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Abstract

Fluctuation scaling relationships have been observed in a wide range of processes ranging from internet router traffic to
measles cases. Taylor’s law is one such scaling relationship and has been widely applied in ecology to understand
communities including trees, birds, human populations, and insects. We show that monthly crime reports in the UK show
complex fluctuation scaling which can be approximated by Taylor’s law relationships corresponding to local policing
neighborhoods and larger regional and countrywide scales. Regression models applied to local scale data from Derbyshire
and Nottinghamshire found that different categories of crime exhibited different scaling exponents with no significant
difference between the two regions. On this scale, violence reports were close to a Poisson distribution (a = 1.05760.026)
while burglary exhibited a greater exponent (a = 1.29260.029) indicative of temporal clustering. These two regions
exhibited significantly different pre-exponential factors for the categories of anti-social behavior and burglary indicating
that local variations in crime reports can be assessed using fluctuation scaling methods. At regional and countrywide scales,
all categories exhibited scaling behavior indicative of temporal clustering evidenced by Taylor’s law exponents from
1.4360.12 (Drugs) to 2.09460081 (Other Crimes). Investigating crime behavior via fluctuation scaling gives insight beyond
that of raw numbers and is unique in reporting on all processes contributing to the observed variance and is either robust
to or exhibits signs of many types of data manipulation.
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Introduction

The statistics of crime, criminals, and criminal justice systems

have been studied by scientists and mathematicians since Poisson

investigated the French Jury System [1]. Scaling behavior of crime

with populations has been studied in many parts of the world

[2,3,4,5]. In these contexts, it has been noted that the scaling of

crime, particularly violence, varies in different countries and

regions. It has been noted that in the case of the US murder rate,

the number of murders appears to be nearly a Poisson process with

a scaling factor of 1.04 [1,6] indicating that crime may be

amenable to a fluctuation scaling analysis.

The science of fluctuation scaling began with optimization of

agricultural yields where it was noted that a plot of the logarithm

of yield variance on log area produced a linear relationship [7].

Taylor [8,9] noted a mean-variance plot of populations followed a

power law across many species. This relationship became known

as Taylor’s Law (TL) and has been widely observed in ecology

[10,11,12]. A TL relationship has been reported for Measles cases

in the UK and the scaling was observed to change as the extent of

vaccination increased [13]. Related scaling relationships have been

observed outside of biology including such things as human

interactions, stock trades, measures of firm size, and urban

automobile traffic [14,15,16,17,18]. The origin and interpretation

of the TL relationships has remained of interest over time, with

particular effort directed to understanding the meaning of the

exponent and the underlying mathematics [16,19,20,21,22].

Depending on the system studied, the size of the exponent and

the model applied, it has been interpreted to indicate synchroni-

zation [17], randomness and aggregation [8], species interaction

[22], and multiplicative population growth [19].

In the context of ecology and many other studies concerned

with scaling relationships, the focus has been on the exponent

rather than interpretation of the pre-exponential factor. The pre-

exponential is normally considered a characteristic of the

experiment and its associated sampling scheme [9]. However,

using concepts from statistical optics the behavior of a particular

data set following application of gain via multiplication or division

can be determined. The method of mean-variance used to

calibrate the gain of charge coupled devices (CCDs) described

by Mortara and Fowler relies on the Poisson statistics of photons

and is widely used to characterize the gain of imaging detectors

[23,24]. The mean-variance plot reveals the number of photons

per arbitrary unit of readout allowing light intensity to be

compared across systems and gain settings. In the limit of zero

CCD readout noise, a mean-variance plot gives a TL relationship

with an exponent of 1.
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Here, fluctuation scaling is applied to crime and crime statistics

and its potential for testing policing and justice strategies

articulated. Using publicly available statistics we show: i) temporal

fluctuations in crime follow TL on local and regional scales, ii)

exponents vary across crime types, iii) pre-exponential factors vary

between jurisdictions, iv) over wider spatial scales crime shows

high levels of temporal clustering with some exponents approach-

ing 2; and v) the number of crime reports required to observe

larger scale behavior varies for different crimes. To compare to a

data set without the controversy of police reported crime, monthly

mortality reports for England and Wales were analyzed. We

propose that before an argument for a reduction in crime can be

confirmed, there must be both a reduction in the number of crimes

and a change in the scaling law as has been seen in epidemiology

[13]. In the absence of a change in the scaling law, the underlying

processes leading to crime cannot be said to have changed. The

scaling laws show evidence of or are resistant to many types of data

manipulation such as, systematic under-reporting by a factor,

stochastic manipulation of data by adding or removing crimes

from a data base, working to numerical targets, etc. We anticipate

this approach to the use of crime reports and police statistics will

become a routine addition to approaches based on the number of

crimes and per capita scaling to allow more direct comparisons

across nations, states, and regions with similar laws.

Theory
Taylor’s law is an empirical relationship in which the variance

of a system is a power law function of the mean value.

s2~a �NNa ð1Þ

In this expression, �NN is the mean number of occurrences of a

particular type, s2 is the variance, a is a pre-exponential factor and

a is an exponent. In the classic treatments in ecology, TL is

evaluated at fixed quadrat size. More generally, both a and a vary

with quadrat size and limiting values of a have been shown to

depend on the extent of randomness within a particular model

[25,26]. As spatial and temporal scales vary, a tends to approach

limiting values [16]. Here, s2 represents temporal fluctuations in

the number of events occurring in one month periods computed

over 12 months.

In the form given in equation 1, we assume the TL relationship

reflects the behavior of the process underlying the events which are

sampled and detected perfectly. Experimental pre-exponential

factors can provide information about the detector and the process

of detection. One example is the determination of multiplicative

gain, G, applied to a system [23,24]. A perfect Poisson process

(a = a = 1) will produce a mean-variance plot with a slope of one

(s2~ �NN1). If the mean variance plot of a process known to be

Poisson exhibits a slope ? 1, this represents gain (e.g. s2~G �MM1,

where �MM is the average measured signal). Previously this has been

applied to photon detectors based on the assumption that photons

are Poisson distributed [23,24]. The approach may be generalized

to all power law relationships of the form of equation 1. If the

magnitude of the observed events, M, is related to the actual

events by a gain factor, G, such that �MM~G �NN and s~Gs, then

substitution into equation 1 and rearranging yields:

s2~G 2{að Þa �MMa ð2Þ

This expression indicates that as a approaches 2, the scaling law

becomes gain invariant (e.g.: G 2{að Þ?1 as a?2) and elsewhere

the effect of gain on the power law is predictable with the exponent

being invariant to multiplication and division. The invariance of

power law exponents to rescaling is well known and equation 2

reinforces prior work such as that arising from the analysis of the

spatial and temporal distribution of trees over a period of 70 years

using TL and the Lewontin-Cohen model [19]. Equation 2

suggests that in otherwise similar experiments (scale, system,

species, etc.) TL relationships having the same a and a but

exhibiting different pre-exponential factors (G 2{að Þa) may be

interpreted as having different gain. Using experimentally

determined TL relationships, gain may be interpreted using two

frameworks: absolute and relative G.

Absolute G comparisons require prior knowledge of both a and

a for the process being studied. If these are known, then G may be

obtained from equation 2. Gain obtained in this way may be

compared directly to any other value of G obtained from any TL

process and is a characteristic of the detection system not the

process being detected.

Relative G interpretation requires less prior knowledge but

assumes the detection systems report on the same process. For

example, consider two constabularies (indexed 1 and 2) reporting

crimes of a particular type. Applying equation 2 yields two

modified TL relationships corresponding to the two constabular-

ies.

s2~G1
2{a1ð Þa1

�MMa1 and s2~G2
2{a2ð Þa2

�MMa2 ð3Þ

If statistical tests indicate a1 = a2, then apply the single process

assumption (e.g.: a1 = a2 and a1 = a2). This assumption allows the

a’s to cancel and the index to be dropped from a in a ratio of pre-

exponential factors, R.

R~
G1

2{a1ð Þa1

G2
2{a1ð Þa2

~
G1

G2

� � 2{að Þ
ð4Þ

The relative gain, GR, can be obtained by rearranging.

GR~
G1

G2

~R
1

2{að Þ ð5Þ

For clarity, empirically determined pre-exponential factors from

TL will be referred to as A and assumed to represent the product

G 2{að Þa. Two points should be noted. First, when the relative gain

is one, this means the gains are equal not that gain is absent.

Second, the assumption that a1 = a2 implies a1 = a2 may be

challenged but is reasonable for similar events, such as incidents of

violence in two adjacent regions. In the absence of this

assumption, a discussion of R remains valuable as it reports on a

combination of G and/or a.

The data sets here exhibit TL behavior over limited scales.

More generally, the overall fluctuation scaling relationship is

described by a function relating the variance to the mean number

of observed events.

s2~f �MMð Þ ð6Þ
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Since the characteristics of this function may be unknown, we

apply TL as an approximation over sections of the fluctuation

scaling relationship.

Interpreting fluctuation scaling relationships in the context of

crime may be done with a simple model. In the case of perfect

policing, justice, rehabilitation and supporting social policies when

an individual commits a crime, that individual would be arrested,

convicted, jailed, and later released back into the community

perfectly reformed with no incentive to re-offend. That offence

leads to no further crime and is completely independent of all

others. Such true randomness would lead to a fluctuation scaling

relationship with an exponent of one. On the other hand, in a

different scenario, the individual avoids arrest, re-offends, incites

others to crime and changes the community around them leading

to clustered crime and scaling laws with exponents other than 1. In

the absence of the exact mechanism by which crime becomes

clustered, the empirical scaling law will indicate they are not

evenly distributed. While there are many ways to explain TL

behavior, we will discuss the exponents in terms of apparent

randomness and clustering. Apparent randomness will be used to

describe a = 1 while making clear that models exist in which a

Poisson distribution may appear from regularly spaced events [27]

and clustering will be used to discuss a .1. In the case of crime, it

is desirable to develop interventions to detect and disrupt

clustering of crime. While it is theoretically possible to have high

numbers of apparently random crimes, based on results from

epidemiology [13] this is unlikely to occur in response to

interventions reducing the TL exponents to 1.

All aspects of the fluctuation scaling experiment (e.g.: the basic

underlying events, classification, and reporting) contribute to the

system variance. As a result, examination of fluctuation scaling

behavior allows a number of questions to be answered: do crime

and death appear random, do all crimes exhibit the same scaling

behavior, are they scale invariant, if they are not scale invariant

does this become apparent at the same scale for all types of crime,

and can manipulation of a data set be detected?

Materials and Methods

Data Sets
Population data for Nottinghamshire and Derbyshire were

obtained from the UK Office of National Statistics (release date

19/12/2013) [28]. Summary crime data for the two regions

were obtained from the UK Office of National Statistics (release

date 23/1/2014) [29]. Local scale police statistics from the

Derbyshire and Nottinghamshire regions were obtained from

the UK Home Office via its web site using the policing

neighborhoods (accessed between November 2013 and July

2014) [30,31]. Additional regional and country scale data were

obtained from the Economic Policy Centre via its UKCrime-

Stats web site (access date 27/03/2014) [32]. Mortality data for

2013 were provided by the Office of National Statistics via the

report on Monthly Provisional Figures on Deaths Registered in

England and Wales (release date 28/01/2014) [33]. All data

were used directly. Crime reports provided by the police have

been subject to controversy [34]; however, the presence or

absence of any manipulation of the data sets was assumed to

contribute to the observed variance. Under-reporting has been

considered in the context of fluctuation scaling in epidemiology

[13] and certain types of manipulation were modeled here. The

mortality data are provided in Data File S1 under the terms of

the UK Crown Copyright Open Government License. The

local data set as collated for this study has been provided in

Data File S2 and are provided under the UK Open

Government License. The regional scale data have been

provided in Data File S3 with permission from the Economic

Policy Centre.

Overview of Regions
The regional and country statistics used here include: England,

Wales, and Northern Ireland in the case of Crime and include

England and Wales in the case of mortality. Regional mortality

statistics were divided by county and unitary authorities aggre-

gated into country segments (e.g. East Midlands, etc.) and then to

country level. Policing in England, Wales, and Northern Ireland

for the purposes of the crime statistics reported here was organized

into 43 constabularies. Each constabulary is broken into policing

neighborhoods which vary in size and in the number of crimes

typically reported in a one month period. The data provided are

subject to change after they first appear and in our experience

have changed after a year or more online. This means the data

used here represent a snapshot of the time they were accessed.

Local scale statistics consisted of data from 151 policing

neighborhoods within the two constabularies responsible for

Nottinghamshire and Derbyshire. The crimes considered at local

scale were: Anti-Social Behavior, Burglary, Violence, and Total

Crime. Nottinghamshire and Derbyshire are similar in size (2235

km2 and 2703 km2, respectively) and population (1,090,700 and

1,039,600, respectively). Nottinghamshire had a higher number of

reported crimes (69,277, excluding anti-social behavior) when

compared to Derbyshire (52,022, excluding anti-social behavior)

for the year ending September 2013 [29]. Regional and country

scale data were from 43 Constabularies and considered Anti-

Social Behavior, Burglary, Robbery, Criminal Damage and

Arson, Violence, Drugs, and Other. The City of London was

included in the UK wide aggregated crime reports but omitted

from the regional and country scale analysis due its scale being

more comparable to a local crime neighborhood than the other

constabularies.

Statistical Analysis
Averages and variances were computed on events reported in

one month intervals within a particular location or region over a

12 month period beginning November 2012 and ending October

2013. Data for single crime categories were analyzed by regression

of log transformed means and variances by standard least squares.

Analysis of local scale data across all crime types and the two

counties (Nottinghamshire and Derbyshire) was done using

general regression analysis applied to the log transformed mean

and variance values with categorical variables using commercially

available software (Minitab version 16.2; Minitab Inc.). Data

categories were location (0 ; Derbyshire and 1 ; Nottingham-

shire) and type of crime (0 ; Total crime, 1 ; anti-social-

behavior, 2 ; burglary, and 3 ; violence) and these were

analyzed including all variables and interactions (e.g.: location,

crime, log(mean), location*crime, location*log(mean), crime*

log(mean), and location*crime*log(mean)). Stepwise elimination

of parameters and parameter interactions was carried out until all

remaining parameters were significant. A separate analysis of the

difference between local and regional scale fluctuation scaling was

done by general regression analysis using the log transformed data

and a scale categorical variable (0 ; local scale, 1 ; regional

scale). Scale was assigned based on whether the data were

obtained from policing neighborhoods (scale = 0) or from con-

stabulary or larger scale (scale = 1).

Fluctuation Scaling, Taylor’s Law, and Crime
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Results

Fluctuation scaling of mortality
Due to known limitations of UK crime data [34], total mortality

data were considered (Data File S1) as a control data set less

subject to classification errors or manipulation. The mortality data

showed some correspondence to TL (Figure 1, left panel), the

exponent was invariant to multiplication, and the pre-exponential

factor scaled under multiplication as predicted by equation 2.

Inspection of the mean-variance plot revealed clear deviations

from TL scaling with lowest mean values approaching the

behavior of a Poisson distribution and the highest systematically

greater than the predicted values from a single TL fit to the data

set. Segmented analysis of the data (Figure 1, right panel)

indicated the exponent approached a low scale limit of 1 and a

high scale limit of 2 while the pre-exponential ranged from 1 at the

low scale limit and ,0.018 at the higher scale limit.

The high and low scales represent average monthly death

counts as low as 2.17 (City of London) and as high as 42,231

(England and Wales). The overall scaling law at low counts

appeared to be a Poisson process with no gain. As the mortality

increased, temporal clustering became apparent and the TL

exponent increased from 1 to 2 beginning at ,50 deaths

(estimated by inspection of Figure 1).

Fluctuation scaling of Crime
Observed behavior within individual policing

neighborhoods. The 151 policing neighborhoods within Not-

tinghamshire and Derbyshire (Data File S2) exhibited total crimes

per month ranging from an average of 835 in Nottingham Town

Centre to 8 in Hulland and Brailsford (Figure 2). Overall the

range of total crime covered slightly over two orders of magnitude

with all the data covering 3.5 orders of magnitude. It should be

noted that total crime within a policing neighborhood is not an

indicator of per capita crime since the population of the policing

neighborhoods varied.

Local fluctuation scaling in Nottinghamshire and

Derbyshire. Mean-variance plots for crime in Nottinghamshire

and Derbyshire (Figure 3) exhibited TL behavior with data

covering between 1 and 3 orders of magnitude for individual

crime types. In accordance with the behavior of the mortality data

under multiplication, in all cases tested the exponent was observed

to be invariant under multiplication and the pre-exponential factor

scaled in accordance with equation 2. Violence approximated the

scaling associated with a Poisson process while all other indicators

of crime had exponents considerably greater than one. This

suggests greater temporal clustering of the non-violent crimes

within the local scale data set. Within the individual TL plots, the

exponents and pre-exponential factors varied between the crime

categories demonstrating that identical sampling locations (polic-

ing neighborhoods) give rise to variable fluctuation scaling

relationships for different categories of crime.

Global scaling model in Nottinghamshire and

Derbyshire. Despite the significance for individual relation-

ships, the presentation by individual crime type (Figure 3) did not

address the extent to which a and A varied significantly by crime

type and the regions served by a particular constabulary. A

combined data set was used to test this (Table 1) with crime type

having a significant effect on a (crime*log(mean) in Table 1; p,

0.000001) and location having an effect on A (location*crime in

Table 1; p = 0.00735). The TL exponents for individual crime

categories were significantly different from each other with the

exception of burglary and anti-social behavior (e.g.: atotal ?
aviolence, aburglary, and aanti-social; aviolence ? atotal, aburglary, and

aanti-social; aburglary ? aviolence and atotal; aanti-social ? aviolence and

atotal). There was no evidence values of a differed by location,

however, A differed by location for anti-social behavior (p = 0.014)

and burglary (p = 0.019) (Table 2).

Application of equations 2–5 and the relative gain method to

values of A recovered from the regression model provided GR

values subsequently used to correct the number of burglaries and

anti-social behavior incidents reported from the two regions. The

relative number of burglaries (Nottinghamshire reports/Derby-

shire reports) in the two regions based on direct reading of the

number of burglaries was 1.15. Application of the GR adjustment

brought the relative number of burglaries closer to 1.57. The raw

number ratio for anti-social behavior was 0.75 which became 0.57

after relative gain adjustment. The relative gain parameters

suggested a relative under-reporting of anti-social behavior in

Derbyshire and under-reporting of burglary in Nottinghamshire.

Figure 1. Fluctuation scaling for reported mortality in England and Wales. Left panel: The mean variance plot shows reasonable
correspondence to TL (dashed line) with log(A) = 21.18660.041 and a = 1.79860.019. The solid line represents Poisson distributed data with no gain.
Multiplication by 10 had no effect on a, but changed A to 0.1042. Right Panel: The relationship between pre-exponential factor and TL exponent for
different data segments in panel on the left. Plot was created by sorting the data by mean value, computing A and a by linear regression on a 30
point moving segment, and including all values in which a was significant with 95% confidence. The arrow represents the approximate direction of
the spatial scale. A perfect Poisson process with no gain is a point at (1, 1). The solid line is to guide the eye.
doi:10.1371/journal.pone.0109004.g001
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These results should not be interpreted as a finding of fault with

the constabularies in the two regions. Rather, the results indicate

that direct comparisons of the number or reported crimes between

police forces should be treated carefully as the number of crimes

resulting in reports may reflect rationally developed public

information campaigns, strategies, classification training, and

policing priorities in response to local conditions while working

with available resources as well as any underlying characteristics of

the populations. As noted in the theory section, interpretation of A
in terms of relative gain (equations 4 and 5), while offering a simple

explanation for variation in A, assumes the underlying distribu-

tions for these two regions are the same. The values of G, a, or

Figure 2. Example data showing reported crimes from high and low crime policing neighborhoods in Nottinghamshire and
Derbyshire. Each point represents the number of crimes reported in a one month period. Data is shown for total crime (&), anti-social behavior
(¤), burglary (m), and violence (N).
doi:10.1371/journal.pone.0109004.g002

Figure 3. TL plots for the Derbyshire and Nottinghamshire policing neighborhoods. Plots include total crime reports, anti-social behavior
incidents, burglaries, and violence. Each point represents the average and variance computed over a 12 month period as represented in Figure 2.
Each panel includes the best fit line to the data (dotted line) and a Poisson system having a gain of 1 (solid line). These plots indicate that within a
policing region, different crime categories exhibit specific exponents and pre-exponential factors. The data represent 205,857 reported crimes, 84,165
incidents of anti-social behavior, 16,369 burglaries, and 24,759 reports of violence.
doi:10.1371/journal.pone.0109004.g003
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both could be varying. However, explanations of significant

differences in A involving a changing reinforce the notion that

direct comparisons between Police forces should be done with

caution. In either case, the data here indicate that reports of

violence and total crime between these two forces can be directly

compared while anti-social behavior and burglary cannot without

recourse to a and/or G.

Local scale manipulation of data. To test the effects of

simple manipulations of the data set (Data File S2) the Derbyshire

neighborhood data were subjected to targets (Figure 4a & 4b),

thresholds (Figure 4c & 4d), and multiplication. In all cases,

multiplication changed the pre-exponential factor only as

described by equation 2. Targets were simulated as a zone over

which the data snapped to a target value. For example, if a target

was 100 and the zone width 10, then once 91 reports were reached

the value would be set to 100. This essentially states that the

variance becomes less dependent on the number of reports over a

defined interval. Thresholds were modeled by requiring that a

minimum number of crimes of a particular type must occur before

the first report is generated. In this model, if the threshold is 10, 11

incidents result in 1 report being logged and all subsequent

incidents occurring within a month increasing the report count by

one. Both types of manipulation generated changes in the TL

behavior. Target driven behavior resulted in more constant

variance followed by a marked dip in the TL plot which resulted,

in some cases, in changed exponents. This feature gives indications

about the strength of the incentive and the target value.

Application of a threshold resulted in excess variance, a large

adjustment of the pre-exponential factor, and a tendency to show

concave downward curvature in the TL plot. Although these three

models are simplistic, they demonstrate that some manipulations

can be detected and that different types of manipulation have

different effects on the fluctuation scaling relationships.

Regional fluctuation scaling of total crime, violence, drug
crime, anti-social behavior, burglary, criminal damage
and arson, and other crime

Regional and country scale (Data File S3) TL plots tended to

exhibit greater exponents and smaller pre-exponential factors than

did the local data (Figure 5). Across the categories, the maximum

exponents appeared to be values near 2 (observed in the case of

antisocial behavior and ‘‘other’’ crime). The remaining categories

did not reach this value when the scale included all of England,

Wales, and Northern Ireland. Within the crime categories studied,

‘‘other’’ crime exhibited strikingly different behavior than the

others. The TL plot was characterized by an exponent near 2

observed for relatively few reported crimes combined with a large

pre-exponential factor. The reason for this is unclear; however, the

‘‘other’’ category within the UK includes a large number of crimes

of deceit, including such things as forgery, fraud, false documents,

perjury, tax evasion, and related activities. These crimes may be

more fundamentally clustered in nature and hence different from

other categories of crime. This is, however, a somewhat simplified

view of the category which also includes such things as health and

safety offences and dangerous driving. Further work is needed to

look at the offences composing the ‘‘other’’ category to better

understand the unique characteristics of this grouping.

Combined fluctuation scaling plots of local and regional data

sets accentuate the extent to which fluctuations across all levels of

spatial aggregation deviate from a single TL relationship

(Figure 6). As seen in the mortality data, the overall fluctuation

scaling relationship could not be explained by a single TL

relationship. To test the significance of the difference in behavior

at high and low scale, the data were placed in categories of high

(constabulary or greater scale) and low (local neighborhoods) scale

for statistical tests. In all cases, the high and low scale data

exhibited significantly different (p, 0.0001) values for a and a. It

should be noted that a quadratic fit (also highly significant) may

also be used to demonstrate that a single TL relationship is

insufficient to explain the data at all scales. The intersection of the

two TL relationships provides an approximate lower bound on the

number of crimes in an observing region before the higher scale

behavior can be observed. Using the intersections to define this

lower boundary and using it as a proxy for a boundary between

regional and local scale, burglary required the largest number of

crimes, 526, while violence was roughly an order of magnitude

lower, 61.

Relationship between exponent and pre-exponential
factors

To better understand the relationship between the pre-

exponential factor and the exponent of a TL relationship, these

parameters were aggregated over the data sets (Figure 7). This

indicates that although the observed TL coefficients vary with the

scale as found previously by Sawyer, the crime and mortality data

clearly show different behavior than predicted by the hierarchical

aggregation model used in the earlier study (with the possible

Table 1. ANOVA Table for the general regression model.

Source DF Seq SS Adj SS Adj MS F P

Regression 7 1810.61 1810.61 258.658 5454.7 0.000000

Log(mean) 1 1805.55 831.89 831.891 17543.4 0.000000

Location*Crime 3 2.60 0.57 0.192 4.0 0.007346

Crime*Log(mean) 3 2.46 2.46 0.819 17.3 0.000000

Error 597 28.31 28.31 0.047

Lack-of-Fit 535 25.66 25.66 0.048 1.1 0.293128

Pure Error 62 2.65 2.65 0.043

Total 604 1838.92

Overall the model explained 98.46% of total variance. The dependent variable is log(variance). In this model, log(mean) is the log10 of the average over 12 monthly
values for reported crime of a particular type, location*crime indicates how A varies for particular crimes between the regions served by the Derbyshire and
Nottinghamshire constabularies, and crime*log(mean) indicates the variation in a for particular crime types. Note, the significance levels depend on which condition is
used as a reference value, but the basic conclusions are unchanged.
doi:10.1371/journal.pone.0109004.t001
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exception of the ‘‘other’’ crime category). It is also noteworthy that

the variable sampling procedures compared by Sawyer had some

effect on the values of A and a, but are confined to the same

trajectory. Application of a threshold and rescaling by multipli-

cation had the effect of moving the trajectory of A and a up the co-

ordinate system. This suggests, that once well understood through

repeated investigations, many types of data manipulation should

be observable as excess gain, excess variance, and incommensurate

change in the two parameters of the scaling law.

Discussion

This work establishes that crime reports follow TL at local

scales. Violence was only slightly above apparent randomness in its

local scale behavior. However, on larger scales it shows more

complex behavior. This observation is of interest relative to what is

known from population scaling studies of cities. For example, the

exponent for serious crime scaling with population (1.18) in US

cities indicates crime accelerates with city population [5]. Many

other studies investigating serious crime and homicides with urban

scaling have found similar results [2,3,4,35]. There is evidence that

population scaling laws vary across countries [2]. The well-

established observation that serious crime and homicide accelerate

in urban areas might indicate a tendency for population centers

(e.g. the Nottingham Town Centre and Derby City neighbor-

hoods) to deviate from the more rural areas in violence scaling.

The latter was not observable in our data. What is less clear is the

extent to which population and fluctuation scaling report on

similar processes. Future studies should seek to decouple popula-

tion scaling from fluctuation scaling. One approach to this might

be to revisit the population scaling studies by breaking them down

to neighborhoods within cities and see if the scaling laws are a

characteristic of the population center as a whole or whether it

contains spatially dependent structure.

The data reported here demonstrate that anti-social behavior

shows temporal clustering and confirms previous work on

clustering of burglaries. Prior work has made clear that incidents

of burglary cluster spatially and attempts have been made to

understand this clustering behavior using foraging theory [36].

Recent work in China has confirmed the observation that burglary

correlates with past history in an area [37]. In the present work,

the non-Poisson scaling exponent found in the case of burglary

reinforces the notion of clustering and correlation with prior

history within local regions. This is fundamentally different from

violence in that the clustering behavior is readily observable down

to the smallest of scales in the data set. At local scale, there was no

evidence for variation in the burglary scaling law exponent across

the two regions studied. The robustness of this exponent on the

local scale may be responsible for the widespread understanding

that burglaries cluster and most observers are unlikely to find it

surprising that anti-social behavior clusters as well. It also suggests

that further local scale interventions could disrupt the observed

local clustering, driving down the covariance of reported crime.

The nature of the location dependent variation in pre-

exponential factors for anti-social behavior and burglary is less

clear. We are unaware of a discussion of gain applied to power

laws outside of electro-optical studies of photon detectors [23].

Relative gain variations could represent such things as a tendency

for one police force to classify clustered burglaries into a single

crime for reporting purposes and/or different responses to

victimization within the two populations. That relative gain

variation was specific to particular crimes (burglary and anti-social

behavior) and did not systematically apply to the region served by

a single police force supports the view that these were true relative
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gain variations and not artifacts of the neighborhood size or the

transition from local to regional and country scale behavior.

Future work should seek a better understanding of gain by looking

at more constabularies down to local scales and seeking to

understand whether practices within constabularies influence gain.

This understanding is important as A is an indicator of the

comparability of statistics arising from different regions. Direct

comparisons are clearly invalid in some instances, but equations 1–

5 suggest ways to harmonize crime report comparisons.

The contrast between local and regional scale behavior is of

fundamental importance. Epidemiology suggests that TL relation-

ships change in response to vaccination programs [13]. If local

level policing, criminal justice, and other public policy initiatives

‘‘immunize’’ communities from crime, then these strategies can be

evaluated by looking at the scaling parameters. In the case of

violence which appears nearly random, there is little that can be

done at the neighborhood level to affect the clusters of violent

crime. Clustering is nearly invisible at this level and evaluating a

police force or its officers based on the rise or fall of violent crime

at local level is doing them a disservice. Disruption of larger scale

clustering behavior may be more fruitful, but requires larger scale

policies and practices. More can be done at local level for the

categories of anti-social behavior, burglary, and total crime. For

those categories, clustering exists that is visible at local scale and

progress can be observed via local fluctuation scaling.

Changes in crime report numbers have been of considerable

policy interest within the area of study. Issues relating to

manipulation of numbers have been the subject of Parliamentary

Committee hearings and widely covered within the popular press.

Fluctuation scaling behavior shows promise as a tool to track and

evaluate changes in crime reports over time. Fluctuation scaling is

a more robust indicator than numbers alone and with further work

should allow more clues to underlying mechanisms of crime to be

understood. The results here show statistically defensible variations

in the behavior of different types of crimes across local and

regional scales and between regions served by different constab-

ularies which should allow better targeted interventions. This

allows policy makers to move beyond reported crime numbers to

Figure 4. TL plots of the Derbyshire data following data manipulation. Panels a and b illustrate the effects of incentives to reach targets.
Panels c and d model the effects of applying a threshold to the reports. Panel a shows data subjected to an incentive to reach 10 reports a month
operating above 5 reports. This model consists of reports being ‘‘snapped’’ to 10 once 5 reports are exceeded. Note the gap in the results beginning
near 5, the level variance near 10 and subsequent drop in variance at 10. TL fit (long dashed line) is similar to that obtained from the un-manipulated
data. Panel b illustrates the impact of an incentive to reach 75 reports with a width of 35 reports. TL fits show how the manipulation results in an
increase in exponent and a decrease in pre-exponential factor. Note the gaps in the results beginning near the lower end of the incentive zone, the
flattening of variance between the bottom of the incentive zone and the target value, and subsequent drop in variance at 75. These features give
clues about the ‘‘strength’’ of the incentive and the target value. Panels c and d are TL plots for data to which a threshold of 10 crimes must be
exceeded before a crime is reported (solid squares and long dashed line) in comparison to the original TL fit (dotted line). The solid lines are the
behavior of a Poisson distribution with no gain.
doi:10.1371/journal.pone.0109004.g004
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develop policies to change the fluctuation scaling relationships

more fundamentally. Much further work is needed to look at this

behavior over larger regions and in multiple countries.

Conclusion

We have shown that crime and mortality show temporal

fluctuation scaling which is well approximated by TL over high

(Constabulary and Country) and low (policing neighborhood)

Figure 5. Regional and country scale TL plots for total (open
triangle, Log(A) = 21.62±0.27, a = 1.871±0.066), violence (open
diamonds, Log(A) = 21.16±0.37, a = 1.72±0.12), drugs (open
squares, Log(A) = 20.42±0.28, a = 1.43±0.11), anti-social be-
havior (filled diamonds, Log(A) = 21.70±0.30, a = 2.033±0.084,
b u r g l a r y ( f i l l e d t r i a n g l e s , L o g ( A ) = 2 1 . 4 4 ± 0 . 2 3 ,
a = 1.773±0.078), criminal damage and arson (filled circles,
Log(A) = 21.57±0.22, a = 1.736±0.075), and other crime (filled
squares, Log(A) = 20.72±0.18, a = 2.094±0.081). The data for City
of London were classified as local scale. The highest point is country
wide aggregation of 43 constabularies.
doi:10.1371/journal.pone.0109004.g005

Figure 6. Fluctuation scaling relationships for total crime, anti-social behavior, burglary, and violence spanning local (filled
squares), regional and country scales (filled diamonds). Intersection points between the TL relationships for the two scales occurred at
2.4460.25 (275), 2.3060.27 (200), 2.7260.24 (526), and 1.7960.27 (61) events in log units with number units in parentheses for total crime, anti-social
behavior, burglary, and violence, respectively. The highest point in each panel is country wide aggregation of 43 constabularies.
doi:10.1371/journal.pone.0109004.g006

Figure 7. The relationship between a and A for the crime (filled
squares) and mortality (open squares) data, Sawyer’s quadrat
size simulations (filled triangles), and data subjected to a
threshold and rescaled by a factor (filled circles). Excepting
‘‘other’’ crime (filled diamond), the crime categories and mortality data
follow clear trends. ‘‘Other’’ crime appears to be fundamentally different
from the remaining crime categories and mortality both in terms of its
fluctuation scaling (Figure 5) and the observed values of a and A.
doi:10.1371/journal.pone.0109004.g007
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scales and that the TL parameters vary with crime type and

location. These statistics are relatively straightforward to calculate

and could be evaluated over shorter time scales with appropriately

constructed data sets. This will allow for more timely evaluation of

the impact of public policy and use of resources using methodology

which is potentially more robust to data collection methods. We

anticipate fluctuation scaling will become a routine tool in the

study of crime.
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