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Biological collectives, like honeybee colonies, can make intelligent decisions
and robustly adapt to changing conditions via intricate systems of excitatory
and inhibitory signals. In this study, we explore the role of behavioural plas-
ticity and its relationship to network size by manipulating honeybee colony
exposure to an artificial inhibitory signal. As predicted, inhibition was stron-
gest in large colonies and weakest in small colonies. This is ecologically
relevant for honeybees, for which reduced inhibitory effects may increase
robustness in small colonies that must maintain a minimum level of foraging
and food stores. We discuss evidence for size-dependent plasticity in other
types of biological networks.
1. Introduction
Researchers have long noted that colonies of eusocial organisms, like honeybees,
behave collectively as part of a superorganism (the colony) similarly to cells
within a multicellular organism [1–4]. As inmany other biological systems, mem-
bers of honeybee colonies make contact with only a few others in a given span of
time, are distributed across space and are heterogeneouswith respect to a number
of parameters. Each beemakes decisions based on locally available information in
accordancewith its unique responsiveness to that information,which is a function
of both internal factors, such as genetics and motivational state, and external fac-
tors, like the quality of a particular food source. The outcome of decisions is
shared via excitatory or inhibitory signals with a few close neighbours [4–8].

Honeybees use the excitatory waggle dance to recruit hivemates to favourable
resources, such as food sites [9]. However, if a forager is attacked at a food source
or experiences deteriorating conditions, it returns to the nest and producesweakly
inhibitory stop signals directed at dancers advertizing that location [10–12]. Stop
signals elicit a brief pause from waggle dancers and reduce the probability that
a waggle dancer will continue waggle dancing. Individual stop signals have a
low associated probability of completely halting a waggle dance. However,
they cumulatively inhibit recruitment [12,13]. The interplay between waggle
dances and stop signals allows honeybee colonies to make collective decisions
that have intriguing emergent properties [14–16]. For example, when a potential
nest site is being advertized, the colony must rapidly coalesce around the correct
decision. Dancers for different nest sites compete, with the longest lasting dance
performances winning out. However, between dances, the dancers also perform
stop signals that target dancers for different nest sites. The resulting cross-inhi-
bition shortens the dancing process, allows the colony to more rapidly choose
the best site, and increases the reliability of this system by overcoming
deadocks—all without any central director [15].

Honeybee colonies respond to changing conditions, such as food
availability outside and inside the nest. Foraging patterns shift throughout
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(a) (b)

Figure 1. (a) Small colony with clustering visible (n = 984). (b) Large colony with more uniform comb coverage (n = 1400).
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the day and across seasons in response to changes in floral
availability and the risk of foraging on these resources. We
propose that honeybee colonies can modify their reactions
to unfavourable conditions in the environment, depending
on multiple factors. We postulate that the mechanism for
this threshold is experience-dependent plasticity in the sensi-
tivity of individuals to stop signals. Specifically, we predict
that the more stop signals received by an individual, the
less responsive it becomes to future signals as a result of be-
havioural habituation [17]. The logic underlying this
prediction, at the colony level, is that it would not be ben-
eficial for colonies to curtail recruitment to all sites at times
when every site is unfavourable to some degree (such as
during times of high predator presence at most food
resources). At these times, colonies should have a high level
of stop signalling.

Other arthropods habituate to vibrations [18,19]; although
to our knowledge, habituation to an intraspecific vibrational
communication signal has not been investigated. Honeybees
habituate to other biologically relevant stimuli, such as anten-
nal stimulation with sucrose [20], and bumblebees habituate to
novel visual stimuli after repeated exposure during foraging
[21]. Our preliminary observations suggested that honeybees
can become unresponsive to stop signals, perhaps as a result
of habituation (see electronic supplementary material).

Due to the significant limitation that stop signals need to
be identified using both behavioural and acoustic character-
istics [22], it is difficult to estimate, in a typical colony with
thousands of individuals, if and how stop signalling levels
change over time. Colony-wide automated vibration detec-
tion is a useful tool, but noise and the conflating factors of
multiple signals sharing similar spectral properties can limit
such detection [22,23]. However, Smith & Chen [24] demon-
strated that the overall level of detectable vibrational
signalling is inversely related to colony size. We analysed
data from a separate colony survey study, and found that
colony size and stop signalling were inversely related when
we controlled for the level of activity of the colony (see
Material and methods). Therefore, manipulating colony size
gives us a straightforward, ecologically relevant way to
manipulate stop signalling.

We hypothesize that honeybee colonies of different sizes
are differentially reactive to stop signals because the level of
signalling to which each individual bee is exposed—and thus
how sensitive each bee is to stop signals—depends on colony
size. To test this hypothesis, we measured the effect of artifi-
cially generated stop signals on the level of waggle dancing
in honeybee colonies of varying sizes. We predicted that
waggle dancers in smaller colonies would be less responsive
and should, therefore, exhibit less waggle dancing inhibition
when compared with waggle dancers from larger colonies,
when exposed to the same level of artificial stop signalling.
2. Material and methods
2.1. Colony size and responsiveness to artificial signals
Weused six colonies ofApis mellifera ligustica (four in 2018 and two
in 2019), housed in three-frame wood observation hives (figure 1)
with access to the outside through 4 cm diameter tubes inside a
room at the University of California San Diego apiary. The obser-
vation colonies consisted of three standard wooden frames from
Langstroth hives stacked on the top of each other and placed
into a larger rectangular frame, to create one large rectangular sur-
face.Wemaintained three to four colonies at any given time in this
manner. Except during experimental trials, the two large surfaces
were enclosed by wooden frames covered in plastic (windows), on
the top of which was a layer of styrofoam insulation. Each plastic
window and insulation were kept in place by removable wooden



Table 1. Colonies with observations in each treatment combination. Note
that the data from 1B and 4B were collected in 2019, whereas all other
data were collected in 2018. Sample sizes refer to the total combined
number of samples in each group.

control (no playback) experimental (playback)

small 1B, 2, 3, 4, 4B n = 12 1, 2, 3, 4, 4B n = 13

large 1, 1B, 2, 4 n = 13 1, 1B, 2, 4, 4B n = 15
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doors on each side of the colony (figure 1). A hole was cut at the
bottom of the large frame and connected to a tunnel leading to
the outside from the bottom of the table (the ‘entrance’), and
each colony had its own entrance. The entrancewas only accessible
from one side of the colony, which we call the ‘front’ side of
the colony.

The hives were constructed with a gate that directed traffic to
one side of the hive. Bees could pass from one side to another
only by walking to a gap at the top of the uppermost comb, a
situation which led to the formation of the dance floor on the
most accessible hive side and also concentrated stop signals on
this side [10].

All colonies were in good health as determined by standard
visual inspections [25]. Bees were allowed to enter and exit
through tubes piercing the walls. Data were collected from
June to August during 2018 and 2019. Given the highly disrup-
tive nature of artificially increasing or decreasing colony size,
we allowed the colonies to vary in size naturally. This meant
that most colonies fell into both the ‘large’ and ‘small’ categories
at various points (table 1). This naturalistic approach has draw-
backs in terms of control, since we do not know the precise
reasons that colonies increased or decreased in size and, there-
fore, differences we found might be because of some factor that
is confounded with signalling or colony size. We felt, however,
that artificially manipulating size was an even less favourable
option, since we ultimately wish to draw conclusions about the
mechanisms operating in networks that have formed organically.

2.2. Artificial stop signal
The construction and testing of the artificial stop signal playback
apparatus is published in [26]. Briefly, A. mellifera stop signals
have a peak-to-peak vibrational displacement of 1.5 mm at
320 Hz [27]. Artificial vibrational signals, 200 ms pulses of a pure
340 Hz tone (within the range of variation of natural A. mellifera
stop signals) were delivered to the comb directly adjacent to
every waggle dancer in a colony using a small vibrational exciter
(speaker with vibrating plastic tip mounted on the cone) attached
to a light wood wand. This probe produced no detectable particle
velocity sound at the probe tip located 25 mm from the speaker sur-
face (details in [26]). During signal delivery, the tipwas pressed into
the comb, which caused the substrate in the immediate vicinity to
vibrate. These were calibrated with a laser Doppler vibrometer
(Polytec OFV3000 controller unit with an OFV502 laser head) to
ensure that bees standing within one cell diameter of the probe
would experience a displacement of 1.5 mm peak-to-peak.

Although stop signallers typically deliver their signals directly
to another bee, they can also deliver signals to the comb [12,26]. As
withA. cerana stop signal playback experiments [26], we found that
stop signals reliably elicited a stereotypical freezing responsewhen
delivered next to a bee. However, direct contact of the probe to the
bee usually elicited an escape response. This is likely due to the
force exerted by the probe, which the experimenter rapidly
moves to track dancing bees and can easily exceed natural stop
signal forces. These problems are reduced when the vibrations
are delivered to the comb since the targeted bee only senses the
signals transmitted via the comb.
The natural rate of stop signals per dance circuit is
approximately 0.16 stop signals/dance circuit (range of 0–2
stop signals/dance circuit). The estimate was computed from
data collected using observation colonies at the University of
California San Diego apiary from 2013 to 2014. The full dataset
has been included with this paper. Specifically, we counted the
number of waggle circuits in 213 waggle dances performed by
naturally foraging bees from dance start to finish (beginning
after a bee entered the nest from a foraging bout and ending
when she stopped waggle dancing or left the nest for another
foraging trip). The number and timing of stop signals was also
noted. Because no manipulations were performed on the
dancers, our estimate likely represents the overall rate of stop sig-
nals across a range of foraging conditions. Because we wanted to
signal strongly enough to observe an effect, we aimed for a rate
of roughly 0.5 stop signals/dance circuit, a higher rate that is,
nonetheless, within the natural range.
2.3. Colony size
In addition to the waggle dance information, videos were also
used to estimate colony size by extracting a still video frame
from the 10 min pre-test baseline portion of each trial, correcting
the fisheye lens distortion and then superimposing a 5 × 8 grid of
40 squares over the entire three frames of the observation colony
using Gimp image editing software (v. 2.10) (figure 1). We then
counted all bees visible on the surface of the colony. When mul-
tiple squares on the grid were completely full, we counted the
bees within one full square, and multiplied by the number of
squares. If the squares were not completely full, we counted all
the bees in that square.

Our observation colonies ranged in size from 88 to 2160 bees
visible across the three frames. The surface of our largest colonies
were completely covered in tightly packed bees, whereas our smal-
lest colonies had a single small cluster, and, although this does not
capture the full range in terms of possible sizes of colonies, it does
represent about the maximum variability possible in a three-frame
observation hive. Becausewe had no a priori cut-off for distinguish-
ing between large and small colonies, we used three criteria. First,
we used relative subjective dispersal of bees on the surface of the
comb. Although the distinction was qualitative, we determined
that at approximately 1200 bees, there was an observed shift
from bees grouped in clusters to a more uniform distribution of
bees on the comb (figure 1). Second, our 1200 cut-off also meant
that about half of the observations fell into each size category, so
the data in each category were balanced (figure 3 and table 1).
Finally, we ran our analyses using cut-offs of 1000 and at 1500,
but we failed to see effects using these parameters (see electronic
supplementary material, S.6).

We considered the possibility that time was confounded with
season in our design. This would be the case if, for example, all of
the colonies grew over the two months during which they were
filmed each year. However, among our six colonies, we observed:
(i) one colony that remained in the large category, except for one
trial, during which it was considered small, (ii) two colonies that
started off large and then became small, with about half of the
observations coming from each category, (iii) two colonies that
remained mostly small, except for a few trials during which
they were considered large, and (iv) two colonies that started
out small, became large, and then returned to being small again.

Our full dataset included 62 total trials. However, in our
analyses, we included only 53 trials (2099 total waggle dances),
because we did not include trials in which there was no dancing
in the pre-test phase (figure 2). Although seven of the nine
excluded trials were small colonies, our final sample contained
roughly equal numbers of observations from small and large
colonies (table 1). Table 2 details the number of dances per
group for Model 1 of our statistical analysis.



140
120
100
80
60
40

no
. c

ir
cu

its
 in

 w
ag

gl
e 

da
nc

e

20
0

500 1000

10 min pre-test baseline

35 min playback

total number of bees visible

CON
EXP

1500 2000

500 1000 1500 2000

100

80

60

40

20

0

Figure 2. All recorded waggle dances, expressed as the number of dance
circuits, during the 10 min baseline pre-test (top; control n = 266, exper-
imental n = 298) and the 35 min playback (bottom; control n = 676,
experimental n = 859). Dances that occurred during control trials are black
and those that occurred during experimental trials are red.
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2.4. Statistical analyses
All statistical analyses were conducted in R (v. 3.6.3) [28] using
R studio (v. 1.3.595). We assessed the levels of artificial stop
signals to the colonies of different sizes, and the rate of dancing
across the different colony sizes using t-tests.
2.4.1. Mixed models
Model 1. The first model included the raw dance lengths
(measured as the number of waggle circuits) as the response;
colony and trial as random effects; and treatment, colony size,
test phase (pre-test baseline or playback) and time of day as cat-
egorical fixed effects. Model 1 was a generalized linear mixed
model, specified with glmer() using the Nelder–Mead algorithm,
with a Poisson identity function and a Wald test for assessment
of the model effects. Generalized linear mixed models handle
unbalanced designs well, and the Poisson identity function is
appropriate for the analysis of count data.

Model 2. In order to better understand our first model, we
collapsed our response variable across each trial, such that our
outcome measure was the difference in the average dance
length (measured in circuits) between the pre-test baseline and
playback test phases for each trial. A negative number indicated
that the average dance length increased, whereas a positive
number indicated a decrease in the average dance length. We
did not include any trials for which there was no dancing
during the 10 min pre-test baseline period. This left us with
26 observations in the control condition (no artificial signals
delivered), and 28 observations in the experimental condition
(artificial stop signals delivered, table 1). A qq-plot and accompa-
nying Shapiro–Wilk test (shapiro.test()) indicated that the error of
the average difference in dance length was not normally distrib-
uted (W = 0.864, p < 0.0001), so we log-transformed the absolute
values of the average dance length difference and re-applied
the original sign after transformation to preserve the direction
of the difference. A Shapiro–Wilk test on the transformed data
indicated that the error was not significantly different from
normal (W = 0.99, p = 0.75). We fit a model with log-transformed
dance length differences as the response variable; colony as a
random effect; and treatment, colony size and time of day as
categorical fixed effects. Model 2 was specified with lmer(), and
the model effects were tested using Satterthwaite’s method to gen-
erate error terms for F-statistics [29] with Type III sums of squares.
3. Results
Means are reported as ±1 s.d.We verified thatwe had delivered
equal rates of artificial stop signals per dance circuit to large and
small colonies, which were 0.40 ± 0.24 signals per dance circuit
for large colonies and 0.48 ± 0.27 for small colonies (Welch’s
t23.97 = 0.83, p = 0.42). During the stop signal playbacks, the
mean number of waggle dances observed in large colonies, cor-
rected for colony size, was 0.023 ± 0.02 dances per bee, and
0.037 ± 0.05 dances per bee in small colonies, a non-significant
difference (Welch’s t15.85 =−0.92, p = 0.37).

3.1. Model 1
Using Wald χ2 tests, we detected a number of statistically
significant model predictors and interactions in Model 1,
and these are summarized in table 3.

The significant interaction between Colony size, Treatment
and Trial phase (Z =−2.73, p = 0.006) supports our hypothesis.
However, given the large number of other significant effects,
interpretation of these results is not straightforward. Therefore,
for our next analysis, we simplified themodel by collapsing the
data into a single difference score for dance length per trial
between the pre-treatment baseline trial phase and the stop
signal playback phase.

3.2. Model 2
In order to satisfy thenormalityassumption,we log-transformed
our average dance difference scores and re-applied the original
sign to the transformed scores (figure 3).WeusedSatterthwaite’s
method to generate F-statistics to test the Model 2 effects. We
detected a significant interaction between Treatment and
Colonysize (F1,38.53 = 4.48, p= 0.04, figure 4 and table 4), support-
ing our prediction that smaller colonies would exhibit less
waggle dance inhibition in the presence of stop signals than
large colonies. We did not detect any other significant model
effects (table 4).
4. Discussion and conclusion
Our finding that large colonies were more sensitive to the
inhibition provided by stop signalling, when compared
with small colonies, is somewhat counterintuitive. However,
the specific threat posed by predators or a deteriorating
food source to a honeybee colony depends on a number of
factors, including how large and well established the colony
is. For example, a larger colony might only be marginally
affected by curtailing foraging at a dangerous or crowded
site that is otherwise profitable, because it has sufficient for-
agers to cover multiple sites, and enough food stores to
buffer against variable rates of resource intake. By contrast,
ceasing foraging at a dangerous or deteriorating site might
be more costly for a small colony with few foragers available
to locate and exploit alternative food sources and less food
stores. Although we did not quantify food stores in our colo-
nies and cannot completely rule out this possibility, it is
unlikely that the observed changes in waggle dance
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Table 2. Number of waggle dances observed by group.

treatment
colony
size

time of
day

waggle
dances

control large afternoon 444

control large morning 254

control small afternoon 167

control small morning 77

experimental large afternoon 335

experimental large morning 513

experimental small afternoon 97

experimental small morning 212
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inhibition were directly driven by the level of stored pollen or
nectar. All of our colonies were three-frame observation colo-
nies with little space in which to accumulate food stores. Of
the photos we took in which the comb is not totally obscured
by bees, no colonies had amassed more than 1/3 frame of
pollen or capped honey.

In nature, honeybee colonies reproduce by colony fission,
with a fraction of the colony, the swarm, leaving to found a
new colony [30]. Colonies thus begin small with essentially
no food stores—a relatively perilous state of affairs because
small disturbances such as being unable to locate a profitable
foraging site on any given day can have major consequences.
Small colonies must expand to the point that enough workers
are available for all basic tasks (e.g. brood-rearing) before for-
agers are able to generate the food surpluses that buffer
against variable rates of resource intake. In fact, research
and modelling demonstrates that colonies need a minimum
size to survive [30]. Our finding that weak or small colonies
should resist switching away from foraging at dangerous or
crowded locations more than strong colonies aligns with
the information primacy hypothesis [31], and hungry bees
have been shown to favour exploitation over exploration [32].

To protect against the outsized influence of perturbations,
individuals in small colonies could become less responsive to
signals that inhibit foraging, such as stop signals. For small
colonies with little or no food stores, any inhibition on
foraging might put the survival of the colony at risk, even
if the site is suboptimal, and particularly if the site was
initially sufficiently favourable to elicit waggle dancing. As
the colony becomes larger and their food stores more estab-
lished, becoming more sensitive to stop signals may allow
the colony to optimize its foraging to take advantage of
only the most profitable locations.
4.1. A widespread phenomenon?
All biological systems are capable of adaptation, the capacity to
respond to changing conditions. Although much remains
unknown, network-level adaptation has been most thoroughly
investigated in nervous systems, in which adaptation arises, in
part, from plasticity in neural synaptic connections. Multiple
synapse types have properties that change in response to
increased or decreased frequency of signal transmission
between neurons across various timescales, and these changes
can result in either increased or decreased synaptic efficacy [33].

Recent work in statistical mechanics suggests that large,
sparsely coupled artificial networks are more robust (less reac-
tive) than small, sparsely coupled networks [34]. However,
there is at least one key difference between these types of net-
works and biological networks: plasticity in the connections
between the nodes. Some neuroscientists have argued that
synaptic plasticity, because it represents change, is necessarily
distinct from and antithetical to nervous system stability [35].
However, others have recognized the role of plasticity as a
homeostatic mechanism for maintaining network-level stab-
ility [36,37]. For example, acquired drug tolerance has been
hypothesized to result from nervous system plasticity meant
to maintain consistent levels of neurotransmitter system
activity but now inappropriately influenced by exogenous
ligands [38].

Although others have described context-dependent
plasticity in biological networks, such as socially mediated
behavioural plasticity in groups [39–41], to the best of our
knowledge, no one has previously considered that network
size might drive plasticity in the network elements them-
selves. Intriguingly, larger bumblebee colonies have been
observed to respond more quickly to perturbations of in-
hive carbon dioxide levels than smaller colonies, despite a
similar proportion of the workforce being dedicated to the



Table 3. Summary of Model 1 significant fixed effects based on Wald χ2 (α = 0.05).

fixed effect estimate s.e. Z-value p-value

colony size −0.11 0.04 −2.77 0.006

treatment −0.60 0.04 −16.83 <0.0001

colony size × time of day −0.38 0.10 −3.64 0.0003

treatment × time of day 0.17 0.05 3.50 0.0005

colony size × trial phase 0.29 0.06 4.90 <0.0001

time of day × trial phase 0.22 0.05 4.099 <0.0001

colony size × treatment × time of day 0.46 0.16 2.86 0.004

colony size × treatment × trial phase −0.36 0.13 −2.73 0.006

treatment × time of day × trial phase −0.36 0.08 −4.70 <0.0001
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Figure 4. Means and 95% confidence intervals of the log-transformed differ-
ence scores for large and small colonies across the control (no playback) and
experimental (artificial stop signal playbacks) treatment groups, F1,38.53 =
4.48, p = 0.04, based on Saitherwaite’s method and Type III sums of squares.
Positive values indicate increased inhibition (shorter dance length) during the
playback phase of the experiment.
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effort across all colonies, but no specific mechanism for this
difference was suggested [42]. A re-reading of existing
neuroscience literature also provides hints of network
size-dependent plasticity in other systems.
4.2. Evidence for size-dependent plasticity in biological
neural networks

In both honeybee colonies and nervous systems, robust and
adaptive information processing is carried out by distributed
networks of heterogeneous components exchanging excitatory
and inhibitory signals [43]. Both also undergo significant
changes of size with respect to the number of elements over
time. In neuronal networks, these changes occur on multiple
timescales, and depend on modifications of the structural and
functional connectivity among the constituting neurons [44].
Moreover, changes of neuronal circuit size andneuronal respon-
siveness are co-regulated, and are related to the robustness of
neuronal network activity to external perturbations.

For example, small and immature networks exhibit a
stereotypical pattern of oscillatory activity, known to be impor-
tant for promoting axonal growth and synapse formation
during development. The individual neurons in these
networks exhibit low responsiveness and make these oscil-
latory patterns robust to perturbations [45–47]. As these
circuits grow in size and connectivity, the responsiveness of
their constituting neurons increases, resulting in more variable
and complex spatio-temporal patterns of network activity
observed in vitro [48] and in vivo [49]. Similar co-regulation of
network size and neuron responsiveness is observed during
sleep and anaesthesia, during which networks become func-
tionally de-coupled [50–52], and in the development of
Parkinson’s disease, which is characterized by the reduction
in the size of networks in some brain regions [53–55]. Thus,
our data showing that bees in smaller colonies are less respon-
sive to signals appear to mirror what occurs in small networks
of neurons.
4.3. Implications for artificial network design
Although plasticity is ubiquitous in biological networks, it is
conspicuously absent in artificial ones (e.g. computer net-
works). In these systems, distributed robustness is usually
achieved by increasing network size in order to introduce
redundancy and degeneracy [56]. We propose that, if size-
dependent plasticity is related to maintaining network
stability, including size-dependent tuning parameters for con-
nection strength might offer a more efficient solution to the
problem of small network instability, and one that is flexible
in the face of network expansion.

The empirical evidence presented in this paper suggests
that honeybee colonies exhibit size-dependent behavioural
plasticity with respect to their individual responsiveness to
stop signals. Although our findings make sense in the light
of the natural ecology of large and small honeybee colonies,
we have yet to directly test the functional consequences of
this behavioural plasticity on foraging. Additionally, we have
cited examples from neuronal networks that suggest size-
dependent plasticity with respect to the sensitivity to signals
might be a widespread phenomenon in biological systems
because it maintains network stability. However, this
hypothesis needs to be rigorously tested.
5. Limitations of the study
Communication is inherently noisy, and thus efforts to detect
patterns that arise from small effects are hampered by small



Table 4. Tests of Model 2 effects, based on F-statistics generated using Saitherthwaite’s method and Type III sums of squares.

fixed effect mean square numerator d.f. denominator d.f. F-statistic p-value

treatment 2.85 1 38.68 2.26 0.14

colony size 0.40 1 17.24 0.32 0.58

time of day 0.40 1 41.15 0.32 0.57

treatment × colony size 5.65 1 38.53 4.48 0.04a

treatment × time of day 4.54 1 44.99 3.60 0.06

colony size × time of day 0.16 1 39.30 0.13 0.72

treatment × colony size × time of day 0.25 1 45.00 0.20 0.66
aStatistically significant at α = 0.05.
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samples. Stop signals are only weakly inhibitory, and should,
therefore, produce relatively small effects on the overall behav-
iour of the colony. Thus, a limitation of our study is the small
sample size due to the large amount of time and effort required
to collect such data. In our playback experiments, individual
dancers need to be manually tracked, and the artificial stop
signal must be precisely delivered next to the rapidly moving
dancer. In our censuses of waggle dancing, we needed to
manually score sound and video data because of limitations
and inaccuracies in automated video detection. Recent
advances have been made in automated detection algorithms
[60]. However, the current tools still have substantial limit-
ations, including the inability to accurately decode shorter
dances, and the need to manually track bees to avoid high
error rates. Once it is perfected, automated software should sig-
nificantly increase the ability to test hypotheses using full
honeybee colonies.

A second limitation is that although we have shown an
effect of colony size, this study does not directly test the func-
tional consequences of such a difference. Many possibilities
exist for how manipulating signalling might affect colony-
level foraging behaviour. Colonies are systems of interacting
individuals that adapt to changing conditions to maintain
levels of biologically relevant variables, such as internal
food stores [61]. It is difficult to precisely predict the effects
of altering one aspect of an interconnected network, since
altering one aspect necessarily affects other aspects. There is
no reason to suspect a priori that such a manipulation will
map in a straightforward way onto the output of the
system (e.g. a linear effect). Although it is perhaps more
apparent in honeybee colonies, where the relationships
between the elements are more immediately visible, this is
a general limitation of any study involving a living system
[62,63].
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