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Abstract
Iron is found in almost all foods, so dietary iron intake is related to energy intake. However, its availability for absorption is 

quite variable, and poor bioavailability is a major reason for the high prevalence of nutritional iron deficiency anaemia. Absorp-
tion occurs primarily in the proximal small intestine through mature enterocytes located at the tips of the duodenal villi. Two 
transporters: Hem Carrier Protein 1 (HCP1) and Divalent Metal Transporter 1 (DMT1) appear to mediate the entry of most if not 
all dietary iron into these mucosal cells. Absorption is regulated according to the body’s needs. The results of studies suggest 
that iron absorption is regulated by the control of iron export from duodenal enterocytes to the circulating transferrin pool by 
ferroportin. Hepcidin, a 25-amino acid polypeptide, which is synthesised primarily in hepatocytes, reduces the iron absorption 
from the intestine by binding to the only known cellular iron exporter, ferroportin, causing it to be degraded. Therefore, hepcidin 
is now considered to be the most important factor controlling iron absorption.

Introduction
There are two forms of dietary iron: inorganic (ionic, 

non-haem) and organic (haem) [1], with a higher per-
centage of the non-haem form in the total dietary pool 
of iron. On average, haem iron constitutes 40% of iron 
in a typical European diet [1]. However, in a vegetarian 
diet, consisting solely of products of plant origin, the 
haem form corresponds to only 10–20% of total iron 
[1]. Regardless of the form of iron, its absorption takes 
place in mature enterocytes. The enteric cells reach ab-
sorptive maturity during their migration from duodenal 
crypts towards the apex of the intestinal villus [2]. Two 
main pathways of absorption of iron from the alimen-
tary tract lumen have been identified and described 
in detail to date [3]. One of them is associated with 
haem carrier protein 1 (HCP1), and the other involves 
divalent metal transporter (DMT1). Moreover, the po-
tential involvement of receptors for ferroproteins, e.g. 
lactoferrin or phytoferritin, is the subject of extensive 
research. The presence of lactoferrin receptors (LfRs) is 
thought to play an important part in the process of iron 

absorption during the neonatal period [3]. The role of 
receptors for phytoferritin, an iron-binding compound 
of plant cells, also merits further research. The results 
of such studies could potentially improve the parame-
ters of iron metabolism in the populations of developing 
countries [3]. In a series of papers, Baranowski high-
lighted the previously undervalued role of mucins in the 
absorption of nutrients [4–6]. Mucins, from the group of 
glycoproteins, constitute the main component of mucus 
synthesised by cells of gastrointestinal mucosa. Under 
physiological conditions these molecules can bind iron 
ions (both Fe2+ and Fe3+) and form soluble complexes, 
which can be directly absorbed from the duodenum. 
According to Baranowski, both haem and lactoferrin 
receptors, as well as receptors involved in the absorp-
tion of iron-glycoprotein complexes, can be present in 
the duodenal mucosal brush border [4]. This hypothesis 
seems to be consistent with the results of radioisotope 
and immunological studies, which revealed the pres-
ence of a membrane receptor on the absorption surface 
of the microvilli. This receptor, from the integrin group, 
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displayed an ability to bind iron and transfer it to the 
inside of the cell [4]. The presence of alkaline pH in the 
duodenal content is a prerequisite for the absorption of 
iron ions by the mucin-integrin system. In clinical con-
ditions with impaired secretory function and/or a shift 
of acid-base balance towards acidosis, significant dis-
orders of the absorption activity have been observed. 
Research indicates that acidification of the duodenal 
content changes the physicochemical properties of mu-
cins, and stimulates the formation of their aggregates 
and the resultant loss of iron ion-binding capacity [4–6]. 
Inhibition of iron absorption is a further result of the 
altered physicochemical properties of mucins.

Absorption of haem iron
The term “haem iron” refers to iron pool incorporat-

ed into the protoporphyrin IX ring. Absorption of this 
form of iron is markedly more effective than that of the 
ionic iron. The average bioavailability of haem iron is ca. 
20–30%, but can reach up to 50% when required [1, 3]. 
Differences in the bioavailability of various forms of iron 
suggest differentiation of the absorption mechanisms.

HCP1 (haem carrier protein 1) is a protein enabling 
transmembrane transport of haem molecules from 
alimentary tract lumen into enterocyte [7, 8]. Human 
HCP1 is a highly hydrophobic protein composed of 446 
amino acids. It is encoded by the gene located on chro-
mosome 17q11.1. The expression of HCP1 on both the 
apical membrane of enterocytes and in the plasmatic 
membrane of enteric cells has been documented [7, 8]. 
The protein located on the apical membrane consists of 
nine-transmembrane domains. Although strong expres-
sion of HCP1 is typical for the proximal segment of the 
small intestine (mostly the duodenum), the presence 
of this protein was also detected in the liver and kid-
neys. Synthesis of HCP1 is regulated on both pre – and 
post-translational level [7, 8]. The expression of HCP1 
mRNA is modulated by hypoxia and hypotransferrinae-
mia. During the post-translational stage, the level of 
HCP1 is modulated by the concentration of iron in the 
duodenum [7, 8]. This process is probably associated 
with the transfer of HCP1 from the apical membrane 
of enterocyte into its cytoplasm and vice versa. High 
concentrations of HCP1 in the apical membrane have 
been observed in iron-deficient mice [7, 8], whereas the 
opposite phenomenon was documented in iron-overfed 
animals, in which the expression of this protein was 
limited mostly to cytoplasm [7, 8].

Inside enterocyte, the haem molecule is catabolised 
by a microsomal enzyme, haem oxygenase. The prod-
ucts of haem oxygenase-catalysed degradation of haem 
include bivalent ferrous ions (Fe2+), carbon oxide (CO), 
and biliverdin IXa, which is subsequently reduced to bil-

irubin by biliverdin reductase [9]. To date, two different 
isoforms of haem oxygenase, encoded by two separate 
genes, have been described in humans [9]. The activity 
of the first isoform (HO-1) is induced by an array of fac-
tors, including cellular stress, reactive oxygen species, 
haem, thermal shock, UV radiation, nitric oxide (NO), 
pro-inflammatory cytokines, and heavy metals (Cd, Co, 
Cr, Cu, Fe, Hg, Ni, Pd, Pt, Sn, and Zn) [9]. HO-1 protects 
cells against the cytotoxic and pro-oxidative effects of 
free haem [9].

The protective mechanism of haem oxygenase-1 
is multidirectional and results from the cytoprotective 
effects of various products of haem degradation. Al-
though the bivalent ferrous ions, released in the course 
of haem metabolism are involved in the generation of 
superoxide anion radicals, they also stimulate the syn-
thesis of ferritin (iron-binding protein), which displays 
antioxidative properties [10].

Another product of haem catabolism, biliverdin, and 
its metabolite, bilirubin, display strong antioxidative ac-
tivity associated with the inhibition of free radical-in-
duced damage to lipid membranes and plasma lipopro-
teins [11]. Furthermore, an interaction between either 
biliverdin, or between bilirubin and the reactive nitro-
gen species, e.g. peroxynitrite, has been documented 
[12]. The cytoprotective effect of carbon oxide is asso-
ciated with an improved perfusion of tissues, resulting 
from dilation of blood vessels and an anti-aggregatory 
effect [13, 14]. Moreover, CO was found to inhibit the 
process of cellular apoptosis [15]. While discussing the 
protective properties of HO-1, it should be emphasised 
that they strictly correspond to the amount of the active 
enzyme. A two – to five-fold increase in the activity of 
HO-1 associated with the protection of cells against tox-
ic effects of oxygen was noted [16]. However, the same 
study revealed a lack of the protective effect of HO-1 
when its activity was increased 15 times [16]. Damage 
to tissues associated with the overexpression of haem 
oxygensase-1 is a result of the fact that all products of 
haem degradation are toxic at higher concentrations 
[17]. The toxicity of carbon oxide can be observed al-
ready at concentrations slightly exceeding the normal 
level [17].

The other isoform of haem oxygenase (HO-2) is con-
stantly expressed in cells and plays a pivotal role in the 
catabolism of haem in absorptive enterocytes [18]. Alter-
natively, the haem molecule present inside the entero-
cyte can also be degraded to non-haem iron and biliru-
bin by HO-1 located in the endoplasmic reticulum [18].

The ionic iron released in the process of haem deg-
radation is further metabolised on the common path-
way with non-haem iron. Depending on actual demand, 
iron ions present inside absorptive enterocytes can be 
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either stored as ferritin and eliminated from the organ-
ism with exfoliated enterocytes, or are further transport-
ed across the basolateral membrane of enterocytes [19].

Absorption of non-haem iron
Because non-haem (trivalent) iron forms insoluble 

non-absorbable complexes in alkaline environment, the 
process of its absorption has to be preceded by the re-
duction of ferric ion (Fe3+) to ferrous ion (Fe2+) [3]. This 
process can involve both dietary nutrients and endoge-
nous factors. The presence of vitamin C and/or animal 
tissue (so-called meat factor, MF) in dietary intake was 
determined to increase the bioavailability of ionic iron. 
Among the endogenous factors that can improve the 
bioavailability of non-haem iron, duodenal cytochrome 
b (Dcytb) and ascorbic acid released actively by gastric 
cells are listed [20]. Interestingly, research has shown 
that in the presence of a full volume of gastric content 
the bioavailability of dietary iron is markedly higher 
than in the sole presence of isolated hydrochloric acid 
[21, 22].

The absorption of iron is limited by oxalates, phy-
tates, polyphenols, phosphates, and calcium. Therefore, 
certain food products, such as milk and dairy products, 
eggs, coffee, tea, spinach, dry legume seeds (i.e. rich 
sources of the abovementioned components), hinder 
the utilisation of dietary iron. Hence, the bioavailability 
of non-haem iron varies and can be determined inter 
alia by dietary composition [3, 19]. Apart from the di-
etary factors mentioned above, the bioavailability of 
non-haem iron can be, to a large extent, impaired by 
pathological conditions of the alimentary tract, such 
as Helicobacter pylori (H. pylori) infection. The results 
of many recently published studies point to the asso-
ciation between H. pylori infection and iron deficien-
cy anaemia (IDA) [23–28]. Special attention should be 
paid to the reported cases of iron deficiency anaemia 
concomitant to H. pylori infection, in which anaemia 
was the only symptom of the infection [29, 30]. The as-
sociation between H. pylori infection and impaired ab-
sorption of iron is also corroborated by the documented 
improvement of haematological parameters after com-
plete elimination of the bacterium [25, 28, 31–33].

Previous studies identified the main pathways by 
which H. pylori can modulate the bioavailability of 
dietary iron. The first pathway is associated with the 
infection-induced changes in the composition of gas-
tric juice, and the second is the result of the ability of  
H. pylori to obtain iron from the host’s body [34–37]. He-
licobacter pylori infection results in active gastritis and 
atrophic inflammation of gastric mucosa, which can be 
followed by hypoacidity or achlorhydria [38–40]. Capur-
so et al. discovered that the pH of gastric juice in pa-

tients in whom H. pylori infection was concomitant with 
sideropenic anaemia (pH = 5.7) is significantly higher 
than in subjects with H. pylori-induced gastritis without 
co-existing anaemia (pH = 2.0) [41]. According to the 
authors, this phenomenon could result from decreased 
gastric secretion of ascorbic acid and hydrochloric acid, 
which might develop secondarily to the H. pylori infec-
tion [41, 42]. Available evidence suggests that the pres-
ence of endogenous ascorbic acid is necessary for the 
absorption of trivalent iron. Moreover, this interaction 
is known to be effective solely in the presence of hy-
drochloric acid [21, 22]. Ascorbic acid was determined 
to reduce ferric ions Fe3+ to ferrous ions Fe2+ (absorbed 
by absorptive enterocytes), a process which depends on 
the presence of acidic pH [43]. Furthermore, soluble mo-
nomeric forms of ascorbic acid can form chelate com-
plexes with the trivalent iron ions, thereby decreasing 
polymerisation and precipitation of the latter. Iron ion 
chelation by ascorbic acid occurs solely in acidic envi-
ronments (pH < 3) [43].

While discussing the role of H. pylori in the patho-
genesis of sideropenic anaemia, one should remember 
that iron constitutes the principal growth factor for 
this pathogen. Consequently, H. pylori (as well as other 
bacteria) has developed highly effective mechanisms of 
iron absorption, and competes with the host for iron. 
Helicobacter pylori can synthesise a superficial 70 kDa 
protein, which binds the host’s iron-sequestrating pro-
teins and is involved in direct uptake of this nutrient 
[36, 37]. Limited availability of iron in a growth medium 
was identified as a factor inducing the expression of 
this receptor on a microbial surface [44]. The above-
mentioned data seem to explain the higher incidence 
of sideropenic anaemia concomitant to H. pylori infec-
tion that was documented in many studies involving 
subjects at risk of developing iron deficiency, i.e. among 
women at reproductive age, children, and adolescents 
[45, 46].

The transport of reduced Fe2+ ions into the cyto-
plasm of enteric cells is mediated by DMT1 (divalent 
metal transporter) protein expressed in the apical mem-
brane of mature enterocytes [3, 19, 47]. The regulation 
of non-haem iron absorption is a subject of extensive 
ongoing research. HFE (high Fe, human hemochromato-
sis protein) is one of the proteins involved in monitoring 
iron concentration and the absorption of this nutrient 
[19, 47]. HFE is expressed on the basal membrane of 
enterocyte crypts, where it forms complexes with β

2
-mi-

croglobulin and transferrin receptor (β
2
M-HFE-TfR1)  

[19, 47, 48]. The interaction between these three pro-
teins is believed to affect the reception of information 
on the processes of iron utilisation, i.e. on the intensity 
of erythropoiesis and liver metabolism of iron [19]. Fur-
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thermore, the degree of absorption is also modulated 
by regulatory substances, indicating the actual iron lev-
els in tissue deposits. An inverse correlation was docu-
mented between the concentration of ferritin and the 
absorption of non-haem iron [3, 49]. A similar relation 
was observed in the case of haem iron; however, an 
increased accumulation of this form of iron only slightly 
reduced its absorption. Hepcidin seems to be the key 
mediator responsible for the regulation of iron accumu-
lation [48, 50, 51].

Hepcidin is a short, cysteine-rich peptide with a mo-
lecular weight of 2–3 kDa, synthesised mostly by he-
patocytes, circulating in serum, and eliminated with 
urine [52]. The expression of hepcidin gene is regulated 
on a transcriptional level [53]. Two principal pathways 
of cellular signalling involved in the transcription of 
hepcidin have been identified to date. The first is as-
sociated with the activation of cytoplasmic transcrip-
tion proteins Stat3 (signal transducer and activator 
of transcription). Upon activation, these proteins are 
transferred into the nucleus where they activate tran-
scription of the hepcidin gene, binding to a relevant se-
quence of DNA. Pro-inflammatory cytokines, especially 
interleukin-6, induce the process of hepcidin gene tran-
scription through the activation of Stat3 and its sub-
sequent binding to the regulatory region of hepcidin 
promoter [53–55]. The second mechanism of hepcidin 
transcription control (depending on BMP/Smad signal-
ling pathway) involves Smad proteins (their name is 
a combination of the names of two homologous pro-
teins: Sma and MAD) and bone morphogenetic proteins 
(BMPs) [53–55]. BMPs are pleotropic signal molecules 
from the transforming growth factor family [53]. Binding 
BMP to their type II and type I receptors (BMP-type I/
type II) results in the phosphorylation of intracellular 
protein RSmad, which subsequently binds to Smad4 
(also referred to as Co-Smad) [53]. The resultant com-
plex (RSmad-Smad4) is transferred into the nucleus and 
(together with other transcription factors) activates its 
target genes, including the hepcidin gene [53]. The list 
of factors that can affect the expression of hepcidin on 
post-translational levels includes iron, anaemia, hypox-
ia, and inflammation [56–62].

The role of hepcidin in the regulation of the bio-
availability of dietary iron is associated with its inter-
action with transmembrane protein, ferroportin (Fpn) 
[63]. Ferroportin is expressed on the surface of all cells 
that can release iron into circulation, i.e. absorptive en-
terocytes, macrophages, and hepatocytes, as well as on 
the surface of placental cells [63]. The biological role 
of Fpn is the transportation of iron from cells to blood 
vessels. Hepcidin regulates the expression of ferroportin 
on a post-translational level [63, 64]. It can directly bind 

to Fpn molecules, with subsequent internalisation of 
the resultant hepcidin-ferroportin complex. Ferroportin 
undergoes lysosomal degradation inside the endosome. 
Its loss from the cellular surface induces a secondary 
decrease in the release of iron from the cell [63, 64]. 
Consequently, the interaction between hepcidin and 
ferroportin inhibits the efflux of iron ions from entero-
cytes to blood vessels [65–69]. Whenever the systemic 
deposits of iron are either sufficient or too high, the 
liver synthesis of hepcidin is enhanced; the hormone 
is released into circulation, reaches enterocytes, and 
binds to ferroportin, thereby inducing its endocytosis 
and degradation [65, 69–71]. A reduction of iron depos-
its is associated with an opposite phenomenon: de-
creased synthesis of hepcidin in hepatocytes, and the 
involvement of Fpn molecules present on the basolat-
eral membranes of enterocytes in the export of iron to 
the vascular bed [48, 50, 51, 64].
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