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Abstract

Elucidation of the mechanism of biomacromolecular recognition events has been a topic of intense interest over the past
century. The inherent dynamic nature of both protein and ligand molecules along with the continuous reshaping of the
energy landscape during the binding process renders it difficult to characterize this process at atomic detail. Here, we
investigate the recognition dynamics of ubiquitin via microsecond all-atom molecular dynamics simulation providing both
thermodynamic and kinetic information. The high-level of consistency found with respect to experimental NMR data lends
support to the accuracy of the in silico representation of the conformational substates and their interconversions of free
ubiquitin. Using an energy-based reweighting approach, the statistical distribution of conformational states of ubiquitin is
monitored as a function of the distance between ubiquitin and its binding partner Hrs-UIM. It is found that extensive and
dense sampling of conformational space afforded by the ms MD trajectory is essential for the elucidation of the binding
mechanism as is Boltzmann sampling, overcoming inherent limitations of sparsely sampled empirical ensembles. The results
reveal a population redistribution mechanism that takes effect when the ligand is at intermediate range of 1–2 nm from
ubiquitin. This mechanism, which may be depicted as a superposition of the conformational selection and induced fit
mechanisms, also applies to other binding partners of ubiquitin, such as the GGA3 GAT domain.
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Introduction

The process of molecular recognition and its fundamental role

for protein function have been recognized since the late 19th

century. Over time, favored mechanistic models have shifted from

the ‘lock-and-key model’ [1] to the ‘induced fit model’ [2] and

most recently to ‘conformational selection’ [3–5] in order to

explain a myriad of binding events including molecular recogni-

tion, allosteric regulation, and enzymatic activity. These processes

display a variable degree of binding specificity between a protein

and one or several small ligands or macromolecules. Recent

advances in experimental NMR spectroscopy [6], and computa-

tion [7] strongly suggest that conformational dynamics is an

essential property of proteins with direct consequences for their

function. In the ‘induced fit model’, the ligand first binds loosely to

the protein in its inactive form gradually inducing a change to the

active form leading to the formation of the final complex. The

alternative ‘conformational selection model’ assumes that the

unbound protein visits through thermal fluctuations from time-to-

time the active forms to which the ligands then binds, resulting in

the final dynamically restricted protein-ligand complex. Most

recently, a generalization of the conformational selection model

that encompasses both the selection and adjustment features has

been proposed [8]. In addition, based on coarse-grained

simulations [9,10] mechanisms intermediate between conforma-

tional selection and induced fit were suggested. However, because

the details of the binding process are difficult to capture directly by

measurements, these models have not yet been validated by

experiment. NMR studies of free protein states often identify

signatures of the bound state pre-existing even in the absence of

the ligand [11–14]. While such a behavior is consistent with the

conformational selection model, it may not necessarily rule out an

induced fit process as an alternative mechanism [15].

In a recent pioneering study, Lange et al. [16] put the intrinsic

flexibility of ubiquitin, inferred from NMR residual dipolar

couplings (RDCs), in relationship to the structural diversity of a

set of X-ray crystal structures of ubiquitin complexes with other

proteins. An empirical ensemble consisting of 116 structures,

termed EROS, generated from RDCs and other NMR data of

free ubiquitin was found to cover well the structural heterogeneity

of ubiquitin in the various complex forms, which supported the

notion of conformational selection for the binding process of

ubiquitin. Re-interpretation of the same data by Wlodarski and

Zagrovic [17] suggested that during the binding event the protein

conformation that is structurally most similar to the bound

conformation becomes predominant via the conformational

selection model. This step is followed by optimization of the

binding interface via a ‘residual induced fit’ mechanism after the

conformational selection step. Both studies [16,17] relied on the

interpretation of the free state of ubiquitin by a relatively small

conformational ensemble, but did not take into account motional

time scale effects reflecting interconversion rates between con-

formers nor the alteration of the protein energy landscape itself by

the presence of the binding partners.
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A detailed thermodynamic and kinetic picture in terms of

populations of individual protein conformations and the time

scales of their interconversions is essential for understanding the

recognition dynamics in a biological context and also to

discriminate between induced fit, conformational selection, or

other mechanisms, but unfortunately such information is not

provided by empirical ensembles [16,18–22]. The goal of the

present work is to obtain a detailed mechanistic view of the

binding process of ubiquitin by interpreting the experimental data

based on substantially larger, time-resolved ensembles that obey

Boltzmann statistics. Recent advances in computer hardware and

molecular mechanics force fields has permitted the in silico

investigation of protein dynamics with unprecedented accuracy

on increasingly long time scales [7], offering a powerful tool for

studying mechanisms of molecular recognition [23–26]. In this

study, we perform microsecond time scale all-atom molecular

dynamics (MD) simulations of ubiquitin and its binding partners

using the latest generation of molecular mechanics force field [27],

which provides new qualitative and quantitative insights into the

recognition dynamics of this model system.

To examine the effect of ligand molecules, we focus here on the

ubiquitin interacting motif (UIM), which is a conserved short a-

helical motif for ubiquitin recognition found in many proteins

involved in ubiquitin association [28,29]. Recent NMR relaxation

data reveal the capability of a UIM domain to perturb the

plasticity of the ubiquitin molecule on multiple time scales [30]. In

the present study, we use the ubiquitin:Hrs-UIM complex [31] to

examine at atomic detail the energy landscape and dynamics of

ubiquitin in response to the approach of the Hrs-UIM ligand.

Results

Validation of the microsecond MD trajectory against
NMR parameters

To achieve comprehensive and accurate sampling of the

conformational space of free ubiquitin, a 1 ms MD simulation

was performed in explicit solvent at 300 K. Backbone residual

dipolar couplings measured in 22 alignment media and chemical

shifts of ubiquitin, which encode atomic-detail information of

protein structure and dynamics, are back-calculated from the MD

trajectories using methods discussed previously [32,33] and

compared to the experimental values [34,35] for validation

(Figures S1 & S2). The observed level of agreement with this

extensive body of experimental data attests to the good accuracy of

the MD ensemble permitting the extraction of quantitative

information about conformational substates and their thermal

fluctuations from the trajectory as explained below.

Sampling of conformational space of free ubiquitin
Backbone Ca fluctuations, expressed as root mean square

fluctuations (RMSF), of free ubiquitin during the course of the MD

simulation reveals similar trends as those seen for the EROS

ensemble and the X-ray crystal structures of the ubiquitin

complexes (Figure 1). Although the MD-fluctuations are on

average considerably smaller than the ones of the EROS

ensemble, they well capture the structural variability among the

crystal structures.

For a better comparison of the different structural ensembles,

we projected 19 representative X-ray crystal structures, the EROS

ensemble, and the full MD ensemble on the two largest principal

components determined from the X-ray crystal structural

ensemble. Clearly, the MD ensemble of the free form of ubiquitin

samples all the bound crystal structures (Figure 2A) with some of

the crystal conformations located in regions that are at the

boundary of the conformational space sampled by the MD

trajectory and hence they are relatively lowly populated

(Figure 2B). The 106 snapshots of the MD ensemble generated

during the 1 ms trajectory densely cover the relevant conforma-

tional space, which contrasts the sparse coverage provided by the

116-member EROS ensemble (Figure 2A).

Structural comparison between free ubiquitin and all
ubiquitin crystal complexes

A recent pair-wise structural comparison between X-ray crystal

structures and the corresponding closest EROS conformers [17]

showed that the structural changes in regions surrounding the

binding site are significantly more pronounced than for the rest of

the protein. With the extended MD trajectory available, this result

prompted us to examine whether it is caused by the incomplete

representation of free ubiquitin by only 116 EROS structures.

Therefore, we conducted pair-wise structural comparisons for both

X-ray crystal structures vs. the closest EROS conformers and X-

ray crystal structures vs. the closest MD conformers. A systematic

drop of the Ca RMSD is observed for all 19 X-ray structures when

a dense representation of the MD ensemble with all 106 snapshots

is used (Figure 1C). Moreover, the above-average deviations in the

binding regions, which are observed in the comparison of X-ray

crystal structures vs. closest EROS conformers, disappear when

using the MD ensemble (Figure 1B). Sparser sampling of the MD

ensemble leads to a behavior that resembles the one of the EROS

ensemble (Figure S12). Thus, the full MD simulation provides a

qualitatively new picture of the relationship between the free state

of ubiquitin and its conformations in the various complexes.

The principal mode dynamics of free ubiquitin
In the PCA subspace spanned by the two largest modes, the

conformations of free ubiquitin can be grouped into three major

substates, which are primarily separated along the first principal

component (Figures 2B & S5). The internal dynamics along the

largest principal mode corresponds to pincer-like motion (Figures

S7 & S8) involving regions of the loop b1–b2, loop a1–b3, and the

C-terminal of helix a1, consistent with the results by Lange et al.

[16].

The autocorrelation function C(t) of protein motion along the

largest mode reveals the motional time scales involved (Figure 3).

Its accurate characterization requires an expansion with at least

Author Summary

Molecular recognition plays a central role in many
biological processes, ensuring specific and efficient inter-
action between binding partners. Various models for
describing the mechanisms of molecular recognition have
been proposed, but the validation of these models has
been traditionally difficult due to the transient and
complex nature of the dynamic recognition process. In
the present study, we aim at visually characterizing the
mutual interplay between human ubiquitin and its ligands
via microsecond time scale molecular dynamics simulation,
which is validated rigorously against experimental NMR
data. Taking advantage of Boltzmann sampling of molec-
ular dynamics snapshots, we statistically reweight the
populations of ubiquitin in the presence of its ligand
molecule at intermediate distance range (1–2 nm) to
examine the population redistribution mechanisms. These
results offer new atomistic insights into this vital protein-
protein recognition event.

In Silico Study of Ubiquitin Recognition
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four exponentials with effective correlation times ranging from

picoseconds to tens of nanoseconds (Figure S6), suggesting that the

energy landscape has a rugged nature with multiple energy

barriers of various heights. The two dominant exponentials have

effective correlation times of 0.4 ns and 13 ns, respectively.

Appropriate sampling of all three substates in a single continuous

trajectory requires a simulation length that exceeds the correlation

time by typically two orders of magnitude. Indeed, the average

agreement between calculated and experimental backbone 15N-1H

RDCs and chemical shifts, expressed by the average Q value and

chemical shift RMSDs, respectively, steadily improves as the

trajectory approaches the ms-range (Figure S3). While all three

sub-states, S1, S2, S3, have a similar population (Figures 2 & S5),

S3 is closer to the majority of crystal-bound conformations than S1

and S2 and therefore is designated to play a unique role in the

binding event as evidenced by the following analysis.

Population shift in the presence of Hrs-UIM
In order to obtain the macrostate ensemble of the stable

ubiquitin:Hrs-UIM complex, a 300 ns explicit-solvent MD

simulation of this complex was performed starting from the X-

ray crystal structure [31]. It shows that the bound state adopts in

principal component space a distribution that is similar to the one

of substate S3 of free ubiquitin (Figures 4 & S9). This result

suggests that the presence of Hrs-UIM specifically selects a sub-

ensemble of ubiquitin conformations that have a favorable shape

and interaction properties during molecular recognition.

The large pool of ubiquitin structures from the 1 ms MD

simulation of free ubiquitin that encompasses all the bound

conformations allows us to systematically analyze the response of

ubiquitin to the presence of Hrs-UIM. Application of Boltzmann

reweighting of individual conformers [36], by recalculating their

potential energies as a function of the distance of Hrs-UIM from

the binding site, enables us to study population shift of ubiquitin at

unprecedented detail (Figures 5 & 6). While the perturbation of

ubiquitin populations by Hrs-UIM at long distances is subtle, the

population difference map unequivocally shows that the favored,

i.e. dominant, conformations are gradually shifted toward the

bound state. In particular, substate S3 becomes increasingly

populated as Hrs-UIM approaches the binding site. Remarkably,

ubiquitin already experiences a significant bias toward the

macrostate ensemble of the final bound form even when Hrs-

UIM is at nanometer distance (9–18 Å) from the final bound

position. This behavior is robust with respect to moderate changes

of the angle of approach of the Hrs-UIM ligand (Text S1 & Figure

S11). Analysis of individual contributions to the total energy shows

that at large distance range (18 Å) the population shift is

dominated by electrostatic interactions while van der Waals

interactions come into play at shorter distances only.

Discussion

Conformational selection and induced fit are two models at

opposite ends of a spectrum of mechanisms hypothesized for

protein-ligand binding. From a statistical mechanics perspective,

the Boltzmann population of any conformer is always non-zero,

irrespective of its potential energy. Hence, any conformation,

including any bound conformation, has a finite probability to pre-

exist in the free state. From a biological perspective, however, the

limited sampling of conformers during the lifetime of a

biomolecule imposes a natural energy threshold for the biological

relevance of high-energy conformers. In the biochemical literature

[16,23,37], conformational selection is typically invoked when the

populations of pre-existing bound conformations are sufficiently

large to be detectable in experiments or simulations; otherwise,

induced fit is the preferred scenario. The latter mechanism

requires a certain degree of plasticity of the protein, but does not

take into account thermal fluctuations, i.e. protein dynamics,

involving transient populations of multiple protein conformations.

The classical conformational selection mechanism, on the other

hand, addresses thermal fluctuations, while the alteration of the

Figure 1. Structural analysis of X-ray crystal structures, EROS
ensemble, and MD ensemble. (A) Ca root mean square fluctuation
(RMSF) of MD ensemble (black), EROS ensemble (green), and 19
ubiquitin X-ray crystal structures (magenta). (B) Residuewise root mean
square deviation (RMSD) values (Eq. (1)) for the pair-wise structural
comparisons of X-ray crystal structures and their closest EROS
conformers (green solid line) and X-ray crystal structures and their
closest MD conformers (1 million structures) (black solid line). Green
peaks that belong to protein binding regions are circled with dash-dot
lines. (C) The Ca RMSD calculated for each X-ray crystal structure with
the closest EROS conformer (x-axis) and the closest MD conformer (y-
axis). The RMSD values of the MD conformers are substantially smaller
than for the EROS conformers. Definitions of RMSF and RMSD
parameters are given in Text S1.
doi:10.1371/journal.pcbi.1002035.g001

In Silico Study of Ubiquitin Recognition
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protein energy surface due to the spatial vicinity of the ligand

during the binding process is not emphasized.

Our results of ubiquitin-UIM binding point to an intricate

interplay of the two mechanisms for this model system. The

induced fit mechanism provides an appropriate description of the

binding process if for a given protein-ligand distance only the

average structure of ubiquitin is considered. In its free state, the

average structure of ubiquitin corresponds to the center of S2,

while a gradual shift toward S3 is induced as Hrs-UIM approaches

the binding site. By contrast, from an ensemble perspective, where

all available substates are considered for a given protein-ligand

distance, the conformational selection mechanism is more

appropriate. Hence, distinction between the two models depends

on the resolution at which ubiquitin is viewed: induced fit prevails

at the level of the time- or ensemble-averaged structure, while

conformational selection accompanied by energy landscape

adjustment is a better model for an ensemble description.

Our study is based on microsecond time scale all-atom

simulations that are validated against experimental NMR data.

This approach differs in philosophy from previous work that built

Figure 2. Projection of the structural ensembles on 2D PCA space. (A) Comparison of the X-ray structures (magenta diamonds), EROS
ensemble (green triangles) and MD ensemble (black dots) in 2D space spanned by the 2 largest principal components. PCA was performed using the
19 X-ray crystal bound forms only. (B) Population distribution of MD ensemble on two dimensions, which can be grouped into the three substates S1,
S2, and S3.
doi:10.1371/journal.pcbi.1002035.g002

Figure 3. Autocorrelation function of the principal mode motion. The autocorrelation function C(t) of the internal dynamics along the first
principal component (Eq. S5; blue line) is fitted with a two-exponential function (Eq. S6; red line). The parameters extracted by curve fitting are:
a = 0.49; tfast = 0.4 ns; tslow = 12.9 ns.
doi:10.1371/journal.pcbi.1002035.g003

In Silico Study of Ubiquitin Recognition
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a structural ensemble (EROS) directly from NMR data [16]. The

MD approach used here generates a conformational ensemble that

obeys Boltzmann sampling and its time-dependence reflects

genuine dynamics. In this way, both spatial and temporal

atomic-detail information is gained about the recognition

dynamics. A recent analysis of the EROS ensemble and X-ray

structures determined statistically pronounced structural differ-

ences in the binding regions between the free and bound forms of

ubiquitin, and a residual induced fit mechanism was proposed to

explain this effect [17]. By contrast, the full 106-member MD

ensemble used here proves to be sufficiently dense to approach

each crystal structure within 0.55 Å RMSD (0.45 Å average)

(Figure 1C), with the binding regions behaving in essence

indistinguishably from the rest of the protein. Only when the

MD ensemble is thinned out 1000-fold or more, a behavior similar

to one of the EROS ensemble emerges (Figure S12). Therefore,

although the conformational space sampled by the EROS and the

MD ensemble does significantly overlap, which is consistent with a

recent study using the Amber ff99SB force field [38], the small size

of the EROS ensemble leads to a low-resolution depiction of

conformational space occupied by free ubiquitin and thereby

misses important aspects of the structural variability surrounding

the binding regions. A better statistical representation of these

regions is provided by the significantly larger ms MD ensemble.

Based on the MD ensemble results, a residual induced fit

mechanism [17] is not required to explain the structural deviations

of the non-tail backbone region.

In addition, the MD results highlight the relevance of kinetic

properties (time scales of the conformational interconversions), in

addition to equilibrium populations, for ligand binding. Kinetics

not only determines how frequently individual states are formed,

but also reflects how efficiently the populations can shift toward

the bound state in the presence of the ligand binding. In 2D PCA

subspace of free ubiquitin, three major conformational substates

are identified that undergo a pincer-like motion on the picosecond

to sub-microsecond time scales. This reflects some degree of

ruggedness of the underlying energy surface with the energy

barriers being relatively low. These properties provide the protein

a dynamic plasticity permitting rapid structural adaption to

medium- and short-range interactions with the ligands and

allowing the protein to bind to a host of different binding partners.

Interestingly, although the maximum population density of

substate S3 is slightly smaller than for the other substates in the

free form of ubiquitin, substate S3 is the closest to the majority of

crystal complexes (12 out of 19). This includes the ubiquitin:Hrs-

UIM complex examined in this study whose static crystal structure

resides in close vicinity to state S3. Moreover, a 300 ns explicit

MD simulation of the complex shows details of the dynamic

interplay between ubiquitin and Hrs-UIM. Bound ubiquitin has a

significant overlap with substate S3, but almost no overlap with

substates S1 and S2 (Figure 5B). There is a small offset between

the distribution of substate S3 and the final bound form

(Figure 5B), which in the framework of an extended conforma-

tional selection model [8] can be understood as the result of the

reshaping of the energy funnel upon protein-ligand interaction.

This result underlines the importance of substate S3 of free

ubiquitin for the recognition of Hrs-UIM. However, elucidation of

the detailed mechanism of the binding process with Hrs-UIM

requires that the response of ubiquitin to the change of its energy

surface is studied during the actual docking process.

For this purpose, an energy-based reweighting method is used to

map the population density of ubiquitin as a function of the

distance of Hrs-UIM from the binding site. A steady increase of

the population of S3 is accompanied by a decrease of the

populations of both S1 and S2. Therefore, conformational

selection by Hrs-UIM at the macrostate level corresponds to the

continuous reshaping of the protein energy landscape, gradually

favoring the ensemble of the final bound form (Figure 6). This

picture may not be adequately described by either the traditional

conformational selection model or the induced fit model, both of

which, however, cover important aspects of this binding process. A

concurrent superposition of the two mechanisms, rather than

sequential events [17], is required for a satisfactory explanation,

which is noteworthy considering the basic nature of the protein

recognition process studied here. This picture is consistent with the

framework of extended conformational selection proposed recently

[8] and at the same time it provides a fully atomistic view of this

key event for ubiquitin.

Figure 4. Conformational space accessible to ubiquitin in complex with Hrs-UIM. (A) 2D projection of complex MD ensemble (black dots).
The corresponding crystal conformations are indicated by the magenta diamond for chain A (PDB code: 2D3G) and the magenta ‘+’ symbol for chain
B of the same PDB entry. (B) Pseudo color presentation of population distribution of the ubiquitin bound form.
doi:10.1371/journal.pcbi.1002035.g004

In Silico Study of Ubiquitin Recognition
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Dynamic population changes as a function of the distance of an

approaching ligand have been proposed in the literature based on

simplified models to illustrate the binding mechanism [8,39].

Unfortunately, such transient dynamics processes are hard to

capture and hence confirm by experiment alone. The energy-

based reweighting method employed here represents an efficient

tool to investigate the gradual change of the energy landscape and

provides, to the best of our knowledge, the first quantitative

atomic-detail picture of protein population redistribution over a

range of distances. It should be emphasized that this approach

relies on the fact that the underlying MD ensemble obeys

Boltzmann statistics, whereas empirical ensembles that do not

obey Boltzmann statistics are not amenable to such a reweighting

strategy.

The binding mechanism of Hrs-UIM to ubiquitin identified is

not unique. In fact, the GGA3 GAT domain [40], showing a

similar binding mode as Hrs-UIM when binding to ubiquitin, also

shifts populations toward substate S3 upon approaching the

Figure 5. Population redistribution of substates of ubiquitin upon the approach of Hrs-UIM. (A) The two-dimensional difference maps of
the population densities were calculated in the presence of Hrs-UIM in the range from 9 to 18 Å away from its position in the crystal complex (PDB
code 2D3G, chain P). (B) One-dimensional projection of the population difference maps along the largest principal component. Hrs-UIM was
introduced at distances of 9 Å (yellow), 12 Å (green), 15 Å (cyan), and 18 Å (light blue). The ubiquitin populations in the free (dark blue) and bound
(red) forms are included for comparison. For clarity, the populations of the free and bound states are scaled by 1/19 and 1/13 in the plot. It can be
seen that the substate S3 becomes increasingly populated as Hrs-UIM approaches the binding site.
doi:10.1371/journal.pcbi.1002035.g005

In Silico Study of Ubiquitin Recognition

PLoS Computational Biology | www.ploscompbiol.org 6 April 2011 | Volume 7 | Issue 4 | e1002035



binding interface (Figure S10). Some of the other binding partners

of ubiquitin appear to behave in a more complex way. For

example, the catalytic domain of USP14 [41] adopts in its bound

state a form that sterically hinders the approach of ubiquitin to the

binding site. Characterization of the binding mechanism of this

type of systems requires a model that simultaneously accommo-

dates structural and dynamics changes of both binding partners

[42]. In addition, without prior knowledge of the optimal pathway

for ubiquitin to enter the binding pockets, diffusive rotational

motion of both proteins needs to be included in the treatment for

the full understanding of the binding mechanism. While

computationally more expensive, a generalization of the reweight-

ing approach used here to two interacting ensembles that probe

multiple orientations seems feasible representing a promising route

toward this goal as a complementary approach to brute-force MD

simulations.

Methods

Molecular dynamics simulation
A 1 ms simulation of the free form ubiquitin was performed at

300 K with AMBER99SBnmr1 force field [27] and TIP3P water

model [43] using the GROMACS software package version 4.0.7

[44]. The crystal structure of ubiquitin (PDB code 1UBQ) [45]

was employed as the initial conformation. Non-bonded interac-

tions were cut off at 8 Å and the long-range electrostatic

interactions were treated using the particle-mesh Ewald summa-

tion method [46]. All bonds involving hydrogen atoms were

constrained using the LINCS algorithm [47], and an integration

time step of 2 fs was used. Prior to the production run at 300 K,

the system was relaxed by energy minimization using the steepest

descent algorithm, followed by position restrained simulation

under NVT conditions for 100 ps and under NPT conditions for

another 100 ps. For the 1 ms production run, snapshots were

stored every 1 ps, which yields an ensemble with 1 million

snapshots.

For the simulation of the ubiquitin-UIM complex in TIP3P

water, the starting conformation was built based on the crystal

structure of ubiquitin and Hrs-UIM (PDB code: 2D3G, chains A

and P, respectively) [31]. Since residues 73–76 of ubiquitin in

2D3G are missing, the ubiquitin conformation of 1UBQ was used

for this simulation by superimposing the backbone of residues 2–

71 to chain A of the structure 2D3G. The protocol for setting up

the simulation was fully analogous to that of free ubiquitin

described above.

Structural analysis
The present structural analysis focused on the backbone core

region of ubiquitin (residues 1–71), i.e. without the C-terminal tail

residues 72–76. 19 X-ray crystal structures of bound ubiquitin [17]

Figure 6. Schematic illustration of the population redistribution upon the approach of Hrs-UIM to the binding interface. The
population distribution at an intermediate distance (between 0 and 9 Å) is represented by the linear combination of the population distributions at 0
and 9 Å with weights of 30% and 70%, respectively. The four population density plots have the same axes as Figure 2B. The reshaping of the energy
landscape of ubiquitin occurs in a continuous way, starting at nanometer distance range between the binding partners.
doi:10.1371/journal.pcbi.1002035.g006

In Silico Study of Ubiquitin Recognition
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were used for analysis, which were selected from the original 46

crystal structures of [16] and identified to be most representative of

all the binding interfaces of ubiquitin complexes. For each X-ray

crystal structure the closest conformer in the EROS and MD

ensembles was identified based on the overall backbone Ca
RMSD. The residue-wise Ca root mean square deviation was then

calculated (see also Text S1)

RMSDk~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

19

X19

i~1

di,k
2

vuut ð1Þ

in which di,k is the distance between the Ca atom of the kth residue

of the ith X-ray structure and that of the corresponding closest

conformer in the EROS and MD ensembles, respectively.

To analyze the structural ensembles in a low dimensional space,

all ubiquitin structures (X-ray, EROS and MD) were aligned with

respect to 1UBQ. Principal component analysis in Cartesian

coordinates was carried out based on the Ca atomic positions of

the 19 X-ray structures to highlight the dominant backbone

structural changes in the various bound forms (Figure S4). The X-

ray structures, EROS, and MD ensembles were subsequently

projected onto the first two principal components, which

correspond to the modes with the highest variance among all

modes. Two-dimensional population maps were constructed with

a grid resolution of 0.4 Å and spline interpolation. The total

populations were normalized to 1.

Reweighting of the populations
To examine the gradual shift of the energy landscape in the

presence of Hrs-UIM, the ligand in its X-ray structure

conformation was translated from its position in the complex for

a series of distances (9–18 Å) in a direction orthogonal to the

binding interface (Figure 6). For each distance, the population map

of ubiquitin conformations was obtained from the original 1 ms

trajectory by a reweighting [36] approach based on the potential

energy. For each snapshot j,

pdist(j)~p?(j):e{Edist(j)=kBT=e{E?(j)=kBT ð2Þ

in which, pdist(j) and Edist(j) are the relative weight and energy of the

system, respectively, in the presence of a ligand molecule at a given

distance from the bound position; p‘(j) and E‘(j) are the relative

weight and energy of the system, respectively, with the ligand at a

distance of 1000 Å away from the bound position (representing the

limit toward an infinitely large distance). p‘(j) of all n snapshots

have equal weights p‘(j) = 1/n. The energy of the combined

ubiquitin-ligand complex was calculated for each snapshot after

introducing the ligand molecule at a given distance using the

implicit generalized Born solvation model [48] as implemented in

the Amber 9 software package [49]. The reweighted two-

dimensional population maps were constructed with a grid

resolution of 0.6 Å and spline interpolation. The total populations

were normalized to 1. The 2D difference maps were subsequently

calculated with respect to the free ubiquitin.

Supporting Information

Figure S1 Experimental (RDCexp) vs. back-calculated (RDCcalc)

backbone NH RDCs of free ubiquitin in 22 distinct alignment

media.

(TIF)

Figure S2 Predicted vs. experimental chemical shifts of Ca, Cb,

and C9 nuclei of free ubiquitin.

(TIF)

Figure S3 Dependence of NH RDC Qav values (left panel) and

chemical shift RMSDs (right panel) as a function of time window

size from 0.1 ns to 1 ms for free ubiquitin.

(TIF)

Figure S4 PCA eigenvalues, expressed as percentages (i.e. the

sum of all eigenvalues is 100%) of the ten largest principal

components determined from the 19 X-ray crystal structures.

(TIF)

Figure S5 One-dimensional (A–C) and two dimensional (D–F)

PCA projections of the 1 ms MD ensemble along the largest

principal mode.

(TIF)

Figure S6 Fitting of the autocorrelation function C(t) (blue open

circles) with Eqs. S6 (A), S7 (B), and S8 (C), respectively (red lines).

To highlight the quality of fits at short time scales, only the time

window ,10 ns is displayed. The extracted parameters are (A) Eq.

S6: a = 0.49; tfast = 0.4 ns; tslow = 13 ns. (B) Eq. S7: a1 = 0.07;

a2 = 0.09; a3 = 0.34; a4 = 0.5; t1 = 0.004 ns; t2 = 0.08 ns;

t3 = 0.7 ns; t4 = 13 ns. (C) Eq. S8: a1 = 0.17; a2 = 0.33; a3 = 0.5;

t1 = 0.04 ns; t2 = 0.7 ns; t3 = 13 ns; b = 0.54.

(TIF)

Figure S7 Relative amplitude of Ca positional changes in X-ray

structures in the 1st principal component.

(TIF)

Figure S8 Superposition of ribbon representations of the

average structures of substates S1 (blue), S2 (yellow), and S3

(red). The conformers within 0.3 Å of the individual maxima of

the three substates depicted in Figure S5A were clustered and used

for the determination of average structures.

(TIF)

Figure S9 Population distribution of ubiquitin bound to Hrs-

UIM sampled at a temperature of 300 K (left panel) and 330 K

(right panel). The corresponding crystal bound ubiquitin confor-

mations are indicated by the magenta diamond (for chain A, PDB

code: 2D3G) and the magenta ‘+’ symbol (for chain B, PDB code:

2D3G).

(TIF)

Figure S10 Change of ubiquitin populations upon the approach

of human GGA3 GAT domain. Difference maps of populations

were calculated at 4 distances from 10–18 Å. The crystal

conformation (PDB code: 1YD8, chain U) is indicated by the

magenta diamond.

(TIF)

Figure S11 Population shift of ubiquitin upon the approach of

Hrs-UIM from different directions. The ligand was placed in three

different directions with respect to ubiquitin (panel A), as colored

in red, cyan, and green. The corresponding population difference

maps are shown in panels B, C, and D, respectively.

(TIF)

Figure S12 Residue-wise RMSD between X-ray structures with

EROS ensemble (black dashed line) and MD ensembles

represented by 1 million (blue solid line), 1000 (light blue), and

100 (green) structures. The three MD ensembles were generated

by selecting conformations every 1 ps, 1 ns, and 10 ns, respec-

tively. The binding regions are indicated by magenta dash-dot

lines.

(TIF)
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