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Time lag model for batch bioreactor simulation accounting the effect of micro-organism

mortality
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In the present work, a generalization of the classical model of Monod accounting the influence of both delayed and instant
mortalities on the dynamics of the micro-organism population is proposed. The model was analysed and compared with
respect to its quality and applicability for simulation of the cultivation process of micro-organisms. Existence of a unique
global positive solution of the Cauchy problem for the proposed model is proved and explicit relations between the decay
parameters and the nutrition substrate concentration are obtained. These mathematical results allow us to calculate the
nutrient substrate concentration which guarantees that the biomass concentration is maximal for every specific type of
taxonomic groups of micro-organisms (bacteria, yeasts).
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Introduction

It is well known that the Monod-type microbial growth

models describe adequately bioprocesses appearing in

bioreactors and this explains why the Monod-type models

are still actual from the theoretical as well as practical

point of view.[1] The classical model of Monod [2] of aer-

obic periodic cultivation of micro-organisms (bacteria,

yeasts)

s 0 ðtÞD ¡amðsðtÞÞxðtÞ
x 0 ðtÞDmðsðtÞÞxðtÞ (1)

where t 2 RC D ½0; 1 Þ, and xð:Þ and sð:Þ : R!RC are

the concentrations of micro-organisms and the substrate,

respectively, has been studied in details by many authors.

[1�6] The function mðsÞ is the intrinsic specific rate of

micro-organism population growth and the parameter

a> 1 is called economic coefficient (rate of yield). Note

that mðsÞ is designed to reflect the limiting influence of

the substrate on the microbial growth. It is practically

established that the model of microbial growth (1) with

monotonously increasing functions of Monod type

mM ðsÞDmmax
s

kC s
or of Webb type mW1ðsÞD

mmax
sð1C sk ¡ 1

I
Þ

kC sC s2k ¡ 1
I

, where mmax (maximal specifically possi-

ble producing rate), k (constant of half saturation) and kI
(inhibition constant) are positive constants, adequately

describes the dynamics of this process at certain

favourable conditions permitting the micro-organisms

actively to produce specific enzymes, which are necessary

for assimilation and dissimilation of the nutrient sub-

strates. Thus the micro-organisms reproduce themselves

at the maximal possible rate mmax. However, that small or

large amount of substrate may have an inhibiting

(decreasing) effect on the specific rate of microbial

growth. In order to reflect this phenomenon in model (1),

Haldane [7] and Andrews [3] have suggested the

unimodal functions mH ðsÞDmmax
s

ðkC sÞð1C sk ¡ 1
I

Þ and

mAðsÞDmmax
s

kC sC s2k ¡ 1
I

, respectively. These functions are

also similar and special cases of the Webb [8] function

mW ðsÞDmmax
sð1C bsk ¡ 1

I
Þ

kC sC s2k ¡ 1
I

which is unimodal too, when

b 2 ½0; 1Þ. Besides, mW ðsÞ�mMðsÞ if 0� s � ffiffiffiffi
kI

p
. It

means that the parameter kI determines in a way the inhib-

itory phase of the population growth.[6] The basic proper-

ties and the graphs of all the four functions are given in

[9] where the system

s 0 ðtÞD ¡amðsðtÞÞxðtÞ
x 0 ðtÞDmðsðtÞÞxðtÞ¡ kdxðtÞ

(2)

introduced in [10] is under consideration. Here, kd > 0 is

the specific rate of decay of the micro-organism popula-

tion. The necessity of models of the kind (2) arises due to

unfavourable conditions in the bioreactor. Theoretical and

computational analysis of model (2) is fulfilled in [10].
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This includes establishing of explicit dependencies

between x and s for all four above-mentioned functions as

well as between t and s for the first three of them when

kd D 0. In a previous work,[11] we study the delay ana-

logue of (2), namely

s 0 ðtÞD ¡amðsðtÞÞxðtÞ
x 0 ðtÞDmðsðtÞÞxðtÞ¡ kmxðt¡ tÞ (3)

with an initial condition

xðtÞD ’ðtÞ; sðtÞDcðtÞ for t 2 ½¡ t; 0� (4)

where t 2 RC , ’;c: ½¡ t; 0�!RC , m : R!R and

km > 0 is the specific rate of decay of the micro-organism

population. The model (3) was proposed under the reason-

able assumption that the individuals of every kind of pop-

ulation have their specific average lifetime t in the

bioreactor, which implies that the population decay at the

moment t is directly proportional to the micro-organism

quantity at the moment t¡ t.

Materials and methods

Materials

Our mathematical model is applicable for all types of bio-

reactors for aerobic periodic cultivation of micro-organ-

isms (bacteria, yeasts).

Methods

Since the time of V. Volterra, functional-differential equa-

tions (FDEs) are widely used to model biological pro-

cesses. The transmission of control signals in biological

systems is related to such long processes as birth, growth

(development) and death. Because of this, the evolution

of biological systems depends in an essential way on the

whole previous history, and can be modelled in general

only by FDEs. Moreover, using FDEs allows us to take

into account various insecure factors such as finite life-

time and interaction time; inhomogeneity of the popula-

tions lifetime; finite acceptance time for external signals

and finite time for elaborating counteractions; pollution

effects, resulting in additional mortality with time delay;

and spatial environmental heterogeneity. The importance

of the aftereffects in population dynamics, and the new

effects stipulated by it, determines the practical reason to

create delay models which are used to control processes

of microbiological growth of cells and production of a

useful product. We consider one of them, describing the

periodical aerobic reproduction of micro-organisms.

Results and discussion

Statement of the problem

From the biotechnological point of view, we presume that

the micro-organism mortality is one of the most signifi-

cant factors influencing successful micro-organism culti-

vation. Therefore, it is very important to create models

which take into account more precisely the micro-organ-

ism mortality impact on the population dynamics. In the

present paper, we follow this direction and study a combi-

nation of models (2) and (3) of the kind

s 0 ðtÞD ¡amðsðtÞÞxðtÞ
x 0 ðtÞDmðsðtÞÞxðtÞ¡ l1xðtÞ¡ l2xðt¡ tÞ (5)

xðtÞD’ðtÞ; sðtÞDcðtÞ for t 2 ½¡ t; 0� (6)

where t 2 RC , ’;c: ½¡ t; 0�!RC ; t> 0, m : R!R,

l1; l2 > 0 are the specific rates of decay of the micro-

organism population. The model (5) describes more pre-

cisely the impact of the microorganism mortality for dif-

ferent kinds of micro-organism populations in comparison

with the models (2) and (3) taking into account not only

the micro-organism mortality in the same moment, but

also that in a previous moment. It means that the individu-

als of every kind of population have their own specific

average lifetime t in the bioreactor. It is clear from the

biological point of view that the micro-organism mortality

in the moment t is caused in general by natural reasons,

i.e. it is proportional to the quantity of those micro-organ-

isms that have begun their lives in the moment t¡ t

described by the term l2xðt¡ tÞ included in the model (5).

Thus, we take into account the influence of both (instant

and delayed) micro-organism mortalities on the popula-

tion dynamics. Under biological reasons, one may sup-

pose l1 < l2 (a majority of the micro-organism population

will die after the expiry of its average lifetime t), but in

our exposition below we will not do that.

In our consideration, we make the following assump-

tion: the material composition is uniform in the reactor

and intracellular, while nonuniform space distribution is

ignored.

Our basic purpose in this work is to give an explicit

answer of the following two practical questions which

play an important role in the aerobic periodic cultivation

of micro-organisms:

(1) For every choice of the function mðsÞ, how to cal-

culate practically the minimal concentration of

the nutrient substrate s0 which is necessary to start

an increasing micro-organisms reproduction for

some period.

(2) How to establish practically that the biomass con-

centration is maximal, i.e. the cultivation process

enters in the stationary phase.

196 A. Zahariev et al.



Let J � R be an arbitrary interval. For every function

f : J !R, we set by definition jjf jj : D supt2J jf ðtÞj if

supt2J jf ðtÞj< 1 . We shall denote by jFj2 the Euclidean
norm of F 2 R2, by CðJ ;R2Þ the set of all continuous vec-
tor functions F : J !R2 and by ACðJ ;R2Þ the set of all

vector functions FðtÞ which are absolutely continuous on

every closed subinterval of J . For the vector

function F 2 CðJ ;R2ÞFðtÞD ðxðtÞ; sðtÞÞT , we set by

definition jjFjj2 : D ðjjxjj2 C jjsjj2Þ12 if supt2J jxðtÞj< 1
and supt2J jsðtÞj< 1 . Further, we shall use the following

definitions:

Definition 2.1. Vector function FðtÞD ðxðtÞ; sðtÞÞT ,
F 2 ACð½0; tFÞ;R2Þ, tF > 0 is said to be a solution of the

initial value problem (IVP) (5)�(6) in the interval ½0; tFÞ
if it satisfies Equation (5) for almost all t 2 ½0; tFÞ and the

initial condition (6) for t 2 ½¡ t; 0�.
Definition 2.2. A solution FðtÞD ðxðtÞ; sðtÞÞT of the IVP

(5)�(6) in the interval ½0; tFÞ is said to be positive (non-

negative) in the interval ½0; tCF Þ, 0< tCF < tF if

xðtÞ> 0; sðtÞ> 0ðxðtÞ� 0; sðtÞ� 0Þ for all t 2 ½0; tCF Þ.
Definition 2.3. We will say that the property P is ulti-

mately fulfilled for some function f : ½¡ t; 1 Þ!R if

there exists a point tP � 0, such that for the function f the

property P holds for each t� tP.

The basic tasks concerning the model (5) to be solved

in the present paper are the existence and uniqueness of a

solution of the IVP (5)�(6), analysis of the dynamics of

xðtÞ when the nutrient substrate diminishes on a finite or

infinite period and studying the influence of the correla-

tion between the parameter l1; l2 and the values of the

function mðsðtÞÞ on the dynamics of xðtÞ.

Main results

We denote by (H) the following conditions:

(H1). ’ðtÞD 0 for t 2 ½¡ t; 0Þ and ’ð0ÞD x0 > 0.

(H2). cðtÞD s0 > 0 for t 2 ½¡ t; 0�.
(H3). There exists h> 0 such that the function m :
R!R is nondecreasing, continuous and bounded for

s 2 ½¡ h; 1 Þ and mð0ÞD 0.

Lemma 1. Let the conditions (H) be fulfilled.

Then there exists a function FðtÞ 2ACðRC ;R2Þ which
is the unique solution of the IVP (5)�(6) in RC .

Proof. Denote by fðtÞD ð’ðtÞ;cðtÞÞT the initial vector

function and define for each t 2 RC the function

Fðt;FtÞD
�mðstð0ÞÞxtð0Þ¡ l1xtð0Þ¡ l2xtð¡ tÞ

¡amðstð0ÞÞxtð0Þ
�

(7)

where FtðuÞD xtðuÞ
stðuÞ

� �
D xðtC uÞ

sðtC uÞ
� �

, F0ðuÞDfðuÞ
for ¡ t� u� 0.

Let us denote by Mf the set of all vector functions

F : ½¡ t; 1 Þ!R2, such that F0ðuÞDfðuÞ, u 2 ½¡ t; 0�
and the restriction FjRC is a continuous vector function.

We will denote by Df the set

Df D fðt;FtÞj t 2 RC ; F 2 Mfg equipped with the metric

function dððt1; &1Þ; ðt2; &2ÞÞD jt1 ¡ t2jC jj&�1 ¡ &�2jj2,
ðt1; &1Þ; ðt2; &2Þ 2 Df (see [12] Chapter 3, Subs. 2.4),

where &�i ðtÞD &iðtÞ for all ti � t and if 0� ti < t, then

kFðt; &ðtÞk2 � Lk&k2. We set &�i ðtÞD &iðtÞ for ¡ ti � t� 0

and &�i ðsÞD &ið¡ tiÞ for ¡ t� s� ¡ ti; iD 1; 2.
From the conditions (H), it follows that if the function

F : Df !R2 is defined by (7), then the map t!Fðt;FtÞ
is continuous for any F 2 Mf. Moreover, for every fixed

t 2 RC , the function Fðt; &Þ is continuous in every func-

tion & : Cð½¡ t; 0�;R2Þ. Let ðt0;&0Þ 2 Df be an arbitrary

point, 0< r< t0 and consider the neighbourhood

Br D fðt; &Þ 2 Dfj dððt; &Þ; ðt0; &0ÞÞ< rg. Then, there

exists a constant Lðr; t0; &0Þ> 0 such that the inequality

jjFðt; &1Þ¡Fðt; &2Þjj2 � Ljj&1 ¡ &2jj2 holds for every two

points ðt; &1Þ; ðt; &2Þ 2 Br. Since Fðt; 0ÞD 0, ’ðtÞ is uni-
formly continuous in ½¡ t; 0Þ, ’ð0¡ ÞD 0 6¼ ’ð0Þ and

cðtÞ is uniformly continuous in ½¡ t; 0�, then there exists

a point tF > 0 such that the IVP (5)�(6) has a unique

solution on the interval ½0; tFÞ. The function Fðt; &Þ
defined by equality (7) is sublinear: that is, for each point

ðt; &Þ 2 Df, the inequality holds. Therefore, tF D 1
(see [12] Chapter 3, Subs. 2.2�2.4).

Theorem 2. Let the conditions (H) be fulfilled.

Then for every solution FðtÞD ðxðtÞ; sðtÞÞT of the IVP

(5)�(6) for which there exists a point tx0 > 0 such that

xðtx0ÞD 0 and xðtÞ> 0 for t 2 ½0; tx0Þ, then sðtÞ> 0 for each

t 2 ½0; tx0Þ.
Proof. Assume there exists a point ts0 2 ½0; tx0Þ such that

sðts0ÞD 0 and sðtÞ> 0 for t 2 ½0; ts0Þ. Then, it follows from
(5) that s 0 ðts0ÞD 0 and consequently ts0 is either an inflec-

tion point or a point of local minimum for sðtÞ. Since
xðts0Þ> 0, then there exists d> 0 such that xðtÞ> 0 for

t 2 ðts0 ¡ d; ts0 C dÞ. From the first equation of (5) it follows

that ts0 cannot be neither an inflection point nor a point of

local minimum for sðtÞ.
Corollary 3. Let the conditions (H) be fulfilled.

Then for every solution FðtÞD ðxðtÞ; sðtÞÞT of the IVP

(5)�(6) for which there exists a point ts0 > 0 such that

sðts0ÞD 0 and sðtÞ> 0 for t 2 ½0; ts0Þ there exists a point tx0
such that tx0 � ts0, xðtx0ÞD 0 and xðtÞ> 0 for t 2 ½0; tx0Þ.
Proof. Assume there does not exist a point tx0 such that

tx0 � ts0 and xðtx0ÞD 0. Then, we obtain that xðtÞ> 0 for

t 2 ½0; ts0�, which contradicts the conclusion of Theorem 2.

Theorem 4. Let the conditions (H) be fulfilled.

Then for every solution of the IVP (5)�(6) there exists

a point tCF > t such that the solution FðtÞ is positive and

sðtÞ is decreasing for t 2 ½0; tCF Þ.
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Proof. Let the function FðtÞ 2ACðRC ;R2Þ be a solution,

existing according to Lemma 1, in the interval RC . From
conditions (H) it follows that there exists a point tF > 0

such that FðtÞD ðxðtÞ; sðtÞÞT is a positive solution in the

interval ½0; tFÞ. It is easy to see that from (5) it follows

xðtÞ> 0 for t 2 ½0; t�. Now assume there exists a point ts0 2
ð0; t� such that sðts0ÞD 0 and sðtÞ> 0 for t 2 ½0; ts0Þ. From
(5) it follows that s 0 ðts0ÞD 0 and from condition (H3) it

follows that ts0 is either an inflection point for sðtÞ or sðtÞ
has minimum in the point ts0 which is impossible because

from (5) it follows that ts0 can be neither an inflection

point, nor a point of local minimum for sðtÞ. Therefore,
sðtÞ> 0 for t 2 ½0; t�. Then, there exists a point

tCF ðtCF > tÞ such that xðtÞ> 0 for t 2 ½0; tCF Þ and Theorem

2 implies sðtÞ> 0 for t 2 ½0; tCF Þ. From conditions (H) and

(5), it follows that sðtÞ is decreasing for t 2 ½0; tCF Þ.
Let us denote by smin D inf t2RC sðtÞ:

Theorem 5. Let the conditions (H) be fulfilled.

Then, for every solution FðtÞD ðxðtÞ; sðtÞÞT of the IVP

(5)�(6) we have mðsminÞ< l1 C l2.

Proof. Assume that mðsminÞ� l1 C l2. Then, from condition

(H3) it follows that smin > 0. Since smin > 0 and

mðsðtÞÞ¡ l1 � l2 > 0 for t 2 RC , then from Theorem 4 it

follows that the inequalities x 0 ðtÞ� ðmðsðtÞÞ¡ l1ÞxðtÞ> 0

are obviously true for t 2 ½0; t� and therefore, x 0 ðt¡ 0Þ> 0

and xðtÞ is strictly increasing in the same interval. From

(1.5) and Theorem 4 it follows that the inequalities

x 0 ðtC 0ÞDmðsðtÞÞxðtÞ¡ l1xðtÞ¡ l2xð0Þ�
� ðmðsðtÞÞ¡ l1ÞxðtÞ¡ l2’ð0Þ� l2ðxðtÞ¡ ’ð0ÞÞ> 0

hold. Assume there exists a point t� > t such that

x 0 ðt�Þ� 0 and denote t0 D inf t� t� t�ftjx 0 ðtÞ� 0g. Then

we have x 0 ðt0ÞD 0 and xðt0Þ> 0. Condition (H3), Theo-

rem 2 and the assumption mðsminÞ� l1 C l2 > 0 imply the

inequalities mðsðtÞÞ�mðsðt0ÞÞ�mðsminÞ� l1 C l2 and

therefore the following inequality

x 0 ðtÞ� ðmðsðt0ÞÞ¡ l1ÞxðtÞ¡ l2xðt¡ tÞ�
� l2ðxðtÞ¡ xðt¡ tÞÞ> 0

(8)

holds for t 2 ½t; t0�. Considering that xðt0Þ> 0 and

x 2 C1ððt; 1 Þ;RÞ, from inequalities (8) it follows

x 0 ðt0Þ> 0 which contradicts x 0 ðt0ÞD 0. Therefore,

x 0 ðtÞ> 0 for each t 2 RC and the first equation of (5)

implies that s 0 ðtÞ� ¡amðsminÞx0 < 0. Consequently, the

function sðtÞ is negative and decreasing for all sufficiently

large t which contradicts the assumption that smin > 0.

Theorem 6. Let the following conditions be fulfilled:

(1) Conditions (H) are fulfilled.

(2) mðs0Þ> l1 C l2.

Then for any positive solution FðtÞD ðxðtÞ; sðtÞÞT of

the IVP (5)�(6) in RC , the following equalities

smin D limt! 1 sðtÞ and limt! 1 xðtÞD 0 are valid.

Proof. Let FðtÞD ðxðtÞ; sðtÞÞT be a positive solution of the

IVP (5)�(6). Then, Theorem 5 implies the inequalities

0�mðsminÞ< l1 C l2. From (5) it follows that sðtÞ is a pos-
itive decreasing function for each t 2 RC and conse-

quently smin D limt! 1 sðtÞ� 0. Since in virtue of

Theorem 5 we have that 0�mðsminÞ< l1 C l2, then there

exists a unique point t0 > t such that mðsðt0ÞÞD l1 C l2
(apparently x 0 ðt0Þ� 0 ). Therefore, either x 0 ðtÞ� 0 for

each t 2 RC which is impossible, or there exists a point

tx > t0 such that x 0 ðtxÞ< 0. If we denote by

tx0 D inf t0� t< txftjx 0 ðtÞ< 0g, then we have x 0 ðtx0ÞD 0. Sup-

pose that there exists a point txC > tx such that x 0 ðtxC Þ> 0

and denote tx1 D inf tx
0
� t< txC ftjx 0 ðtÞ� 0g. Then, evidently,

x 0 ðtx1ÞD 0 and x 0 ðtÞ< 0 for t 2 ðtx0; tx1Þ.
Consider the case tx1 ¡ tx0 > t. Then, for each t 2

ðtx0 C t; tx1Þ for which mðsðtÞÞ¡ l1 � 0 it follows from (5)

that x 0 ðtÞ� ¡ l2xðt¡ tÞ< 0 and since xðtx1 ¡ tÞ> 0,

therefore we have x 0 ðtx1Þ< 0 which is a contradiction.

In the case when t 2 ðtx0 C t; tx1Þ and mðsðtÞÞ¡ l1 > 0, the

following inequalities

x 0 ðtÞDmðsðtÞÞxðtÞ¡ l1xðtÞ¡ l2xðt¡ tÞ�
� ðmðsðtÞÞ¡ l1ÞxðtÞ¡ l2xðt¡ tÞ�
� l2ðxðtÞ¡ xðt¡ tÞÞ< 0

(9)

hold. From (9) it follows that x 0 ðtx1Þ< 0 which is

impossible.

Consequently, tx1 ¡ tx0 � t and let t 2 ðtx0; tx1Þ. Then,

t¡ t� tx0 and from (5) for which mðsðtÞÞ¡ l1 > 0, we

obtain

x 0 ðtÞD ðmðsðtÞÞ¡ l1ÞxðtÞ¡ l2xðt¡ tÞ�
� ðmðsðtÞÞ¡ l1 ¡ l2ÞxðtÞ< 0:

In the case when mðsðtÞÞ¡ l1 � 0, the inequalities

x 0 ðtÞ� ¡ l2xðt¡ tÞ< 0 hold and therefore x 0 ðtx1Þ< 0

which is impossible. Then, we ultimately have that

x 0 ðtÞ< 0 and therefore limt! 1 xðtÞD c� 0. Let us

assume that c> 0. Since x 0 ðtÞ< 0, ultimately then it fol-

lows from (5) that s 0 ðtÞ� ¡amðsminÞminfc; x0g< 0 and

consequently, we have limt! 1 sðtÞD ¡ 1 which is a

contradiction. Therefore, cD 0.

Discussion

The proposed model (5) is analysed and compared from

mathematical point of view with respect to its quality and

applicability for simulation of the cultivation process of

micro-organisms. This analysis includes proof of exis-

tence of a unique global positive solution of the Cauchy

problem (5)�(6) (Lemma 1). The biological sense of The-

orem 2 and Corollary 3 is that if the concentration of the
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nutrient substrate in some finite moment becomes equal to

zero, then it is impossible to have live micro-organisms

after this moment. Moreover, Theorem 6 implies that if

the nutrition substrate vanishes (limt! 1 sðtÞD 0 ), then

the concentration of the live micro-organisms vanishes

too ðlimt! 1 xðtÞD 0Þ. Thus, the model (5) describes the

real process more adequately in comparison to the classi-

cal model (2) where the nutrition substrate can vanish

(limt! 1 sðtÞD 0 ), but the concentration of the live

micro-organisms stay positive (limt! 1 xðtÞD x0 C
as0 > 0 ) and even increases, which is impossible from

the biological point of view.

The biological sense of Theorem 5 and the second

equation from the model (5) is that the inequality

mðs0Þ> l1 C l2 (10)

implies increasing reproductive rate of the micro-organ-

ism population (at least for period t ) and there exists a

moment tmax such that the biomass concentration is maxi-

mal and

mðsðtmaxÞÞD l1 C l2: (11)

The importance of these relations for the practice is

that they give explicit (computational) answers to the

questions (1) and (2).

The inequality (10) allows for every specific choice of

the function mðsÞ practically to calculate the minimal con-

centration of the nutrient substrate s0 which is necessary for

an increasing bacterial concentration at least for period t.

From the equality (11), we can calculate the critical

concentration of the nutrition substrate sc D sðtmaxÞ which

guarantees that the biomass concentration is maximal. It is

enough to measure periodically the nutrient substrate con-

centration until it reaches the critical level sc D sðtmaxÞ.
Solve Equation (11) with respect to s: sc Dm¡ 1ðl1 C l2Þ

Let us explain this when, for example ,mM ðsÞD
mmax

s
kC s

. It follows from (10) that if s0 >
kðl1 C l2Þ

mmax ¡ l1 ¡ l2
, then

we will have increasing bacterial concentration at least for

period t and when the nutrient substrate concentration s

reaches, according to (11), the critical level sc D kðl1 C l2Þ
mmax ¡ l1 ¡ l2

,

then the biomass concentration is maximal.

Conclusion

In this work, a model of aerobic periodic cultivation of

micro-organisms (bacteria, yeasts) is introduced and stud-

ied. It is more precise comparing to previous models.

Our model allows us to calculate practically the mini-

mal initial concentration of the nutrient substrate, which

is necessary to start an increasing micro-organism repro-

duction for a given period, for every specific rate of

micro-organism population growth. Moreover, it allows

with a simple measuring of the concentration of the nutri-

ent substrate to establish when the biomass concentration

is maximal, i.e. the cultivation process enters in the sta-

tionary phase.
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