR-NK cells (22, 36). In the same way, interim analysis

in the single-dose cohort treated with FT596, a multi-engineered

effector generated using a construct containing a CD19-targeting

CAR, a high-affinity uncleavable CD16 (hnCD16) Fc receptor, and

an IL-15/IL-15R fusion, revealed an estimated ORR of 69% and CR

of 56% in combination with an anti-CD20 antibody (37). Recently,

new data from a few patients have been released from NKX-101

(NKG2D CAR-NK in acute myeloid leukemia (AML) and

myelodysplastic syndrome (MDS)) (3/5 patients achieved CR)

and NKX-019 (CD19 CAR-NK in CD19+ B acute lymphocytic

leukemia (ALL) and lymphoma) (5/6 patients in CR) (preliminary

dose-finding data report, Nkarta, April 2022). While we look

forward to seeing efficacy confirmation in the interim analysis of

related ongoing products, such as TK-007 (CD19-28-z CAR/IL-15
UCB NK cells) or FT576 (iPSC-derived BCMA CAR-NK in MM),

these early results suggest similar high-quality responses using

CAR-NK cells as compared to CAR-T cells. Importantly, in

contrast to CAR-T cell therapy, no evidence of severe CRS,

ICANS, hemophagocytic lymphohistiocytosis (HLH), or life-

threatening GvHD was observed in any of the aforementioned

trials using CAR-NK cells.

Despite the multiple advantages, CAR-NK therapy still has

to confront additional shortcomings that provoke resistance and

impact on its efficacy, as seen in CAR-T cells (38). Herein, we
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will discuss these mechanisms, especially focusing on the CAR-

NK dysfunctionalities that lead to immune surveillance evasion

by hematologic tumors. We will also review current strategies,

mainly based on genome editing, to overcome CAR-NK

functional exhaustion and limited migration, and harness

CAR-NK effectors replication and persistence in vivo.
Manufacturing conditions: Key
aspect for the efficacy of
CAR-NK therapy

One of the main concerns regarding adoptive cell therapy is the

need for a great number of enhanced functional effector cells with

potential proliferative capacity for optimal clinical responses. Thus,

optimizing the source, the cell cytokine-priming, and the expansion

protocols can determine CAR-NK cell cytotoxicity and maintenance

in vivo.
Cytokine priming and
expansion methods

The most common sources used as platforms to develop

CAR-NK therapy are NK cells from peripheral blood (PB) or
Frontiers in Immunology 03
UCB, NK cell lines (such as NK92), and stem cell-derived NK

cells, generated from iPSCs, human embryonic stem cells

(hESCs) or CD34+ hematopoietic stem cells (39). PB-NK cells

are mature cells with high cytotoxic activity and extended

expansion potential but show challenges regarding genetic

modification. In contrast, UCB-NK cells contain mainly

immature NK cells that after an expansion process acquire a

cytotoxic status with equivalent functionality to PB-NK cells

(40). Due to donor variability, both PB and UCB-NK cells are

heterogeneous products. NK92 cell line provides unlimited

homogeneous effectors with easy manufacturing expansion

and genetic manipulation but mandatory irradiation before

infusion for safety concerns impedes their persistence. In fact,

CD33-CAR NK-92 cells do not appear to be effective against

AML in the first CAR-NK92 clinical trial (NCT02944162) (34).

Alternatively, iPSC-derived NK cells are a homogeneous,

unlimited, and easy-to-edit option but their manufacturing is

lengthy and requires specialized expertise (41).

Given their clinical suitability and that GvHD was not

expected, first approaches for NK adoptive cell therapy were

performed with autologous PB-NK cells. In spite of the proven

safety, no clinical efficacy was observed due to self-tolerance

mediated by HLA-matching (42, 43). Besides, NK cell repertoire

in hematological malignancies patients is reduced and

functionally altered by the tumor and previous aggressive
FIGURE 1

Major endogenous NK cell receptors and their associated ligands in tumor cells. NK cell function is modulated through different surface
receptors which bind to ligands expressed on cancer cells. Receptors such as NCR (NKp30, NKp44, and NKp46), CD16, DNAM-1, or NKG2D/
DAP10 trigger an activating NK signaling that results in a potent cytotoxic response against ligand-expressing cells. On the contrary, other
receptors like PD-1, TIGIT, CD94/NKG2A, TIM-3, and KIRs, turn off NK response when bind to their cognate ligands. The combination of positive
and negative signals regulates NK cell response to target cells. PD-1, Programmed Death 1; TIGIT, T cell immunoglobulin and ITIM domain; TIM-
3, T cell immunoglobulin and mucin-domain containing-3; KIR, Killer-cell immunoglobulin-like receptor; NCRs, natural cytotoxicity receptors;
DNAM-1, DNAX accessory molecule; NKG2D/DAP10, natural killer group 2D/DNAX-activation protein 10; PD-L1, Programmed Death ligand-1;
HLA-E, HLA class I histocompatibility antigen, alpha chain E; HLA-A/B/C, HLA class I histocompatibility antigen, alpha chain A/B/C; NKG2D-L,
NKG2D ligands; MICA/B, MHC class I polypeptide-related sequence A/B; ULBPs, UL16 binding proteins. Created with BioRender.com.
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TABLE 1 Current CAR-NK therapy clinical trials in hematological tumors.

Row Status Disease Construct/
Combination

NK Cell
sources

Phase Nar

patients
Country NCT

number

1 Recruiting Acute Myeloid Leukemia NKG2D CAR Cord blood Phase 1 9 China NCT05247957

2 Recruiting B-cell Non Hodgkin Lymphoma CD19 CAR Haploidentical
donor

Phase 1 25 China NCT04887012

3 Recruiting Acute Myeloid Leukemia CD33/CLL1 CAR Unknown Early
Phase 1

18 China NCT05215015

4 Not yet
recruiting

Non Hodgkin Lymphoma CD19 CAR Unknown Early
Phase 1

9 China NCT04639739

5 Recruiting Acute Myeloid Leukemia CD33 CAR Unknown Phase 1 27 China NCT05008575

6 Unknown Refractory B-Cell Lymphoma CD22 CAR Unknown Early
Phase 1

9 Unknown NCT03692767

7 Unknown Refractory B-Cell Lymphoma CD19 CAR Unknown Early
Phase 1

9 Unknown NCT03690310

8 Recruiting Refractory Multiple Myeloma BCMA CAR Cord blood Early
Phase 1

27 China NCT05008536

9 Recruiting Multiple Myeloma BCMA CAR NK-92 cell line Phase
1/2

20 China NCT03940833

10 Unknown Refractory B-cell Lymphoma CD19/CD22 CAR Unknown Early
Phase 1

10 Unknown NCT03824964

11 Recruiting Relapsed/Refractory Acute Myelodysplastic
Syndromes

NKX101 (NKG2D
CAR/mbIL-15)

Haploidentical
donor (PB)

Phase 1 90 USA NCT04623944

12 Recruiting B-cell Leukemias Waldenstrom Macroglobulinemia
B-cell Lymphomas

NKX019 (CD19 CAR/
mbIL-15)

Donor (PB) Phase 1 60 USA
Australia

NCT05020678

13 Unknown Acute Myeloid Leukemia
Acute nonlymphocytic leukemia

CD33 CAR NK-92 cell line Phase
1/2

10 China NCT02944162

14 Recruiting Acute Lymphocytic Leukemia
Chronic Lymphocytic Leukemia
Non Hodgkin’s Lymphoma

CD19 CAR Cord blood Phase 1 27 China NCT04796675

15 Unknown B-cell Leukemias
B-cell Lymphomas

CD19 CAR NK-92 cell line Phase
1/2

10 China NCT02892695

16 Withdrawn B-cell Lymphomas CAR CD19/iCasp9/IL
15 + Rituximab

Cord blood Phase
1/2

0 USA NCT03579927

17 Active not
recruiting

B-cell Leukemias
B-cell Lymphomas

iCasp9/CAR CD 19/
IL15 + AP1903

Cord blood Phase
1/2

36 USA NCT03056339

18 Recruiting Multiple Myeloma FT576(BCMA CAR) +
Daratumumab

iPSCs Phase 1 168 USA NCT05182073

19 Not yet
recruiting

B-cell Lymphoma
Myelodysplastic Syndromes
Acute Myeloid Leukemia

CARCD70/IL 15 Cord blood Phase
1/2

94 USA NCT05092451

20 Not yet
recruiting

CD19-Positive B-cell Malignancies CNTY-101 (CAR
CD19/EGFR/IL15) +IL-
2

iPSCs Phase 1 75 Unknown NCT05336409

21 Not yet
recruiting

Hematological Malignancies CAR CD5/IL 15 Cord blood Phase
1/2

48 USA NCT05110742

22 Unknown CD7-Positive Leukemia or Lymphoma CD7 CAR NK-92 cell line Phase
1/2

10 China NCT02742727

23 Recruiting B-cell Lymphoma FT596 (CD19 CAR) iPSCs Phase 1 50 USA NCT04555811

24 Recruiting B-cell Lymphoma
Chronic Lymphocytic Leukemia

FT596 (CD19 CAR) +
Rituximab

iPSCs Phase 1 285 USA NCT04245722

25 Completed Acute Lymphoblastic Leukemia CD19 CAR Haploidentical
donor (PB)

Phase 1 14 USA NCT00995137

26 Withdrawn Diffuse Large B Cell Lymphoma CD19 CAR Modified NK-
92 (haNK)

Phase 1 0 USA NCT04052061

27 Suspended B-cell Acute Lymphoblastic Leukemia CD19 CAR + IL-2 Haploidentical
donor (PB)

Phase 1 20 Singapore NCT01974479

(Continued)
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treatments (44). Pioneer studies from Ruggeri et al. reported that

host HLA-I-donor KIR mismatch can promote NK cell graft-

versus-leukemia effect (GvL) in transplant setting (“missing-

self”), therefore allogenic NK cells have been preferentially

selected because exhibit additional advantages to being ready-

to-use product (27). Since then, many studies have been focused

on haploidentical NK therapy also in non-transplant context,

demonstrating safety and modest clinical responses (45).

Nevertheless, autologous NK cell immunotherapy is re-

emerging in MM clinical consolidation setting with promising

data of efficacy released (46). Taken together, these findings

highlight that NK cell sources can impact adoptive NK cell

therapy clinical outcomes and that the addition of a suitable

CAR could unleash NK cell functionality even in inhibitory KIR/

HLA-I compatible settings (“induced-self”).

Regarding NK cell priming and expansion strategies, most of

them are based on the use of soluble cytokines and artificial

antigen-presenting cells (aAPC) with membrane-bound

molecules such as cytokines and/or costimulatory ligands (in-

depth reviewed by Gurney et al. and Liu et al. (47, 48)). Common

gamma-chain cytokines IL-2, IL-7, IL-15, and IL-21, and others

like IL-12 or IL-18, alone or in combinations are the most

commonly studied (49–51). The use of irradiated feeder cells like

K562 genetically modified to express membrane-bound IL-15 or

IL-21 (mbIL-15/mbIL-21) and 4-1BBL greatly increases fold-

expansion rates while maintaining the cytotoxic potential of NK

and CAR-NK cells (21, 22, 52–55). Other presenting cells such as

Epstein-Barr Virus transformed Lymphoblastoid Cell Lines

(EBV-LCLs) have also been studied. Yang et al. engineered a

human B-lymphoblastoid cell line with mbIL-21 that provided

higher NK cell expansion compared to conventional

K562.mbIL-21 and a more favorable phenotype regarding

functionality and proliferative capacity (56). aAPCs have

demonstrated to efficiently expand NK cells and to be

clinically safe (57), but cell-free approaches such as liposomal

particles with mbIL-21 and 4-1BBL (58), membrane patches

from K562.mbIL21.41BBL (59) or hyaluronic acid-based

biomaterials (60) are also under investigation.

Despite some authors suggest optimal landscapes to boost

NK cell proliferation (61), a harmonization between NK/CAR-

NK expansion protocols is yet to be established. Cytokines such
Frontiers in Immunology 05
as IL-2, IL-15, and IL-21 play key roles in NK cell functionality

and development (49, 62, 63), thus their exposure should be

exhaustively addressed as may critically contribute to product

efficacy. NK cells can become “addicted” to supraphysiological

cytokine exposure, suffering a dramatic drop after interleukin

withdrawal when infused into patients, limiting their persistence

and efficacy in vivo (64). Molecular mechanisms leading to NK

cell decline in the absence of interleukin stimulus are caspase 3

activation, decrease in BCL-2/BIM ratio, and induction of a

proapoptotic splice variant of BIM (65). Consequently, in vivo

administration of these cytokines was proposed to circumvent ex

vivo signaling dependence.

Implications of systemic IL-2 supply to potentiate NK cell

expansion were evaluated by Miller’s lab. The infusion of

haploidentical NK cells with concomitant IL-2 support after a

lymphodepleting chemotherapy obtained disappointing results

as NK cell growth was inhibited by host regulatory T cells

(Tregs) given that their IL-2Ra provides them with a higher

affinity for IL-2 (66). Hence, they depleted Tregs with IL-2-

diphtheria toxin fusion protein, prompting NK cell expansion

immediately after lymphodepletion, achieving heighten CR rates

(NCT00274846 and NCT01106950) (67). Systemic IL-2

administration has related toxicities such as capillary leak

syndrome (68, 69), arising the need for using other cytokines

with high NK selectivity, such as IL-15.

IL-15 shares similarities with IL-2 but has a high affinity for its

IL-15Ra, thus stimulating NK cells but not Tregs (70). The short

half-life of IL-15 (71) has promoted the development of alternative

related molecules to overcome this drawback. Clinical Trials using

either rhIL-15 (72) or IL-15 engineered molecules (N-803,

formerly known as ALT-803 (NCT01885897, NCT02384954)

(73–75) and NKTR-255 (76, 77)) demonstrated great NK and

CD8+ T cell expansion and minimal effect over CD4+ T cells or

Tregs but performed insufficient potency themselves (78–80).

Moreover, Cooley et al. described CRS in around half of the

patients receiving subcutaneous (but not intravenous) IL-15, who

also had high IL-6 levels, suggesting that IL-15 stores could trigger

proinflammatory cytokines release by myeloid cells (81). Other

undesired effects such as neutropenia in nonhuman primates (82)

or leukemia in mice (83, 84) have been associated with rhIL-15

systemic administration.
TABLE 1 Continued

Row Status Disease Construct/
Combination

NK Cell
sources

Phase Nar

patients
Country NCT

number

28 Unknown B-cell Leukemias
B-cell Lymphomas

CD19 CAR NK-92 cell line Phase
1/2

10 China NCT02892695

29 Recruiting B-cell Non Hodgkin Lymphoma CAR CD19/IL15 Cord blood Phase 2 242 USA NCT05020015

30 Recruiting B-cell Acute Lymphoblastic Leukemia (B-ALL) B-
cell Lymphoma

QN-019a (CAR CD19)
+/- Rituximab

Allogenic Phase 1 24 China NCT05379647

31 Recruiting Acute Lymphocytic Leukemia, Chronic
Lymphocytic Leukemia, Non Hodgkin Lymphoma

CD19 CAR Unknown Phase 1 15 China NCT05410041
f
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IL-21 is another common gamma-chain cytokine that has

demonstrated biasing NK cells for a mature functional

phenotype with augmented granule release (85–87),

heightened IFN-g secretion (88), and manageable toxicity in

phase I-II clinical trials (89). Still, its effects seem to depend on

exposure conditions (90) and high IL-21 has been related to

apoptosis in vitro (85). Hence, its systemic supply should be

accurately controlled.

As systemic administration of cytokines themselves also

entails undesired effects, the newest engineering approaches

are focused on in situ delivery and harnessing cytokine

signalization to prolong NK/CAR-NK cell persistence while

maintaining their optimized functionality. For instance, Liu

et al. developed an IL-15 autocrine secreting CD19 CAR UCB-

NK cell that showed enhanced cytotoxicity in vitro (91) and

CAR-NK cell persistence in a phase I/II clinical trial without

systemic IL-15 level increase in the patients (NCT03579927)

(22). To further improve their candidate, they ablated CISH, a

gene that encodes the cytokine checkpoint CIS (Cytokine

inducible Src homology 2 containing protein), which restrains

IL-2 and IL-15 signaling (92), obtaining optimal proliferation

rates by increasing CAR-NK cell metabolic fitness via glycolysis

potentiation (93). Zhu et al. also demonstrated benefits in

persistence and antitumor effect of CISH-depleted iPSC NK

cells in an AML mouse model (94). Cytokine signalization

components have been modified to boost CAR-NK activity by

incorporating the inducible MyD88/CD40 (iMC) system as an

independent co-stimulator of an IL-15 secreting CAR-NK to

enhance cell persistence and tumor control (95, 96). Other IL-15

armored CAR-NK cells developed by Zicheng Du et al. (97) and

Christodoulou et al. (98) showed the same trend for CAR-NK

cell persistence but in the latter, much lesser potency was

achieved and dramatic systemic toxicity was observed.

Therefore, other cytokine supply methods are being evaluated.

For instance, engineering NK cells to express mbIL-15 may

provide benefits averting the aforementioned undesired effects of

systemic IL-15. Additionally, mbIL-15 has demonstrated higher

functionality in mice compared to the soluble form even at

physiological levels (99). Imamura et al. developed mbIL-15

human NK cells with autonomous potential growth, activated

antiapoptotic pathways, and enhanced antitumor effect toward

hematological and solid cancers both in vitro and in vivo (100).

Going a step beyond, CD19 CAR-NK cells have been engineered

to express IL-15/IL-15 receptor a (IL-15/IL-15Ra) fusion

protein, endowing them with enhanced persistence regarding

their IL-15 secreting counterpart and potentially sustaining

tumor control (101). Similarly, IL-15/IL-15Ra has been

included in iPSC-derived CAR-NK cells against MM (FT576)

(102) or B cell malignancies (FT596) (103), being the latter

under assessment in a phase I clinical trial (NCT04245722) (37).

Differentiation into a memory-like setting is a unique strategy

to enhance in vivo expansion, persistence, and antitumor

responses. Romee, Fehniger, and colleagues demonstrated that
Frontiers in Immunology 06
brief priming with an IL-12, IL-15, and IL-18 cocktail

reprogrammed allogeneic NK cells to a cytokine-induced

memory-like (CIML) phenotype that endowed them with

heightened expansion and persistence in vivo, higher interferon-

g (IFN-g) production, and enhanced cytotoxicity against AML and

other malignancies (13, 104–106). These acquired advantages

have been reproduced in different preclinical studies and

phase I/II clinical trials demonstrating a suitable safety profile

and promising efficacy, achieving 56%OR rate and 44%CR rate in

AML andMDS patients (NCT01898793). CIML-NK clinical trials

are also ongoing in a haploidentical hematopoietic cell

transplantation (HCT) context (NCT02782546) (107) or donor-

derived adoptive therapy in post-HCT AML relapse setting

(NCT04024761, NCT03068819) (108, 109). Moreover, CIML-

NK combinatorial approaches with chemotherapy (e.g. Ara-C),

IL-15 superagonist (NCT02782546) (107), NK-cell engagers

(NCT04074746) (110), or a CD38-antibody recruiting molecule

(NCT04634435) (111) are also being developed. Regarding CAR-

NK context, CIML-NK modified to express CD19 CAR exhibited

synergism on CAR activation and demonstrated the

aforementioned CIML-NK advantages in an NK-resistant

lymphoma model (112). Very recently, Romee’s lab showed that

arming CIML NK cells with TCR-like CAR against intracellular

neoepitope nucleophosphmin-1 (NPM1) improves anti-AML

responses and could be considered as a treatment for NPM1c-

mutated HLA-A2+ AML patients (113).
Fratricide diminishes NK cell efficacy

NK cell ex vivo expansion can entail an undesired

phenomenon known as fratricide, by which cells recognize

receptors or ligands on the surface of their siblings and trigger

a cytotoxic activity against them. Several mechanisms can lead to

fratricide during NK or CAR-NK cell expansion.

Among them, the well-known Fas/FasL axis is one of the most

relevant mechanisms. FasL-mediated cytotoxicity plays a key role in

NK cell functionality since it triggers caspase-dependent apoptosis

when binds to its receptor Fas in target cells. Fas can also be

physiologically expressed by NK cells as a homeostatic mechanism

to restrain NK cell activity, termed activation-induced cell death

(AICD), but it has been reported that its expression can be

abnormally increased during NK cell expansion, especially when

cultured in the presence of IL-2 (114), continuous IL-15 treatment

(115) or specific feeder cells such as K562-mIL21 (56), leading to

fratricide. Moreover, apart from a “self-killing” effect, the enhanced

expression of Fas during CAR-NK cell expansion concurrently with

a FasL overexpression that has been described in tumor cells such as

malignant plasma cells (116) or in the tumor microenvironment

(TME) (117), may contribute to tumor escape to adoptive

cell therapy.

Another receptor potentially causing fratricide among NK

cells is NKG2D. NKG2D is a natural receptor mainly expressed
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by NK, CD8+ T, and gd T cells that recognizes several stress-

induced ligands (NKG2D-Ls; MHC class I chain-related

molecule A/B (MICA/B) and UL16-binding protein (ULBP) 1-

6), frequently expressed by cancerous or virally infected cells.

There are increasing data describing NKG2D-L expression by

activated NK cells but its origin and implications regarding NK

cell functionality remain controversial (118). Some studies

described that NKG2D-Ls can be transferred from cancerous

cells to NK cells after NKG2D/NKG2D-L ligation in a process

known as trogocytosis (119, 120), although other authors

associated this expression to interleukins such as IL-2 (121) or

IL-12, IL-15 and IL-18 (122), depicting a non-fratricidal role but

a recently activated mature phenotype.

In the context of CAR-NK cells, fratricide can also appear

due to CAR-ligand/antigen recognition in CAR-NK cell surface

as previously described in CAR-T cells (123–126). For instance,

CD38 CAR-NK cells undergo fratricide since NK cells naturally

express CD38 and its expression can be upregulated during ex

vivo expansion in the presence of IL-2 or engineered feeder cells.

Therefore, NK cells can destroy their siblings either after

exposure to anti-CD38 antibody-based therapy (via ADCC) or

by their recognition by an anti-CD38 CAR (127, 128). In a

similar way, other antigens such as CD70 or CD33, which seem

promising candidates to target hematological malignancies with

CAR-NK cells, can be upregulated in NK cells during ex vivo

expansion, depending on the employed stimulation protocol,

entailing CD70 CAR and CD33 CAR-NK-mediated fratricide,

respectively (129, 130).

Taken all together, it is strongly necessary to consider the

most appropriate expansion method, the use of inhibitors or

monoclonal antibodies during CAR-NK manufacturing,

currently described for CAR-T cells (123), or even selecting

NK donors with specific SNPs that avoid antibody or CAR

recognition, as has been reported for CD33 (130). These

strategies are emerging, together with CRISPR/Cas9-based

gene editing that will be presented later in this review, to avoid

fratricidal events that result in lower yields and diminished

efficacy of CAR-NK cells in vivo.
T cell allorejection

Donor NK cell recognition and rejection by the host

immune system may potentially reduce allogenic CAR-NK cell

persistence in the clinical setting. The primarily effectors

responsible for these mechanisms are alloreactive T cells,

which recognize non-self HLA molecules on allogeneic NK

cells. Higher levels of exhausted T cells after lymphodepletion

have been associated with a longer persistence of transferred

haploidentical NK cells in leukemia patients (131).

Lymphodepleting chemotherapy induces a transient reduction

of the host immune system that improves adoptive cell

engraftment. Alongside decreasing T and NK cells,
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lymphodepleting drugs also diminish cell populations that act

as sinks for cytokines and/or have immunosuppressive

properties, such as Tregs and myeloid-derived suppressor cells

(MDSC), generating a more favorable microenvironment for

adoptive cell expansion (132, 133). Miller et al. reported that

high-dose of cyclophosphamide and fludarabine are required to

achieve NK cell engraftment and expansion (134). Endogenous

IL-15 increases after lymphodepleting treatment and has been

associated with initial NK cell in vivo proliferation (134, 135).

However, IL-15 together with IL-7 are essential for T cell

homeostatic proliferation, which occurred after severe T cell

depletion (133). Therefore, IL-15 may also contribute to CD8+ T

cell allorejection (81). Exogenous cytokine support has been

proposed to lengthen NK therapy persistence. Nevertheless, the

IL-15 superagonist complex N-803 reduces clinical responses in

AML patients treated with haploidentical ML-NK cells because

of CD8+ T lymphocytes stimulation (NCT03050216 and

NCT01898793) (136). Alternatively, autocrine secretion from

bicistronic CAR constructs containing cytokines may provide a

better approach. In that sense, IL-15-expressing CD19-CAR

UCB NK cells have been detected for long-term post-infusion

in non-Hodgkin’s lymphoma or CLL patients despite HLA-

mismatching (22). Still, the optimal support to create the

appropriate cytokine milieu that improves NK cell persistence

minimizing T-cell-mediated allorejection has yet to

be established.

Multiple NK cell infusions do not solve this issue because the

persistence of NK cells from a second infusion is even shorter,

suggesting a quicker allogenic response (137). Recently, two

studies have reported that an immune-compatible clinical

setting generated in the early post-HCT period may improve

the persistence of allogeneic CIML-NK cells obtained from the

same donor, due to the match of infused NK cells with graft-

derived lymphocytes and absence of host alloreactive T cells

(107, 109).

Currently, additional strategies are being developed to prevent

host system rejection. Several approaches studied in other cell types

are based on the expression of molecules that block the attack over

the infused cell such as immune checkpoints (138), or on providing

cells with receptors that favor the elimination of alloreactive T cells

(139). In human PB-NK cells, Hoerster et al. have disrupted HLA

class I expression by targeting the b-2-microglobulin gene (b2M) to

circumvent CD8+ T cell alloreactivity. Simultaneously, a single-

chain HLA-E molecule, which binds the inhibitory receptor

NKG2A, has been overexpressed to avoid NK cell fratricide and

host NK cell rejection by “missing-self” recognition (140). These

modifications have been incorporated in CNTY-101 (Figure 2), a

multi-engineered iPSC-derived CD19 CAR-NK product, in which

class II major histocompatibility complex transactivator (CIITA)

gene has also been disrupted to confer resistance to CD4+ T cell

allogeneic response (141). Preclinical studies with bothNK products

reported that these genetic modifications do not compromise their

antitumor potential.
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Surmounting replicative senescence:
‘Buying time’ for NK cells could
enhance CAR-NK immunotherapy

NK cell short in vivo lifespan in the absence of cytokine

support reduces off-tumor toxicities and malignancy risk but

narrows the therapeutic window, abrogating long-lasting

immunotherapy responses (142). In vivo persistence and

proliferation of NK cells following adoptive transfer have been

previously shown to correlate with clinical responses (143, 144).

Therefore, low persistence in vivo could cause early relapses due

to the disappearance of CAR-NK therapy. In addition, a short

lifespan limits NK cell proliferation and expansion ex vivo

during manufacturing, making it harder to achieve sufficient

cell numbers for immunotherapy doses (55) and diminishing the

time for NK cell optimization by genetic engineering.

Consequently, an extension in the effector longevity may boost

CAR-NK cell efficacy.

Unlike T effectors that can persist from months to a decade

(145), human NK lifespan is not clearly defined, varies between

subsets, and can be markedly manipulated in vitro. We and other

groups reported that human primary NK or CAR-NK cells co-

cultured with K562 aAPCs lines and cytokines typically promote

log-phase NK cell expansion for up to 4 to 6 weeks without

evidence of senescence (55, 142, 146). Primary NK cells activated

by these feeder cells can eventually become unresponsive to
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stimulation and undergo senescence in a limit record of 15 weeks

of continuous proliferation (147).

In vivo, mature NK cells require continuous cytokine

support, without which they are detectable in the circulation

for only 1-2 weeks (148). Expanded and activated human NK or

CAR-NK only survived between 4-5 weeks in xenografted

immunodeficient mice without any stimulation (142, 146) and

up to 68 days when CAR-NK is engineered to express IL-15 (91).

In clinical use, Liu et al. found CD19-CAR UCB-NK cells by

flow cytometry limited to the first three weeks even with

lymphodepletion and IL-15-autocrine support. Nevertheless,

DNA copies of the infused CAR were detected up to 12

months measured by real time-PCR in patients suffering

CD19+ lymphoid tumors (22). Similarly, autologous NKAEs

were detected by multiparametric flow cytometry around four

weeks after infusion in MM clinical trial performed in a

consolidation setting (46). In line with augmented lifespan

bolstered by cytokines, CIML NK cells increased persistence

up to 2-3 months analyzed by mass cytometry (107, 109), albeit

CIML NK cells were administered in an “immune-permissive”

microenvironment and combined with an IL-15 superagonist

(107). Human CAR-NK effectors do not typically clonally

expand in vivo like antigen-specific-T cells or virus-specific

adaptive NK cells (149). They frequently peak in circulation

between the first and second week post-transfer from where they

progressively decline (22, 43, 107, 134). Together, these studies

suggest that, although permissive to lifespan modification by
BA

FIGURE 2

Multi-engineered iPSC-derived CAR NK cells designed to overcome T cell alloreactivity. (A) iPSC-derived CAR NK cells may be rejected by host
alloreactive T cells due to the recognition of non-self HLA I by CD8+ T cells and HLA II by CD4+ T cells. (B) Engineered iPSC-derived CAR NK
cells incorporate six modifications through three gene-editing steps. 1) The b-2-microglobulin (b2M) disruption to avoid HLA-I expression with
the simultaneous insertion of a transgene encoding HLA-E protein (tethered with b2M and a peptide) impedes NK cell killing activity by
“missing-self” recognition. 2) The CIITA knock-out to deplete the HLA-II expression concurrently with knock-in of the epidermal growth factor
receptor (EGFR) safety switch and the interleukin 15 (IL-15). Safety switch strategy allows the elimination of iPSC-derived CAR NK by the
administration of anti-EGFR antibodies and IL-15 secretion improves cell persistence. 3) CD19 CAR knock-in. Created with BioRender.com.
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exogenous cytokines or HLA matching, NK and CAR-NK are

short-lived cells impacted by senescence that inexorably arises ex

vivo as a consequence of expansion methods, and subsequently

in vivo, where these effectors proliferate in a narrow window and

do not persist long in patients.

Cellular senescence is a universal process considered a

hallmark of aging and can be triggered in non-tumoral cells in

response to different intrinsic and extrinsic stressors, as well as

developmental signals. In particular, replicative senescence is

related to loss of proliferative capacity and functional deficit

characterized by the shortening of telomeres, the detection of

genomic DNA double-strand breaks, the activation of repair

machinery, and the arrest of the cell cycle to stop replication

and prevent genomic instability (150). Eventually, senescent cells

can surpass cell cycle checkpoints and enter in a crisis phase with

augmented chromosomal and genomic instability, inducing

apoptosis (151). T cell immunosenescence is a well-studied

phenomenon observed during aging and prolonged in vitro

cultures and differs from immune exhaustion by repeated

stimulation. Terminal differentiated T effectors are characterized

by CD28- CD27- KLRG1+ CD57+ CD45RA+ phenotype with

shortened telomeres, active metabolic reprogramming, higher

production of pro-inflammatory molecules (senescence-

associated secretory phenotype), and less replicative ability (see

review in Kasakovski et al.) (152). Although a phenotype of highly

mature NK cell based on CD57 expression has been proposed, the

NK cell immunosenescence field is still in its infancy with no

phenotype and function clearly established (153, 154). Terminal

NK cells are dysfunctional, identified by decreased NK effector

functions, such as impaired ADCC, as well as reduced cytokine

secretion like IFN-g and expression of perforin and granzyme

(155). Among the factors involved in NK cell longevity control,

telomere length is critical because its shortening after multiple

rounds of cell divisions (Hayflick limit) exposes the unstable

chromosomal ends, initiates fusion-bridge-breakage cycles, and

leads to genomic instability and replicative senescence. Human

NK cells display telomere shortening and a reduction in

telomerase activity with age (156). Cellular differentiation

impacts telomere shortening, leading to the more mature

CD56dim NK cells having shorter relative telomere length than

the immature CD56bright subset (157).

Regarding adoptive NK therapy, telomere length depends on

the NK source or the activation/expansion method selected. For

example, telomere length in iPSC-derived NK cells is much

longer compared to those expanded from PB (158). Yang et al.

reported up-regulation of positive telomere length regulator

genes such as ZNF257, LRRC34, NAF1, and human

telomerase reverse transcriptase (hTERT) in NK cells

expanded and activated with 721.221 feeder line with IL-2 and

IL-15 (56). hTERT expression and activity are strictly regulated

in somatic cells and can be reprogrammed by common gamma-

chain cytokines, c-Myc (159) or fine-tuned by miRNAs (160,

161). Indeed, all IL-2, IL-15, and IL-21 have been shown to up-
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regulate telomerase activity in NK cells, thereby preventing

telomere loss and allowing cells to extend replication. IL-2

increases telomerase activity in NK cells upregulating hTERT

mRNA levels (162). MbIL-21 increased NK cell longevity by

maintaining telomere length in K562 co-cultures (55, 163). In

addition, IL-15 induces hTERT expression and cellular growth

in NK culture ex vivo at lower doses than IL-2 (164). IL-21 is

known to signal primarily through the STAT3 component of the

JAK/STAT pathway, whereas IL-15 signals mainly through

STAT5 (165).

Ectopic expression of hTERT by genetic engineering may be

an effective strategy to improve CAR-NK cell persistence and

thereby their therapeutic potential, paralleling seminal studies in

CAR-T cells (166) where the maintenance of telomere length

and replicative ability is associated with engraftment efficacy and

antitumor efficiency (167). In a pioneer study from Campana´s

lab, hTERT transfected NK and CD19 CAR-NK cells (expanded

with K562-mb15-41BBL) restored replicative ability and could

be cultured for almost one year with continued cytotoxicity

against leukemic cell lines and exhibited normal karyotype

(analyzed at day 186). However, transfected NK cells were not

able to grow autonomously in nonobese diabetic severe‐

combined‐immunodeficient gc−/− (NSG) mice and still

eventually developed delayed senescence in vitro (147). More

recently, Streltsova and coworkers corroborated that stable

hTERT ectopic expression, even when gamma-retrovirus is

used, increases the proliferation and lifespan of expanded and

activated (K562-mbIL21+IL2) NK cells rather than complete

immortalization (168). The safety of this strategy is a critical

question because so far, the inability of ectopically expressed

hTERT to cause oncogenic transformation of NK cells has not

been firmly established. Further research is needed to attempt

more refined approaches to overexpress hTERT in terms of

expression control, for instance, inducible promoters or

transient expression, as reported in CAR-T cells, which lead to

improved proliferation and persistence in murine xenograft

tumor models of human B-cell lymphomas (169). Another

possible strategy is the implementation of safety switches in

hTERT constructs to assure safety. Direct reprogramming of

other components of telomere machinery by genetic engineering

or by their stabilizers and/or manipulating telomere elongation

factors could accelerate the translation of these strategies into

clinical reality.
Tumor microenvironment: The
stumbling block that limits CAR-NK
therapy effectiveness

As a result of overstimulation, tumor progression induces a

reversible exhausted status in NK cells characterized by impaired

effector functions and altered phenotype, similar to previously
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described in T cells. The expression of tumor-associated

immune checkpoints reduces NK cell killing activity via direct

cell-cell interactions. NK cell ex vivo expansion also fosters the

expression of some immune checkpoint receptors, potentially

decreasing CAR-NK therapy efficacy (Figure 3). On top of that,

patients’ NK cells and infused CAR-NK cells encounter a hostile

microenvironment in the tumor niche, generated by

immunosuppressive cells and soluble factors, which leads to

NK cell suppression. Consequently, many efforts are underway

to identify and neutralize the negative TME factors that may

limit CAR therapy effectiveness.
Exhaustion-associated immune
checkpoints

Classical inhibitory receptors of NK cells, such as KIRs and

NKG2A act as immune checkpoints (see major immune

checkpoints in Figure 1). In many malignancies, tumor cells

downregulate the expression of classical HLA-I molecules,

preventing Ag-dependent recognition by T cells but allowing

NK cell “missing-self” activation (170, 171). By contrast, in some

hematological tumors such as MM, classical HLA-I expression is

elevated in advanced stages (172), inducing KIR-mediated NK

cell inhibition. In preclinical studies, the use of anti-KIR

antibodies recovers NK cell killing activity (173, 174), but the

administration of pan-KIR2D antibodies, such as IPH2101 or

lirilumab (IPH2102), has not shown single-agent activity in

clinical trials of MM (175) or AML (176). Unexpectedly,

IPH2101 infusion in smoldering MM patients induces NK cell

anergy due to the removal of KIR2D surface molecules through

trogocytosis (175). In addition, a phase II trial reports that

lirilumab administration as maintenance therapy for elderly

AML patients fails to improve leukemia-free survival (LFS)

(NCT01687387) (176). For that reason, combined therapies

with drugs, such as IMiDs, or other immune checkpoints

blocking antibodies are being examined (177). IPH2101/

lenalidomide dual therapy has shown a synergistic effect

against MM in preclinical studies and preliminary evidence of

efficacy in phase I clinical trial (NCT01217203) (174, 178).

Similarly, the same synergic strategy is being evaluated in

studies of anti-KIR antibodies combined with anti-PD-1 and

anti-CTLA-4 blocking antibodies against solid tumors

(NCT01750580, NCT01714739, NCT03203876). Many studies

have focused on the NKG2A receptor that triggers inhibitory

signaling upon binding HLA-E, a non-classical HLA-I molecule

overexpressed in several tumors (179). Approximately half of

peripheral blood NK cells from healthy donors express NKG2A

(180, 181) and their levels increase after ex vivo stimulation with

cytokines (182). NKG2A trapping in the endoplasmic reticulum/

Golgi by smartly designed protein expression blockers (PEBLs)

(183) or the treatment with anti-NKG2A blocking antibodies,

broadens the oncolytic activity of NK cells against hematological
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tumors such as AML, CLL or lymphomas (184). Monalizumab

(IPH2201), a humanized monoclonal anti-NKG2A blocking

antibody, has also shown promising preclinical results against

hematologic and solid tumors (185, 186), which have prompted

to evaluate its efficacy in clinical trials either as monotherapy or

combined with other treatments (187). Other strategies to

inhibit the NKG2A/HLA-E axis are based on NKG2A

downregulation in NK cells by dasatinib (188), or the

reduction of HLA-E levels in tumor cells, by drugs such as

bortezomib, dinaciclib or selinexor, tested in vitro onMM, AML,

and lymphoma, respectively (189–191). Mechanistically,

dasatinib treatment inhibits p38 mitogen-activated protein

kinase (MAPK), diminishing the import of NKG2A

transcription factor GATA-3 to the cell nuclei (188).

Meanwhile, HLA-E downregulation by bortezomib is induced

through endoplasmatic reticulum-stress unleashed by

proteasome inhibition (189). Constant de novo protein

synthesis is essential for maintaining HLA-E surface

expression levels. Consequently, selinexor induced degradation

of nuclear export protein exportin-1 (XPO1), which regulates

the transport of ribosomal subunits from nucleus to cytoplasm,

decreases the number of HLA-E molecules in plasma membrane,

mainly because of the reduction of HLA-E binding substrates

(191). Although the action mechanism of dinaciclib has not yet

been elucidated, the administration of this cyclin-dependent

kinase (CDK) inhibitor prior to NK cell infusion further

boosts their killing activity in an AML mouse model (190).

Due to their antitumor function, bortezomib, dinaciclib, and

selinexor are being used in different hematological pathologies,

but besides, their administration as a pretreatment before

adoptive cell therapy could enhance CAR-NK cell efficacy.

Combining CAR-T cell therapy with Programmed Death

(PD)-1/PD-L1 axis blockade has improved clinical responses in

hematological tumors (192). Although NK cell inhibition by PD-

1/PD-L1 checkpoint has been reported (193, 194), ex vivo

expanded NK cells exhibit very low PD-1 expression levels,

hence the combination with pembrolizumab does not improve

in vitro cytotoxicity (195–197). However, some studies suggest

that this immune checkpoint may become important post-NK

therapy infusion because expanded NK cells increase PD-1

expression in the presence of tumor cells, and IFN-g produced
by NK cells augments PD-L1 expression in a lung cancer mouse

model (198). In addition, trogocytosis has been described

recently as a new mechanism whereby NK cells obtain PD-1

from tumor cells (199). A phase II clinical trial (NCT04847466)

combining PD-L1 CAR-NK cells with pembrolizumab and N-

803 is currently being studied in gastric and head and neck

cancer. Similar to NKG2A, NK cell ex vivo expansion

upregulates the expression of other exhaustion receptors, such

as T cell Ig and mucin-containing domain-3 (TIM-3) (200) and

T cell immunoreceptor with Ig and ITIM domains (TIGIT)

(197). There is controversy regarding the role of TIM-3 in NK

cell activity. Although most studies define TIM-3 as an NK cell
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checkpoint inhibitor, some papers show that TIM-3 interaction

with its ligands (including Galectin-9) unleashes IFN-g
production or associate TIM-3 expression with a functionally

licensed NK cell phenotype with higher cytotoxic activity (201,
Frontiers in Immunology 11
202). A functional threshold that controls the activatory or

inhibitory NK cell function of this receptor has been proposed

to explain this discrepancy. Meanwhile, TIGIT recognizes

poliovirus receptor (PVR or CD155), Nectin-2 (CD112), or
B C DA

FIGURE 3

Immune suppressive tumor microenvironment (TME) factors potentially involved in CAR-NK cell dysfunction. Cancer cells express immune
checkpoint ligands in their plasma membrane that mediate an inhibitory interaction with NK cells. Besides, tumor cells may suppress NK cell
function by releasing soluble ligands to the milieu, such as BAG-6, galectin-9, and soluble NKG2D-L (sNKG2D-L), as well as other soluble
factors, including cytokines, such as transforming growth factor-b (TGF-b), enzymes and metabolites. Many of these soluble factors are also
produced by immune cells present in the TME, such as Tregs, Bregs, tumor-associated macrophages (TAM), and myeloid-derived suppressor
cells (MDSC). Platelets, in turn, secrete the metalloproteinases ADAM-10 and ADAM-17 that prompt NKG2D-L shedding. Other non-immune
cells, such as derived-mesenchymal stromal cells (MSC) and cancer-associated fibroblasts (CAF), also produce indoleamine 2, 3 dioxygenase
(IDO) or reactive oxygen species (ROS) that reduce NK cell activity. Additionally, hypoxia, high concentrations of fatty acids, nutrient deprivation,
and acidity, among other metabolic factors, contribute to generate a complex immunosuppressive TME that hampers the NK cell effectiveness
against hematologic malignancies. Several strategies can overcome the immunosuppression mechanism from TME. (A) Blocking antibodies
targeting immune checkpoints prevent the inhibition of NK cell cytotoxicity. Other receptors, such as adenosine A2A receptor (A2AR) also
disable NK cell function when binds to extracellular adenosine (ADO). Blockade of CD73 ectoenzyme, which synthetizes ADO, reduces the
levels of this metabolite in the TME, therefore increasing NK cell killing activity. Furthermore, anti-TGF-b neutralizing antibodies impede the NK
cell suppressive effect unleashed by the interaction of this cytokine with its receptor (TGF-bR). (B) Dominant-negative receptor (DNR)
expression hinders the inhibitory signaling triggered by PD-1 and TGF-bR in the presence of PD-L1/L2 or TGF-b, respectively. Chimeric switch
receptors (CSR) constitutes another approach based on replacing these negative signals by activating ones, through intracellular domains
exchange, reverting the outcomes in NK cell activity. (C) Small molecule inhibitors directed against GSK-3b impact on NK cell metabolism and
improve their cytotoxic potency. Other inhibitors are engineered to inhibit the kinase activity of TGF-bR. (D) CAR constructs are designed
against molecules expressed in immune suppressor cells to eliminate them from TME. HLA-I, HLA class I histocompatibility antigen; KIR, Killer-
cell immunoglobulin-like receptor; HLA-E, HLA class I histocompatibility antigen, alpha chain E; PD-L1, Programmed Death ligand-1; PD-1,
Programmed Death 1; TIGIT, T cell immunoglobulin and ITIM domain; BCL2-associated Athanogene 6 (BAG-6); sNKG2D-L, soluble natural killer
group 2D ligands; TIM-3, T cell immunoglobulin and mucin-domain containing-3; PGE-2, prostaglandin E2; NO, nitric oxide; A Disintegrin And
Metalloproteinase (ADAM). Created with BioRender.com.
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Nectin-3 overexpressed in hematologic cancers (203, 204). The

blockade of TIM-3 or TIGIT in preclinical studies improves NK

cell cytotoxic potency against solid and hematologic

malignancies (205–209) and currently neutralizing antibodies

are being tested in several clinical trials (e.g. NCT04623216,

NCT03489343 , NCT04150965 , NCT04354246 , and

NCT05289492). Nevertheless, the results obtained from these

studies should be analyzed considering that TIM-3 and TIGIT

are also expressed in T cells, making difficult to determine the

precise involvement of the NK population in the patient

response. Nectin-2 is also recognized by PVRIG (CD112R) a

novel T cell inhibitory receptor that does not bind CD155 (210).

Studies in AML suggest that PVRIG impacts NK cell cytotoxic

activity against CD112highCD155low tumors, whereas, in those

with overexpression of both ligands, TIGIT inhibitory signaling

is predominant (211). Unlike in T cells, expression levels and

inhibition relevance of other receptors such as LAG-3 or CTLA-

4 remain unclear in NK cells (212, 213).

Additional molecules are still being included within the

immune checkpoint category. For instance, signal regulatory

protein a (SIRPa) is a myeloid-lineage receptor recently

described in T and NK cells, whose expression increases after

IL-2 stimulation (214, 215). SIRPa deficiency or blockade

enhances NK cell cytotoxicity against CD47-expressing tumor

cells (214), which include hematological malignancies, such as

diffuse large B-cell lymphoma (216). Recently, it has been

described that many tumor proteins are hypersialylated, a

modification that confers cancer cell resistance to the cytotoxic

activity of different immune populations through their

recognition by inhibitory sialic acid-binding immunoglobulin-

like lectin (Siglec) receptors (217). Deletion of Siglec-7 or

blockade of Siglec-9 restores NK cell cytotoxic activity against

MM (218) or CML cells, respectively (219).

Taken together, not all the immune checkpoints are induced

at the same levels in ex vivo expanded NK cells neither are they

similarly relevant in the modulation of NK cell antitumor

activity. The balance of activating and inhibitory signals

regulates NK cell function; therefore, more efforts are needed

to evaluate the impact of each immune checkpoint expression in

the presence of CAR stimulation to direct the strategies to

improve CAR-NK therapy.
Suppression in the TME

Soluble factors from TME contribute to heightening NK cell

inhibition. Tumor cells release soluble ligands that can bind

activating and inhibitory receptors expressed in NK cells to

promote their dysfunction. Soluble NKG2D-L (sNKG2D-L)

generated by proteolytic shedding decrease the expression of

NKG2D, reducing NK cell antitumor potency (220, 221).

Interestingly, sNKG2D-L do not impair the effectiveness of

NKG2D-CAR NK92MI nor NKG2D-CAR T cells against MM
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and leukemia cells, respectively (222, 223). Specific antibodies

directed against the MICA a3domain inhibit the shedding of

this NKG2D-L, allowing NK cell-mediated cytotoxicity and thus

avoiding tumor evasion (224). CAR constructs designed to

recognize the same MICA/B domain have shown efficacy

against leukemia in iPSC-derived NK cells and are currently

being studied in a dual-CAR in combination with BCMA

specificity for MM (225, 226). Likewise, the presence of BCL2-

associated Athanogene 6 (BAG-6), one of the NKp30 ligands, in

the tumor cell membrane or exosomes stimulates NK cell

antitumor activity whereas its soluble form hampers NK cell

function (227, 228). Other soluble ligands such as galectin-9

have been found at high levels in the blood plasma of AML

patients (208). Galectin-9 effect has not been studied in CAR-NK

cells yet, but its blockade reestablishes CAR-T cell antitumor

responses (229).

Additionally, well-known soluble factors present in the TME

of most cancers, such as certain interleukins, enzymes, and

metabolites impact NK cell effectiveness. Most of them are

released not only by tumor cells but also by immune

suppressor cells that coexist in the tumor niche. That is the

case of IL-37, produced by Tregs, which exerts an inhibitory

action over canonical NK cells while adaptive NK cells are highly

resistant (230). High concentrations of other suppressive

cytokines, such as IL-6, IL-10, and TGF-b have been widely

reported in hematologic tumors (231–234). Concerning NK

cells, TGF-b favors tumor development by decreasing

activating receptor expression, cytokine production, and

metabolism (235–237). Alongside the anti-TGF-b neutralizing

antibodies or engineered NK cells to knock-down TGF-b
receptor expression, other strategies such as small molecule

receptor kinase inhibitors can be implemented for CAR-NK

cell therapy in hematological cancers (238, 239). For instance, ex

vivo expanded NK cells restored their in vitro anti-AML activity

by the addition of TGF-b receptor kinase inhibitor LY2157299

(235). TGF-b is affected by prostaglandin E2 (PGE-2), which is

secreted by stromal cells derived from lymph nodes (LN) or

bone marrow (BM) as well as by some tumor cells, such as

leukemic blasts, sustaining MM and leukemic cell proliferation

(240–242). The binding of PGE-2 to its receptor in monocytes

induces an “MDSC-like” phenotype that enhances TGF-b
production. In this manner, PGE-2 can interfere with NK cell

function in two different ways, directly, joining to its receptors in

NK cells, and indirectly, enhancing TGF-b concentrations in the

TME (243, 244). Furthermore, TGF-b raises the expression of

CD39 and CD73 in cancerous and other cell types (245, 246).

These ectoenzymes are involved in adenosine (ADO)

production from ATP/AMP, promoting tumor proliferation.

ADO inhibits NK cell activity and expansion and reduces its

metabolism (247–249). In fact, combination therapy of NKG2D-

CAR-NK cells with anti-CD73 blocking antibody increase NK-

92 cell killing potency against CD73+ cancer cells, reducing ADO

levels in the TME (250). By the same token, the activity of
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indoleamine 2,3-dioxygenase (IDO) downregulates NKp46 and

NKG2D and restricts NK cell cytotoxicity (251). IDO is an

enzyme that degrades tryptophan to L-kynurenine and its

inhibition reestablishes NK cell activity (252). IDO expression

has been associated with poor prognosis in AML, diffuse large B-

cell lymphoma as well as solid tumors (253–256). Apart from the

effect of the tryptophan-derived suppressive catabolite L-

kynurenine (251), IDO contributes to decreasing NK cell

proliferation by depriving tryptophan in the tumor milieu.

Similarly, high concentrations of arginase, released by immune

suppressor cells, decrease arginine levels, essential for T and NK

functions, which can be restored by arginase inhibitors

(257, 258).

In addition to the aforementioned strategies to prevent NK

cell inhibitory interactions with cancer cells by immune

checkpoints or with immunosuppressive soluble factors,

dominant-negative receptors have also been designed (259–

261). The expression of a dominant-negative TGF-bRII
(DNRII) in UCB-NK cells allows the maintenance of the

NKG2D and DNAM-1 expression levels and glioblastoma cell-

specific lysis in the presence of TGF-b (260). Other approaches

are based on converting inhibitory into activating signals by

chimeric switch receptors (CSR), also known as chimeric

costimulatory converting receptor (CCCR). Tested so far in

the context of solid tumors, CSR directed to PD-1, B7-H3 or

TGF-b increases the anti-tumorigenic capacity of NK92 cells

(262–264). Moreover, TGF-bRII-NKG2D receptor expression

promotes NK92 chemotaxis to the TGF-b-expressing tumor

cells and inhibits the differentiation of CD4+ T cells to

Tregs (264).

Immune suppressor cells present in the TME promote tumor

proliferation while reducing NK cell function through direct cell-

cell contact or by releasing soluble factors. The detrimental effect

of Tregs on NK cells through these mechanisms and the

previously mentioned competition for IL-2 are widely known

(67, 265, 266). Other immune cells that contribute to NK cell

suppression such as Bregs, MDSCs, and tumor-associated

macrophages (TAM), mainly M2 phenotype, are highly

represented in the TME (267–271). An additional impediment

to NK cell function is mediated by platelets which stunt NK cell

recognition (272, 273). In addition, platelets favor NKG2D-L

shedding due to A Disintegrin And Metalloproteinase

(ADAM)-10 and ADAM-17 release. Platelets’ blockade enables

NK cell access to the tumor and recovers activating receptor

expression on the NK cell membrane (274–279). Furthermore,

non-immune cells present in the TME, such as derived-

mesenchymal stromal cells (MSC) and cancer-associated

fibroblasts (CAF), strengthen NK dysfunction because they

impair degranulation, reduce perforin and cytokine secretion

and hinder antitumor efficacy (280, 281).

Such evidence have led to developing CAR therapies to

eliminate these suppressor cells. In hematological cancers,

CAR-NK cell products have been designed to target Tregs
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(directed against CD25 or CD38) (282, 283) or MSCs (against

CD38) (284) to restore tumor-infiltrating NK cell activity.

Interestingly, other CAR-NK cell strategies take advantage of

the ligand shared expression between cancer cells and MDSCs,

such as NKG2D-CAR-NK cells and PD-L1-CAR-NK cells that

can kill both cell types (285, 286). Similarly, dual FAP/SLAMF7-

CAR-T therapies are novel approaches for targeting CAFs,

surmounting the suppressor function of these cells over CAR

effectors, and eliminating MM cells at the same time (287).

Meanwhile, TAM-specific CAR-T cells, targeting folate receptor

b (FRb), reduce the number of TAMs in the TME while

decreasing tumor cells’ proliferation rate. Therefore, this

adoptive treatment has been suggested to be administered

before tumor-directed CAR-T cells (288). These two last

approaches in CAR-T cells could also be implemented to

create a more benign milieu for CAR-NK cell therapy.

Hypoxia and metabolic factors, such as nutrient deprivation,

and acidity also generate an unfavorable microenvironment that

compromises NK cell antitumor activity. Hypoxia is a well-

described protumor factor in solid cancers and a feature of LN

and BM microenvironment (289). Low O2 concentrations

hamper the upregulation of activating receptors in NK cells

(290, 291) while increasing MICA shedding (292, 293) and

granzyme B degradation by autophagy in malignant cells

(294). Additionally, hypoxia induces CD73 expression through

hypoxia-inducible factor-1a (HIF-1a) (295), contributing to

achieving high ADO levels in the TME. Upon stimulation, NK

cells suffer a metabolic reprogramming regulated by mammalian

target of rapamycin complex 1 (mTORC1), elevating oxidative

phosphorylation (OXPHOS) and glycolysis and increasing the

expression of glucose and amino acid transporters (296–299).

Tumor cells require a greater amount of nutrients to proliferate,

thus they compete for these resources with surrounding immune

cells. Depriving NK cells of glucose or certain amino acids

hinders the NK cell metabolism by inhibiting mTORC1 and

cMyc pathways (296, 300). cMyc is key for NK cell metabolic

responses because is involved in regulating the expression of

glucose transporters and glycolytic enzymes (300). The levels of

cMyc are initially controlled by mTOR and sustained through

amino acid availability, to counteract its rapid rates of

proteolysis by glycogen synthase kinase (GSK)-3b (301).

Furthermore, GSK-3b inhibition increase ex vivo expanded

NK cell antitumor activity in an AML mouse model (302),

adding another pathway to aim CAR-NK cell improvement.

Because cancer cells obtain energy mainly through high rates of

glycolysis converting glucose into lactic acid, the latter is

accumulated in the TME contributing to its acidification.

Lactic acid diminishes NK cell cytokine production and

induces apoptosis, in addition to increasing the number of

MDSC (303, 304). In a lymphoma mouse model, oral delivery

of bicarbonate restores NK cell IFN-g production and tumor

infiltration, although other tumor-dependent mechanisms

preclude NK cell cytotoxicity (305). Additionally, tumor cells
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increase lipid metabolism, and fatty acid exposure hampers

cytokine production and cytotoxic activity of NK cells (306).

High levels of intracellular lipids trigger PPAR-g/PPAR-d
signaling that aids NK cells in adapting to the altered milieu

but inhibits the sterol regulatory element binding protein

(SREBP). SREBP has been reported to be essential to regulate

glucose metabolism (307, 308).

Considering the above, soluble factors, suppressor cells, as

well as metabolic factors can induce NK cell dysfunction and

should be taken into account when designing a new CAR-NK

therapy. Overcoming the TME could guarantee longer and

deeper CAR-NK responses in cancer patients. Studies with

CAR-T cells and non-engineered NK cells have provided

relevant information to take the first step, but specific assays

with CAR-NK cells in hematologic tumors must be performed to

maximize the results.
Restoring migration and homing
into tumor bed: A matter of
chemotaxis

One of the challenges of CAR immunotherapy lies in limited

trafficking and homing ability to reach the BM and LNs which is

ultimately related to the exerted efficacy of adoptively transferred

NK cells. Clinical studies suggest that improved trafficking of

adoptively infused NK cells into BM niches is associated with

better control of the disease in AML patients (143, 144), which

could apply to other malignancies residing in the BM. A variety

of strategies to maintain and/or enforce the expression of

chemokine or adhesion receptors in CAR-NK cells are now

being explored in preclinical models to improve their

localization into the BM and LN.

CXCR4, CXCR3, CCR3, CCR5, and CX3CR1 are the main

chemokine receptors expressed by NK populations that

contribute to NK distribution in response to chemokines

present in the TME (309). CXCL12 chemokine, the CXCR4

ligand, is highly expressed in MM by endothelial and BM

stromal cells (310, 311), as well as in leukemia and lymphoma

(312). Similarly, the BM niche of ALL (313), AML (314),

lymphoma (315, 316), and MM patients is frequently

characterized by upregulation of CXCL9 and/or CXCL10

(317). Of note, CXCL9 and CXCL10 (CXCR3 ligands) are

considered immunosuppressive chemokines involve in MM

resistance mechanisms (318). Additionally, macrophage

migration inhibitory factor (MIF) can also bind to CXCR4 and

CXCR7 and it was also found in high levels in MM BM (319).

CCL19 and CCL21, chemokine ligands of CCR7, participate in

the entry of CLL cells (320) into LNs, where they are found

(321, 322).

Taking into account the high levels of chemokines found in

the TME of hematologic malignancies, modifying the expression
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of chemokine receptors in adoptively transferred NK cells seems

to be a suitable strategy. CXCR4 expression levels are higher in

UCB-derived NK cells than those in PB-NK cells, suggesting a

better BM homing ability (323). CXCR4 is generally

downregulated during ex vivo activation of NK cells (317,

324–327), resulting in decreased homing to BM. Thus, some

strategies are studying how to improve NK trafficking to this

tumor niche. Human CD19-CAR-NK cells modified to

overexpress CXCR4 through bicistronic lentiviral transduction

augmented more than two-fold the migration to CD19+ tumor

cells compared to huCAR19 NK cells (328). Ectopic expression

of gain-of-function (GOF) mutation in CXCR4 (CXCR4R334X)

viamRNA transfection on ex vivo expanded NK cells resulted in

improved chemotaxis toward CXCL12 (also known as SDF-1a)
and superior in vivo migration to BM (324). Similarly, the

overexpression of the CXCR4R334X receptor via electroporation

on ex vivo expanded BCMA-CAR-NK cells was effective in

enhancing the in vivo migration toward the BM and also

eliminating myeloma cells in mice with prolonged survival as

compared with only anti-BCMA-CAR-NK cells (327).

Conversely, CXCR3 can be responsible for NK mobilization

outside the BM (317, 329). This negative role of CXCR3 can be

reversed by genetic deletion of Cxcr3 gene or by using an anti-

CXCR3 blocking mAb to increase BM NK cell infiltration (317).

CCR7 is known to promote NK cell migration to LNs in

response to chemokine ligands CCL19 and CCL21 (330). Its

downregulation following ex vivo expansion has also been

reported (325) but can be restored upon treatment with IL-18

(331). Besides, the transfer of CCR7 receptor from antigen-

presenting cell (APC) to NK cell through trogocytosis can occur

when co-cultured (332). In this line, LN homing of adoptively

transferred NK cells can be enhanced by the ex vivo acquisition

of CCR7 via trogocytosis from K562 feeder cells in athymic nude

mice (333). Similarly, CCR7 mRNA-electroporation has been

used to promote migration toward CCL19 and CCL21

chemokines (330, 334). CCR7 transfected anti-CD19 CAR-NK

cells enhance their capacity to kill CD19+ tumors up to 5-fold

increase and their migratory capability in response to CCL19

and CCL21 chemokines up to 6-fold increase (334). Schomer

et al. have recently corroborated in CCR7 engineered CD19 CAR

t-haNK cells an improved migration toward LN chemokine

CCL19 compared to only CD19-CAR t-haNK cells in an in

vivo xenografted NSG lymphoma model (335).

A novel strategy knocking-down CCR5 in ex vivo expanded

NK cells reduces sequestration by the liver following i.v. infusion

of adoptive immunotherapy which, in turn, favors their presence

in the circulation (325). Given that CCR5 expression augments

upon ex vivo expansion of adoptively transferred NK cells, this

strategy bolsters the capacity to redirect NK trafficking in vivo.

Levy et al. have opened the way to explore whether combining

the overexpression of CXCR4 and CCR5 deletion would boost

NK cell immunotherapy migration to the tumors residing in the

BM (325), or even into the LN.
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Apart from strategies modulating the expression of

chemokine receptors, BM homing can be enhanced by

promoting the interaction of NK cells with adhesion molecules

like E-selectin. For instance, the treatment of NK-92MI cells

with human fucosyltransferase 6 (FUT6) and GDP-fucose

creates cell-surface E-selectin ligand sialyl Lewis X (sLeX) to

improve migration to BM and increase the killing of B-

lymphoma cells (336). Besides, while augmenting NK

cell expansion in culture, nicotinamide (NAM) leads to

CD62L (L-selectin) upregulation (337) resulting in improved

in vivo migration of adoptively transferred NK cells to multiple

organs including the BM (338, 339).

Most migration studies are being carried out for solid

cancers as NK penetration into the tumor site is more critical

than in liquid malignancies. Nevertheless, many of the

chemokine ligand-receptor axes that are studied in solid

tumors can be implemented in hematologic malignancies. An

NK-cell-recruiting protein-conjugated antibody (NRP-body)

that includes a cleavable CXCL16 molecule, the CXCR6

ligand, has been used to increase the trafficking and infiltration

of expanded NK cells into pancreatic tumors (340). Additionally,

CXCR1 and CXCR2 chemokine receptors display a high affinity

for IL-8 (CXCL8), secreted by tumor cells in different cancer

types. Although NK cells lose expression of these receptors upon

activation and expansion (341, 342), their upregulation

promotes enhanced attraction to tumor sites. Ng et al. show

that CAR-NK cells expressing an NKG2D-CAR and CXCR1

chemokine receptor augmented their migration ability toward

IL-8-secreting ovarian tumors and enhanced in vivo tumor

control (341). Similarly, CXCR2-transduced NK cells have an

increased ability to migrate toward renal cell carcinoma tumors

in a ligand-specific manner, resulting in increased killing of

target cells (342). As long as CXCL16 is found in the BM at high

levels (343) and CXCL8, the CXCR1, and CXCR2 ligand is

significantly elevated in MM (344, 345), CLL (346), AML, and

MDS patients (347), the targeting of CXCL16-CXCR6 and IL8-

CXCR2/CXCR1 pathways should be studied in depth for

hematologic malignancies.
Genome editing: Designing the
CAR-NK 2.0

Genome editing promotes desired modifications in the

specific locus of the genome by the use of engineered

nucleases that activate endogenous DNA repair mechanisms.

Although different engineered nucleases have been developed,

the CRISPR/Cas9 system has completely revolutionized the field

(348, 349).

CRISPR/Cas9 type II system, the most widely applied, is

composed by an RNA-guided endonuclease (Cas9 nuclease) and

a guide RNA (gRNA) that will direct the Cas9 nuclease to the

desired locus. Cas9 and gRNA complex can specifically bind to
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the target sequence when protospacer adjacent motif (PAM)

sequence is present (350) and generate a double-strand break

(DSB) in the aimed region. Then, this DSB can be repaired by the

endogenous DNA repair mechanisms of the cells, and

consequently lead to the interruption of the gene, when Non-

Homologous End Joining (NHEJ) or microhomology-mediated

end joining (MMEJ) mechanisms occur, or the correction of a

specific sequence when a donor DNA molecule with homology

regions is present by homology-directed repair (HDR) (351).

Importantly, NHEJ is the preferred mechanism to repair DSBs in

mammalian cells, complicating the application of gene editing

mediated by HDR in human cells (352).

Moreover, gene modification of NK cells using gene therapy

delivery vectors such as plasmids and lentiviral vectors is

particularly arduous, due to innate immune mechanisms that

confer them resistance to genetic modifications (353, 354). This

indicates that knock-in approaches, in which the delivery of a

donor template requires the use of different types of vectors or

plasmids will be challenging in these cells. In contrast, knock-out

strategies using pre-transcribed gRNA and Cas9 protein in

ribonucleoprotein complexes can potentially avoid problems

associated with NK resistance to viral transduction and

double-strand DNA (355–357).

The application of gene editing constitutes nowadays the

great hope to improve NK efficiency and persistence against

different types of tumors. To this aim different studies have been

focused on identifying negative regulators that could be targeted

to modulate immune function and enhance NK and CAR-NK

potency, either by increasing cytotoxicity, improving

metabolism and in vivo persistence, or by overcoming

mechanisms of functional exhaustion triggered by inhibitory

immune checkpoints and TME (Figure 4).

One of the main strategies to improve CAR-NK persistence

is focused on targeting inhibitory immune checkpoints such as

PD-1/PD-L1 axis and in fact, PD-1 knockout (KO) in NK cells

increased their antitumor activity in a xenograft model of

ovarian cancer (358). The same authors tested the efficacy of

PD-1 KO NK cells against CML and AML cell lines in vitro

(358). Despite controversy about the low expression of PD-1 in

ex vivo expanded NK cells, the enhanced response with PD-1

blocking antibodies in MM (359), suggests that disruption of this

receptor could be a promising strategy to potentiate CAR-NK

efficacy against hematological malignancies.

TIM-3 is another checkpoint receptor expressed by NK cells

as a marker of dysfunction when TIM-3 positive NK cells

encounter tumors expressing TIM3 ligands such as

glioblastoma (360, 361) or AML blasts (208). Consequently,

TIM-3 KO NK cells mediated improved cytotoxicity in vitro

(362). A similar CRISPR/Cas9-based strategy has been applied

for Siglec-7 receptor, which triggers NK inhibition when binds to

certain sialylated glycans expressed on tumor cells, resulting in

enhanced NK antitumor efficacy against Siglec-7 ligand-

expressing MM cell lines (218).
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Several groups have shown that TIGIT can inhibit immune

response mediated by T and NK cells, leading to tumor escape.

Thus, blocking TIGIT with mAbs is translated to an increase in

NK persistence and antitumor capacity (363). More recently,

TIGIT KO by gene editing has also been performed (355, 356).
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Although functional studies in TIGIT KO NK cells have not

been described in this study one can envision that similar results

could be obtained.

Targeting inhibitory signals in NK cells, by the use of KIR

(NCT01714739 and NCT01750580) or NKG2A inhibitors
FIGURE 4

CRISPR/Cas9 knock-out strategies to improve CAR-NK immunotherapy. CAR-NK function and cytotoxicity are modulated by intrinsic
mechanisms in NK cells. For example, engagement of tumor ligands with NK immunomodulatory checkpoint receptors such as TIGIT, PD-1,
NKG2A, TIM-3, and Siglec-7, inhibit CAR-NK cell response to target cells. ADAM17 also restrains NK cell ADCC response by shedding CD16
receptor from the NK cell surface. Additionally, in response to cytokine signaling, the expression of internal checkpoints including CLBL, SOCS3,
and CIS regulate NK activation and immune synapsis formation with tumor cells. The suppressive tumor microenvironment contributes as well
to CAR-NK inhibition through the release of suppressive factors like TGF-b. In this context, CAR-NK potency is attenuated and less effective
against tumor cells. CAR-NK cell homing is also regulated by chemokine receptors such as CCR5 that mediates homing to the liver in response
to CCL3 reducing CAR-NK efficacy against bone marrow-resident tumors. Another problem that CAR-NK manufacturing can encounter is
fratricide either by expression of the CAR-targeted molecule on the surface of the effector cell or the use of monoclonal antibodies that bind to
NK cells and induce “self-killing” through ADCC. Ablation of different NK cell proteins implicated in these pathways by the use of the CRISPR/
Cas9 system (red crosses) would overcome the aforementioned limitations and result in more potent, persistent, and tumor-directed CAR-NK
effectors for their use in adoptive immunotherapy. PD-1, Programmed Death 1; TIGIT, T cell immunoglobulin and ITIM domain; TIM-3, T cell
immunoglobulin and mucin-domain containing-3; NKG2A, natural killer group 2A; PD-L1/2, Programmed Death ligand-1/2; HLA-E, HLA class I
histocompatibility antigen, alpha chain E; ADAM-17, A disintegrin and metalloprotease 17; TGF- b, Transforming growth factor beta; TGFbR-2,
Transforming growth factor beta receptor type 2; CCL3 Chemokine (C-C motif) ligand 3; CCR5, C-C chemokine receptor type 5; CAR, chimeric
antigen receptor; ADCC, Antibody-dependent cellular cytotoxicity; CK, cytokines; CIS, cytokine-inducible SH2-containing protein; SOCS3,
suppressors of cytokine signaling; LAT, linker for activation of T cell; CBLB, Casitas B-lineage lymphoma protooncogene B Created with
BioRender.com.
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(NCT02331875) is another interesting strategy to increase NK

efficiency against hematological and solid tumors. Moving to

CRISPR/Cas9 mediated editing approaches, targeting HLA-E/

NKG2A axis by knocking out NKG2A-encoding killer cell lectin

like receptor C1 (KLRC1) in CIML NK or NK cells has been

described to induce a heightened response measured by IFN-g
production or increase cytotoxicity against AML or primary

MM cells, respectively (364, 365). However, in the context of

CAR-NK cells, it is still not clear whether ablation of this

inhibitory receptor would provide an advantageous feature to

the effector cells, considering the results indicating that NKG2A-

KO CAR-NK92 cells and iPSC-derived CAR-NK cells do not

show enhanced in vitro cytotoxicity against both solid and liquid

tumor cell lines (263, 366). These results suggest that NKG2A

not only constitutes an inhibitory receptor but also impacts

during NK “education” process (366).

Alternatively, strategies focused on blocking regulators of

NK activators such as ADAM-17 that cleaves CD16a, the NK

cell-mediated ADCC activating receptor, have been tested to

enhance antitumor response against a Burkitt’s lymphoma cell

line in combination with monoclonal antibodies (358, 367).

To avoid NK cell exhaustion, targeting cytokine-related

immune checkpoints is another interesting approach. Several

proteins including Suppressors of cytokine signaling (SOCS1–7

and CIS) downregulate cytokine signaling via JAK/STAT

pathway in NK cells. These receptors are induced by cytokines

such as IL-2 and IL-15 (368, 369) which are commonly used in

NK in vitro expansion methods as it has been mentioned above,

and consequently, their interruption could increase activity and

persistence of NK cells. Studies from different groups have

shown that the ablation of CISH in NK cells increased their

cytotoxic properties (357) and even improved their metabolic

fitness (94). In the context of CAR-NK cells, Rezvani’s group

also showed an enhanced expansion capacity and cytotoxicity

against leukemic cell lines when CD19 CAR-NK cells co-

expressing hIL15 were used and demonstrated that this effect

is in part related to an increase in the metabolic activity of CAR-

NK cells (93). In a similar way, targeting SOCS3, another

suppressor of cytokine signaling, resulted in NK cells with

higher proliferation capacity and antitumor capacity (370).

Another cytokine-induced intracellular checkpoint that has

been targeted in NK cells is CLBL (Casitas B-lineage

lymphoma pro-oncogene-b), an E3 ubiquitin ligase that

mediates degradation of LAT protein, impairing the

immunological synapse between NK cells and target cells

(371). CLBL KO in placental-derived NK cells increased their

cytotoxic potential against liquid tumors in vivo (372).

One of the greatest challenges in CAR therapy, especially in

solid tumors, is to skip the immunosuppressive microenvironment

generated around the tumor. Although many different cell types

and molecules can contribute to this effect, as we previously

discussed, TGF-b seems to be a key regulator of TME (373) and

most of the efforts in this area have been directed to target this
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signaling pathway. Several groups have already successfully edited

NK cells to disrupt the TGFb-R2 (TGF-b receptor type 2) in NK

and CAR-NK cells which conferred them resistance to TGF-b
inhibition in vitro (374) and therefore enhanced tumor control

against difficult to treat tumors such as prostate adenocarcinoma

(375) or glioblastoma (376). Importantly, this study also showed

that knocking out CD9 and CD103, surface ligands in NK cells

interacting with av Integrins, can inhibit TGF-b1 release by

glioblastoma stem cells and increase NK cytotoxic effect (376).

Another drawback to consider in CAR-T and NK therapy is

that in some cases tumor antigens targeted by CAR molecules or

monoclonal antibodies are not restricted to malignant cells, but

they are also expressed in the therapeutic NK cells, resulting in

fratricide and consequently, in a decreased response to treatment

due to death of effector cells. Elimination of the CAR-targeted

receptor in CAR-NK cells is crucial to develop an effective

immunotherapy product, particularly in the context of

hematologic tumors. This is the case of CD70-CAR-NK cells

that constitute a promising therapy for both solid and

hematologic malignancies but during in vitro feeder cell-

dependent expansion and activation, CD70 is upregulated in

NK cells which results in fratricide. By eliminating CD70 in NK

cells using CRISPR/Cas9, fratricide-resistant cells were obtained

without affecting their cytotoxic potency (129). Following a

similar strategy, Gurney et al. have demonstrated that CD38

knock-out by CRISPR/Cas9 in CD38-CAR-NK cells results in a

decreased cell death due to fratricide and a more potent

cytotoxic response of CAR-NK cells against AML primary

cells (127). In MM, where CD38 is highly expressed in

malignant plasma cells, daratumumab treatment together with

a concomitant CD38 expression in NK cells leads to a marked

decrease in NK cell numbers due to fratricide. Consequently,

CD38 KO NK cells blocked daratumumab-induced fratricide,

showing an improved metabolic profile and consequently

enhanced cytotoxic activity against CD38 expressing MM cell

lines and primary cells (377, 378). In this setting, it is worth

mentioning that a clinical trial in MM is already ongoing to test

FT576, iPSC-derived BCMA CAR NK cells in which CD38 has

been ablated to avoid mAb-mediated fratricide, in combination

with other drugs (NCT05182073). These results pave the way to

optimize other CAR-NK cells that are being developed for BM

malignancies and target antigens that are also expressed in NK

cells such as the NKG2D-L MICA or CD7 (97, 146, 379) as

previously shown in CAR-T cells (124, 125).

As it has been mentioned above chemokine signaling plays an

important role in CAR-NK biodistribution and determines

antitumor efficacy depending on tumor location. In this context,

CRISPR gene editing can be applied to modulate NK cell trafficking.

Levy et al. showed that CCR5 disruption using CRISPR/Cas9

modified NK cell migration in vivo, which reduced trafficking to

the liver and increased BM homing (325). This approach seems

promising to re-direct CAR-NK cells and increase their potency

against BM-resident hematological malignancies. Similar knock-out
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and even knock-in strategies could be applied to target or express

other chemokine receptors on the surface of CAR-NKs and redirect

them to the tumor site. This strategy has been followed in NK-92

cells where overexpression of chemokine receptor CXC chemokine

receptor 2 (CXCR2) and IL-2 by HDR mediated gene editing

increased NK92 migration to tumor sites and improved tumor

growth inhibition in vivo in a human colon cancer model (380).
Future directions in CAR-NK cells
genome-editing

One of the advantages of using CRISPR/Cas9 system in

comparison with previously designed nucleases is the potential

of this editing tool to target several loci at the same time. This

greatly increases the possibility to optimize NK and CAR-NK

cell cytotoxicity and persistence by multiplex targeting. Some

examples include the combination of CISH and TGFBR2

targeting in NK cells (381) which increases cytotoxic activity

against different hematological tumors. However, this type of

strategies must be considered in detail since targeting several

genes can also decrease NK survival and increase the risk of off-

targets, including the risk of translocations (355, 356) as has

been previously observed in CAR-T cells (382).

Thanks to the CRISPR/Cas9 system versatility, knock-in

strategies focused on the delivery of a specific CAR molecule

in a desired region of the genome can be implemented to

increase the safety of the strategy. Although the efficiency of

this strategy is still suboptimal in comparison with knock out

approaches due to the intrinsic lower efficiency of HDR versus

NHEJ (352) and the NK reluctance to the different donor

template delivery systems previously mentioned, recent studies

demonstrated the feasibility to deliver CAR molecules to NK

cells using CRISPR/Cas9 tools, resulting in an increased killing

capacity of the effector cells when an EGFR-CAR was used

against prostatic adenocarcinoma (375) and a CD33-CAR in an

AML model (383). This will also allow the combination of

different modifications to improve CAR-NK functionality to

target challenging tumor cell types.

The recent description of new gene-editing tools that do not

generate double-strand breaks in the genome, such as Base editing

(384, 385) and Prime editing (386) are a promising strategy for the

multiplex gene-editing approaches in CAR-NK cells. In both cases

wild type Cas9 is substituted by a catalytically impaired Cas9

protein (dead Cas9 or Cas9 nickase) that will not generate DSBs

in the genome, minimizing the risk of potential off-targets or

translocations and improving the safety of the therapeutic product.
Conclusions

Over the last years, preclinical studies and preliminary

clinical evidence indicate that “off-the-shelf” allogeneic CAR-
Frontiers in Immunology 18
NK therapy is a novel platform with a better safety profile than

autologous CAR-T due to the low incidence of adverse events.

Fast and high-quality responses achieved in a limited number of

clinical trials with available results point to the efficacy of CAR-

NK cell therapy in treating CD19+ relapsed/refractory tumors.

Results of several ongoing clinical trials are awaited to clarify the

broad applicability and long-term responses of CAR-NK in

monotherapy or combinatorial approaches. Preclinical studies

also anticipate the existence of CAR-independent challenges that

hinder CAR-NK long-term function, leading to tumor

resistance. Many approaches described in this review are

under investigation to deeply understand these mechanisms

and their involved targets, which differ between NK cell

sources, triggering exhaustion and limited expansion and

persistence in vivo. Although “optional” in allogeneic NK cells

compared to allogeneic CAR-T therapy, CRISPR/Cas9 gene-

editing constitutes a key strategy to obtain multi-engineered

antitumor effectors to surpass these obstacles and outperform

undesired effects of other combinatorial approaches, such as

mAbs or inhibitors. Multiplex gene-edited CAR-NK products

are exponentially growing in the field as an optimized “all in

one” solution and have already become a clinical reality, offering

an alternative to patients with limited treatment opportunities.
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184. Ruggeri L, Urbani E, André P, Mancusi A, Tosti A, Topini F, et al. Effects of
anti-Nkg2a antibody administration on leukemia and normal hematopoietic cells.
Haematologica (2016) 101(5):626–33. doi: 10.3324/haematol.2015.135301

185. McWilliams EM, Mele JM, Cheney C, Timmerman EA, Fiazuddin F,
Strattan EJ, et al. Therapeutic Cd94/Nkg2a blockade improves natural killer cell
dysfunction in chronic lymphocytic leukemia. Oncoimmunology (2016) 5(10):
e1226720. doi: 10.1080/2162402X.2016.1226720
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