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A B S T R A C T   

Pulmonary fibrosis (PF) is characterised by several grades of chronic inflammation and collagen deposition in the 
interalveolar space and is a hallmark of interstitial lung diseases (ILDs). Recently, infectious agents have emerged 
as driving causes for PF development; however, the role of viral/bacterial infections in the initiation and 
propagation of PF is still debated. In this context, the severe acute respiratory syndrome coronavirus 2 (SARS- 
CoV-2), the virus responsible for the current coronavirus disease 2019 (COVID-19) pandemic, has been associ-
ated with acute respiratory distress syndrome (ARDS) and PF development. Although the infection by SARS-CoV- 
2 can be eradicated in most cases, the development of fibrotic lesions cannot be precluded; furthermore, whether 
these lesions are stable or progressive fibrotic events is still unknown. 

Herein, an overview of the main molecular mechanisms driving the fibrotic process together with the currently 
approved and newly proposed therapeutic solutions was given. Then, the most recent data that emerged from 
post-COVID-19 patients was discussed, in order to compare PF and COVID-19-dependent PF, highlighting shared 
and specific mechanisms. A better understanding of PF aetiology is certainly needed, also to develop effective 
therapeutic strategies and COVID-19 pathology is offering one more chance to do it. Overall, the work reported 
here could help to define new approaches for therapeutic intervention in the diversity of the ILD spectrum.   

1. Introduction to lung fibrosis 

The term “pulmonary fibrosis” (PF) defines a pathological state in 
which the lung parenchyma undergoes an irreversible process of over-
growth, hardening, and/or scarring often attributed to excess deposition 
of extracellular matrix components including collagen. Interstitial lung 
diseases (ILDs) are a heterogeneous group characterized by different 
clinical, radiologic, and pathologic patterns that extensively involve the 
lung parenchyma. PF is a hallmark of different types of ILDs [1] that 
share the presence of chronic inflammation and/or collagen deposition 
in the interalveolar space, leading to a deficient transit of oxygen and 
carbon dioxide molecules across the alveolar epithelium. Some ILDs are 
characterized by different degrees of PF, in particular, idiopathic pul-
monary fibrosis (IPF) is considered the most representative type of lung 
fibrosis. IPF has the worst prognosis with a median survival of 2–5 years 
after diagnosis, a prognosis worse than that of many cancers, and indeed 
represents a huge unmet medical need [2,3]. IPF manifests in the older 

age (rarely earlier than 60 years), with a prevalence higher in men than 
women, and in the absence of any obvious provocation [1]. PF repre-
sents also the end-stage of ILD related to well-known connective tissue 
diseases (e.g. rheumatoid arthritis and systemic sclerosis) but also other 
less-characterized connective tissue diseases related to exposure to 
drugs or asbestos [3]. 

The last 20 years have witnessed the succession of numerous 
different points of view in the scientific and medical communities of PF 
in general leading to a progressive transformation of the landscape of 
this pathology. The first debated point is the identification of the driving 
cause of PF. PF has been primarily considered an epithelial-driven dis-
ease in which dysfunctional alveolar cells take an etiological precedent. 
Other authors focused on the augmented extracellular deposition of 
collagen within the interstitium and the activation of the immune sys-
tem as pathological mechanisms of PF onset. It is now becoming clear 
that all these events belong to a unique pathophysiological chain of 
events that accounts for PF progression [4]. Thus, the key question that 
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needs now to be addressed is how the onset and progression of PF occur, 
based also on different genetic, epigenetic, and environmental back-
grounds [5]. 

In this complex and evolving scenario, interesting new details have 
been added in the last two years due to the protracted battle against the 
pandemic by severe acute respiratory syndrome coronavirus 2 (SARS- 
CoV-2) causing coronavirus disease (COVID-19). SARS-CoV-2 viral 
infection has been demonstrated to induce acute respiratory distress 
syndrome (ARDS) in an estimated 17.2 to 31% of COVID-19 infections 
[6]. PF is a well-known complication of ARDS that is histologically 
characterized by diffuse alveolar damage (DAD). The first study about 
post-COVID-19 evaluation demonstrated that while the majority of pa-
tients recover without residual lung damage, an appreciable number 
(more than a third of recovered patients) experience residual fibrotic 
lesions that are reversible in some cases [7,8]. Given the widespread 
incidence of the pandemic, this translates into a few million people left 
with significant pulmonary involvement. 

Herein, the main molecular mechanisms driving the onset of PF 
regardless of their aetiology will be reviewed and discussed, along with 
an overview of how these studies have been translated into approved or 
proposed diagnostic/therapeutic solutions. A specular approach will be 
used to discuss the lung fibrosis cases documented in COVID-19 patients. 
This will hopefully highlight the shared mechanistic details and help to 
define better strategies for therapeutic intervention in these two 

pathological states. 

2. Molecular mechanisms of fibrosis: What is known and what is 
unknown 

Several mechanisms have been demonstrated to play a role in the 
fibrosis insurgence and progression; nevertheless, the pathophysiology 
of fibrotic processes is still incompletely defined. Several types of cells 
participate in the initiation and progression of fibrosis such as Alveolar 
epithelial type I cells (AT1), Alveolar epithelial type II cells (AT2), 
resident fibroblasts, resident and circulating cells of the immune system 
(monocytes, macrophages, lymphocytes, and neutrophils) and mesen-
chymal stem cells (MSCs) [9]. Of particular interest, besides the specific 
role of each cell type, is the crosstalk among them that crucially de-
termines the amplification and complexity of the fibrotic process. 

In the lung, the initiation is followed by an inflammatory process that 
causes a huge activation of resident immune cells. The activated mac-
rophages and neutrophils release pro-fibrotic mediators that promote 
the accumulation of myofibroblasts [10]. These are particular types of 
cells capable to produce extracellular matrix (ECM) and with enhanced 
contractility [11]. Lung myofibroblasts can originate from different 
sources and their fate is apoptosis allowing the termination of the 
healing process [12]. Unfortunately, during the fibrotic process, the 
termination of ECM production from these cells is impaired and the 

Fig. 1. Schematic representation of the immune system involvement in the induction of pulmonaryl fibrosis (PF). Upon endothelial and epithelial injury, cytokines 
such as tumor growth factor–β (TGF-β), interleukin-6 (IL-6), C-X-C motif chemokine ligand 12 (CXCL12) are released. These cytokines contribute to the activation and 
recruitment of immune cells (macrophages, SatMs, and neutrophils). T helper 2 (Th2) cells release IL-13 and IL-4 that promote the polarization of macrophages to M2 
phenotype (M1: classically activated macrophages phenotype, pro-inflammatory; M2: alternatively activated macrophages phenotype, anti-inflammatory). The M2 
cells produce a large amount of TGF-β and the platelet-derived growth factor (PDGF) further contributing to the fibrotic process. Pro-inflammatory cytokines also 
cause the neutrophil extracellular traps (NETs) formation that contributes to epithelial damage. Green arrow: activation. Black arrow: migration. Light blue arrow: 
transformation. ECM: extracellular matrix; COL1: collagen type 1; AT1: alveolar epithelial type I cells; AT2: alveolar epithelial type II cells; MSCs: mesenchymal 
stromal cells; CCL18: C–C motif chemokine ligand 18; ICAM-1: intercellular adhesion molecule-1; VCAM-1: vascular cell adhesion molecule-1. 
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increased stiffness causes further cell injury and further myofibroblast 
activation [13]. When this occurs, the self-amplifying activation loop is 
established and the fibrotic process becomes irreversible. Herein, the 
most recent and the main consolidated mechanisms activated during the 
fibrotic process will be discussed (Figs. 1 and 2). 

2.1. Initiation of the fibrotic lung alteration 

Injuries in the endothelium and epithelium have arisen as a general 
mechanism of fibrosis initiation [14]. The lung epithelium can be sub-
jected to different micro-injuries, for example from cigarette smoke and 
toxins [15]. Recently, it has become more evident that also viral in-
fections such as cytomegalovirus and SARS-CoV-2 can cause significant 
lung injury leading to both endothelial and epithelial damage acting as 
starting point for the extensive inflammatory and fibrotic processes 
[16,17]. However, the exact role of viral, as well as bacterial infection, 
in the initiation and propagation of PF is still debated. 

Regardless of the origin, the endothelial injury (Fig. 1) causes the 
release of pro-fibrotic factors and cytokines such as transforming growth 
factor–β (TGF-β), connective tissue growth factor/CCN family member 2 
(CTGF/CCN2), and plasminogen activator inhibitor–1 (PAI-1) that sus-
tain all the phases of fibrotic processes [14]. In this scenario, ageing has 
emerged as a critical player too. Indeed, Caporarello et al. have evi-
denced that endothelial cells from aged mice have elevated pro-fibrotic 
and reduced vascular homeostasis regulation. In fact, the injured aged 
cells fail to upregulate genes such as the nitric oxide synthase 3 (Nos3), 

encoding the enzyme endothelial nitric oxide synthase (eNOS), which is 
a pivotal protein involved in the resolution of lung fibrosis [18]. 

Injured endothelial cells also express increased levels of adhesion 
molecules, including intercellular adhesion molecule-1 (ICAM-1), 
vascular cell adhesion molecule-1 (VCAM-1), and E- and P-selectins 
[19,20], which facilitate immune cell recruitment. In turn, infiltrating 
immune cells release pro-inflammatory cytokines, such as interleukin 6 
(IL-6) that further enhance the endothelial cell inflammation in a posi-
tive feedback loop. 

2.2. Immune system activation 

2.2.1. Macrophages 
Lung macrophages are the first line of defence against pathogens and 

antigens. Recently, based on their origin, distinct macrophage pop-
ulations have been identified in the lung: resident macrophages and 
monocyte-derived macrophages [21]. Tissue-resident alveolar macro-
phages derive from yolk sac foetal progenitors and maintain self- 
renewal properties over the lifespan. In response to injury, alveolar 
macrophages undergo pyroptosis causing their depletion, thus, blood- 
derived monocytes are recruited to the lung where cytokines drive 
their differentiation into alveolar macrophages. Macrophages have two 
distinct polarization states: classically activated phenotype (M1), which 
is closely linked to pro-inflammatory processes, and the “alternatively 
activated phenotype” (M2), which is involved in tissue repair and anti- 
inflammatory reactions (Fig. 1). Of note, to date, this classification is 

Fig. 2. Schematic representation of the mechanism regulating myofibroblasts activation in pulmonaryl fibrosis (PF). Soluble mediators such as tumor growth 
factor–β (TGF-β), interleukin-6 (IL-6), and galectin-3 (Gal-3) promote the transformation of endothelial cells to myofibroblasts (EndMT). Similarly, TGF-β, and IL-6 
favour the epithelial-mesenchymal transition (EMT) of alveolar endothelial type 1 (AT1) cells. Another source of myofibroblasts derives from the activation of 
resident fibroblast and pericytes by TGF-β, the platelet-derived growth factor (PDGF) and fibroblast growth factor 2 (FGF-2) in a process defined fibroblast to 
myofibroblast transformation (FMT). The activation of TGF-β signalling promotes the formation of myofibroblast from lipofibroblasts. Despite the activation of the 
peroxisome proliferator-activated receptors-gamma (PPARγ) signalling that could counteract the myofibroblast activation, these pathways are downregulated in PF. 
The release of IL-8 can also drive the activation of mesenchymal stromal cells (MSCs). The increase of myofibroblast cell bulk causes the over-production of 
extracellular matrix (ECM). 
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oversimplified considering the complexity of the stimuli in pathological 
conditions [22]. Surprisingly, the M2 phenotype, but not the M1, plays a 
major role in the progression of lung fibrosis [23]. Initially, after the 
lung injury, resident macrophages are polarized to the M1 phenotype 
due to the presence of interferon-gamma (IFN-γ) and toll-like receptor 
(TLR) ligands. The M1 cells contribute to the host defence against 
pathogens by generating reactive oxygen species (ROS) and reactive 
nitric oxide (NO) via inducible nitric oxide synthase (iNOS) and by 
releasing pro-inflammatory cytokines and chemokines (e.g. IL-1β, IL-12, 
IL-23, TNF-α, and C–C motif chemokine ligand 2 (CCL2)). In the later 
phase, the M1 macrophages are replaced by a population of M2 mac-
rophages derived both by the polarization of the resident macrophages 
and the differentiation of blood-derived monocytes [23]. Under the 
stimulation of the IL-4 and IL-13, M2 macrophages release a large 
amount of pro-fibrotic mediators such as TGF-β and platelet-derived 
growth factor (PDGF) to induce continuous fibroblast activation and 
to promote myofibroblast proliferation (Fig. 1). Furthermore, this type 
of activated macrophages binds to collagen type 1 (COL1) via β2- 
integrins and scavenger receptors, releasing the CCL18 cytokine that in 
turn promotes collagen production, which creates a self-amplifying loop 
[24]. Despite the efforts to elucidate the role of innate immune cells in 
fibrosis pathogenesis, several aspects have to be discovered, yet. 
Recently, Morse et al. using single-cell RNA-sequencing (scRNA-seq) 
have identified a novel population of pro-fibrotic macrophages that 
express at high levels the secreted phosphoprotein 1 (SPP1) genes 
(SPP1hi) [25]. The SPP1 gene encodes for osteopontin that has been 
discovered within the fibrotic foci. Extracellular osteopontin promotes 
monocyte/macrophage proliferation and fibroblast activation support-
ing the pivotal role played by SPP1hi macrophages in fibrosis progres-
sion (Fig. 1) [26]. 

2.2.2. Monocytes 
Blood-derived monocytes play also a pivotal role in the development 

of fibrosis [27]. Interestingly, Satoh et al. have recently revealed the 
involvement of a specific subpopulation of monocytes in PF defined 
segregated-nucleus-containing atypical monocytes (SatMs) [28]. These 
monocytes are characterized by the expression of specific markers 
(Ceacam1 + Msr1 + Ly6C − F4/80 − Mac1 + ) and present a bilobed 
nucleus. Interestingly, they demonstrate the unique role of these cells in 
the initiation of the fibrotic process but not in the control of inflam-
mation. The same authors also reveal an intriguing mechanism at the 
basis of SatMs recruitment in lung fibrotic regions [29]. The insurgence 
of endothelial/epithelial lung injury causes the assembly of nuclear 
exosomes in the cells also called paraspeckles that are critical in the 
repair of damaged DNA preventing cell apoptosis. The formation of 
these paraspeckles is mediated by a specific long non-coding RNA 
(lncRNA). The authors reveal the pivotal role of the RNA-binding motif 
protein 7 (Rbm7) in mediating the degradation of this specific lncRNA 
impairing the paraspeckle formation. The lack of these paraspeckles 
causes caspase-3 activation in airway epithelial cells that release the C- 
X-C motif chemokine ligand 12 (CXCL12), which acts as a potent che-
moattractant to SatMs (Fig. 1) [29]. 

2.2.3. Innate lymphoid cells (ILCs) 
Monocytes are not the unique type of infiltrating cells upon the 

endothelial and epithelial release of TGF-β and chemoattractant medi-
ators. Indeed, the infiltrating cells consist of monocytes, B cells, T cells, 
and innate lymphoid cells (ILCs) [30]. ILCs, specifically the type 2 
(ILC2s), are recruited by the IL-33 and IL-25 released by injured 
epithelia [31,32]. They have been implicated in lung fibrosis due to their 
production of pro-fibrotic mediators first of all IL-13 but also IL-6 and IL- 
9 [31,33]. IL-13 has been demonstrated as one of the major drivers of 
fibrosis in the lung [34]. Indeed, it has been proposed as a target for IPF 
treatment; unfortunately, the clinical trials targeting IL-13 signalling 
failed to report positive effects, demonstrating the need to better 
elucidate the intricate effects of this and other cytokine cascades [35]. 

IL-13 is released by ILCs but it is mainly derived from T cells that are 
polarized to T-helper 2 (TH2) phenotypes in lung fibrotic lesions [36]. 
IL-13, together with the IL-4 released by TH2 cells, promotes the M2 
polarization of macrophages [27]. 

2.2.4. Neutrophils 
In the last years, neutrophils have attracted great interest in the field 

of lung disease. Neutrophils are myeloid leukocytes playing a key role in 
the fight of a wide range of pathogens. Different stimuli can activate 
neutrophils causing: i) phagocytosis, ii) release of granules (that contain 
proteases and ROS), iii) release of neutrophil extracellular traps (NETs). 
NET generation has been defined NETosis and it is a peculiar type of 
neutrophil cell death, even if some authors report that cells do not 
necessarily die after the release of NETs [37,38]. Upon activation, 
neutrophils release the NETs that are primarily composed of DNA 
decorated with histones and granule proteins such as lactoferrin, ca-
thepsins, neutrophil elastase (NE), myeloperoxidase (MPO), and pepti-
dylarginine deiminase type IV (PAD4) [39]. Diverse stimuli trigger NET 
formation such as bacterial/viral proteins, pro-inflammatory cytokines 
(TNF-α, IL-8, and IL-1β), and chemical (phorbol 12-myristate 13-acetate, 
PMA) [40]. The complex machinery regulating NET formation is still 
unclear. Several studies reveal that NETosis is dependent on the gen-
eration of ROS by NADPH oxidase 2 (NOX2). However, a NOX- 
independent mechanism has been proposed, in which the increase of 
intracellular calcium concentration is required instead of ROS [41,42]. 
Although NETs play a beneficial role as the primary defence from 
pathogens, protracted inflammation, cell damage, and prolonged viral 
infection may cause sustained activation of this process leading to tissue 
injury and pathological conditions. IL-8 is the major known chemo-
attractant for neutrophils in humans (Fig. 1) [43]. However, the 
research on these aspects is still ongoing and recently, Leslie et al. also 
reveal the role of formyl peptide receptor 1 (FPR-1) for neutrophil 
recruitment and PF progression [44]. NETs have been found in cystic 
fibrosis, acute lung injury, and lungs infected with bacteria, viruses, or 
fungi, in ARDS and fibrosis [45]. NETs have been detected in the sera of 
COVID-19 patients and correlated with both disease progression and 
thrombosis [46,47]. Recently, Khawaja et al. demonstrated that the 
hypoxic condition and HIF-1α upregulation may augment neutrophil 
recruitment and activation within the lung interstitium. Of note, in both 
PF and COVID-19, a progressive loss of lung functionality is evidenced 
that can lead to hypoxia phenomena sustaining the vicious loop of 
neutrophil activation [48]. 

Overall, in the last decades, several efforts have been done to 
elucidate the role of immune cells in the pathophysiology of lung 
fibrosis; however, further attempts are required to better understand 
how these new phenomena discovered in recent years can affect the 
initiation and progression of fibrosis. For example, the extracellular 
traps (ETs) are not exclusive of neutrophils. Recently, the ability of other 
types of immune cells to release ETs has been evidenced such as mac-
rophages extracellular traps (METs) and eosinophils extracellular traps 
(EETs) [49,50]. To our knowledge, the role of these ETs in lung pa-
thologies has remained unexplored, yet. 

2.3. Myofibroblast differentiation: epithelial/endothelial-mesenchymal 
transitions and lipofibrogenesis 

As reported above, the inflammatory process and immune activation 
are followed by the initiation of ECM deposition driven by a peculiar 
type of cells: the myofibroblasts, firstly described by Gabbiani et al. 
Myofibroblasts are characterised by a morphology similar to “conven-
tional tissue fibroblasts”, produce components of ECM, and have a 
contractile capacity as smooth muscle cells [51]. During the last de-
cades, several researchers have highlighted the complexity of mecha-
nisms driving their formation and the cell types contributing to their 
origin. The myofibroblast origin in lung fibrosis is still debated, among 
other the main sources are: 1) alveolar epithelial cells that undergo an 
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epithelial-to-mesenchymal transition (EMT); 2) endothelial cells that 
undergo an endothelial-to-mesenchymal transition (EndMT); 3) fibro-
blasts that derive from peripheral blood fibrocytes and resident lung 
fibroblasts that become activated, a process defined fibroblast to myo-
fibroblast transition (FMT); 4) pericytes and mesenchymal stem cells 
(bone-marrow-derived and Gli1 positive perivascular MSCs) (Fig. 2) 
[10,11]. 

2.3.1. Epithelial-mesenchymal transition in PF 
EMT is a reversible process in which epithelial cells lose progres-

sively the epithelial phenotype and acquire mesenchymal markers. EMT 
has been implicated in embryogenesis, normal and pathological wound 
healing, cancer metastasis, and organ fibrosis [52]. During the process, 
epithelial cells down-regulate E-cadherin and the miRNA200 family 
progressively losing apical-basal polarity. In parallel, they up-regulate 
mesenchymal markers such as fibroblast-specific protein 1 (FSP1), 
α-smooth muscle actin (α-SMA), COL1, vimentin, and fibronectin. The 
orchestration of this complex process is regulated by specific tran-
scription factors defined EMT transcription factors (EMT-TFs), including 
Snail, ZEB, Slug, and TWIST. Regarding the involvement of EMT in lung 
fibrosis, several authors demonstrated the ability of alveolar epithelial 
cells (AECs) to transdifferentiate into myofibroblasts and develop 
fibrotic tissue both in vivo and in vitro [53–56]. Despite several decades 
of research and demonstration in cellular models, the contribution of 
epithelial cells to the bulk of myofibroblasts in lung fibrosis remains 
debated. 

Upon lung injury, TGF-β, the major actor in EMT induction, is 
released not only by injured epithelial and endothelial cells but also by 
monocytes, macrophages, T-cells, and fibroblasts, leading to a self- 
sustained pathological loop. TGF-β binds to a heterodimeric tyrosine 
kinase receptor (composed of the type I and type II TGF-β-Receptor 
subunits), activating a plethora of different downstream pathways. The 
“canonical” TGF-β signalling pathway involves the activation of small 
mother against decapentaplegic (SMAD) proteins, which are a family of 
transcriptional activator proteins. The canonical TGF-SMAD signalling 
has been widely related to the induction of EMT in epithelial cells [57]. 
Apart from SMAD signalling, TGF-β can also signal through “non-ca-
nonical”, non-SMAD pathways such as mitogen-activated protein kinase 
(MAPK), extracellular-signal-regulated kinase (ERK), JUN N-terminal 
kinase (JNK) as well as RHO-associated kinase (ROCK), and AKT path-
ways [58]. Similar to the canonical-SMAD signalling, the activation of 
pathways such as ERK can modulate the EMT induction promoting the 
exacerbation of fibrotic lesions [57]. TGF-β has been also related to EMT 
due to its crosstalk with the canonical Wnt/β-catenin pathway [59]. In 
fact, TGF‑β promotes the accumulation of β‑catenin in the nucleus 
inducing EMT in alveolar epithelial cells (Fig. 2)[60]. 

The Wnt/β-catenin signalling is another core pathway in fibrosis. 
Wnt is a family of proteins able to bind frizzled (FZD) receptor; based on 
the effector, Wnt signalling pathways can be defined as “Wnt/β-catenin 
canonical pathway” if it promotes the β-catenin accumulation, and “non- 
canonical pathways” if other intracellular pathways are activated (e.g. 
the planer cell polarity (PCP), JNK, protein kinase C/calcium (PCK/ 
Ca2+) and others) [61]. Due to its effects and its cross-talk with the TGF- 
β signalling, Wnt/β-catenin signalling has been related to the progres-
sion of IPF [62]. Its activation promotes the EMT of epithelial cells, 
causes pulmonary fibroblast proliferation, and ECM deposition. Finally, 
Wnt/β-catenin signalling has been related to airway small muscle (ASM) 
cell proliferation and airway remodelling [63]. Several other receptors 
and intracellular pathways have been related to the induction and 
modulation of EMT processes. Among the others, Hill et al. reported the 
molecular mechanism that links autophagy with the induction of EMT of 
alveolar epithelial cells, corroborating its role in lung fibrosis and other 
pulmonary pathology [64,65]. 

2.3.2. Enothelial-mesenchymal transition in PF 
Similar to the epithelial cells, endothelial cells undergo 

transdifferentiation into myofibroblasts in a process defined EndMT. 
During the transformation, endothelial cells decrease the expression of 
specific endothelial markers such as platelet endothelial cell adhesion 
molecule (PECAM), vascular endothelial cadherin (VE-cadherin), and 
increase the expression of mesenchymal markers FSP1, α-SMA, COL1, 
vimentin, and fibronectin [66]. In IPF, the activation of EndMT has been 
evidenced as a source of collagen-producing myofibroblasts [67]. 
Considering the EMT and EndMT similarity, they also share the role of 
various growth and pro-inflammatory factors in their induction with a 
central role of the TGF-β, Wnt/β-catenin pathways, and PDGF pathways 
[68]. More recently, the onset of new technologies such as scRNA-seq 
opens the way to a better definition of the mechanisms underlying this 
dynamic process. Jia et al. have discovered galectin-3 as a regulator of 
EndMT using this innovative approach [69], thus corroborating its 
causal role in fibrosis [70]. Galectin-3 is a protein that behaves as a 
pattern recognition receptor (PRR) playing a role in the recognition of 
microbial “pathogen-associated molecular patterns” (PAMPs), such as 
constituents of the bacterial and fungal cell wall, or viral genome [71]. 
The results of Jia et al. have identified a new molecular mechanism 
involved in EndMT, constituting a possible future target for fibrosis 
therapy (Table 1, Fig. 2). Of note, EMT and EndMT are bidirectional 
processes and a partial transformation has been evidenced further 
expanding the complexity of the related scenario in vivo [72]. 

2.3.3. Fibroblast to myofibroblast transition 
Fibroblasts are another well-known source of myofibroblasts. The 

cell damage and the release of inflammatory cytokines and growth 
factors from macrophages and T-cells (e.g. IL-6, TNF-α, and TGF-β) drive 
the activation of resident fibroblasts expressing high-affinity type 2 TGF- 
β receptor that assumes spindle shape and starts to produce collagen. 
This process has been defined FMT and it is an essential process in 
wound healing and is driven by microenvironment stimuli as well as by 
the modification of the ECM composition and stiffness [73]. Several 
decades of research highlight the involvement of several signalling 
pathways able to modulate fibroblast proliferation and differentiation, 
such as PDGF signalling. PDGF has four isoforms that bind two PDGF 
receptor tyrosine kinases (PDGFR α and β). These receptors are highly 
expressed in fibroblasts and myofibroblasts where they prompt survival, 
proliferation, and migration following the release of their endogenous 
ligand PDGF. PDGF also synergizes with TGF-β promoting its release 
from activated alveolar macrophages and epithelial cells, thus crucially 
contributing to the self-activating loop of fibrosis spread [74]. Alongside 
the PDGFR tyrosine receptors, fibroblast growth factor (FGF) tyrosine 
kinase receptors (FGFR) play a central role in the activation of fibro-
blasts. High expression levels of FGFR-1 and FGFR-2 are found in several 
lung cell types (epithelial, endothelial, and myofibroblast-like, as well as 
interstitial cells) of IPF patients, where they crucially contribute to 
collagen synthesis and deposition driven by FGF-2 (Fig. 2)[75]. 

Once the injury is resolved, the fibroblast and myofibroblast acti-
vation must be switched off to prevent pathological conditions. Specif-
ically, myofibroblasts can return to fibroblast phenotype, alternatively, 
they can initiate self-clearance via apoptosis [76]. The evasion from 
these mechanisms leads to the sustainment of fibrotic processes. Thus, 
several efforts have been recently made to better understand the 
mechanism that can cause the lack of myofibroblast deactivation. 
Among others, the inhibition of autophagy can not only promote the 
EMT processes but can also provide resistance to apoptosis in fibroblasts 
and myofibroblasts. The PI3K/AKT/mTOR activation reduces auto-
phagy making fibroblasts and myofibroblasts resistant to apoptosis in 
IPF [77]. Similarly, the inhibition of eEF2K and p38 MAPK signalling 
decreases autophagy processes that in turn reduce lung fibroblast 
apoptosis [78]. In correlation with the autophagy decrease, ageing has 
arisen as a modulator of fibroblast activation and deactivation. In fact, 
Caporarello et al. demonstrate that lung fibroblast activation is transient 
in young mice but more persistent if compared with aged ones [18]. 
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2.3.4. Lipofibroblast formation 
Myofibroblast deactivation can be obtained also by de- 

differentiation induction that is controlled by mitogen(s)/ERK/MAPK/ 
CDKs, as opposed to TGFβ1/ALK5/MyoD signalling that drives fibro-
blast differentiation [79]. Recently, it has been proposed that myofi-
broblasts de-differentiate into another different type of fibroblast: the 
lipofibroblasts. Lipofibroblasts are lipid-droplet-containing interstitial 
fibroblasts rich in neutral lipids that support the maintenance of AT2 cell 
homeostasis as well as their protection against oxidative stress [80]. 
Lipofibroblast cells express the adipose differentiation-related protein 

(ADRP), peroxisome proliferator-activated receptors-gamma (PPARγ), 
and parathyroid hormone receptor (PTH1R). This de-differentiation can 
be transient, in fact, El Agha et al. have elegantly demonstrated that 
lipofibroblasts serve as a source of activated myofibroblasts in lung 
fibrosis. The presence of high levels of TGF-β activates the canonical 
TGF-β/SMAD pathway supporting the lipofibroblast-to-myofibroblast 
transdifferentiation. The authors also prove that PPARγ signalling is 
involved in the reversal of this event (Fig. 2). Of note, PPARγ expression 
is downregulated in IPF lung biopsy, likely due to hyperactive TGF-β 
signalling [81]. 

Table 1 
List of the main innovative therapeutic approaches in preclinical or clinical testing for IPF treatment. Treatments explored for PF resulting from COVID-19 are also 
reported. Therapies that already proved to be ineffective or detrimental have not been included in this list, but can be found elsewhere [165,207]. For each therapeutic 
option, the name and typology of product, the molecular target, the data supporting efficacy, and, where available, the information about clinical trials started (type, 
name, and/or ClinicalTrials.gov identifier) are reported.  

Name and type of the product Target Evidence of efficacy for IPF 
treatment (pre-clinical cellular, 
preclinical-animal, clinical) 

Info about clinical trial Clinical 
Application 

Related 
references 

Pamrevlumab, FG-3019 (humanized 
monoclonal antibody) 

CTGF (connective tissue 
growth factor) 

Clinical Phase II completed 
(NCT01890265) 
Phase III ongoing 
(NCT03955146) 
Phase II ongoing 
(NCT04432298) 

IPF 
PF in COVID-19 

[208] 

Ianalumab, VAY736 (humanized 
monoclonal antibody) 

BAFF-R (B cell 
activating factor 
receptor) 

Clinical Phase II ongoing 
(NCT03287414) 

IPF [121] 

Lebrikizumab (humanized monoclonal 
antibody in monotherapy or in 
combination with pirfenidone) 

Interleukin 13 (IL-13) Clinical Phase II ongoing 
(NCT01872689) 

IPF [209] 

Meplazumab (humanized monoclonal 
antibody) 

CD147 Clinical Phase II ongoing 
(NCT04275245) 

PF in COVID-19 [210] 

Losartan (small molecule antagonist) Angiotensin II type 1 
receptor 

Clinical Phase II ongoing 
(NCT00879879) 

IPF 
PF in COVID-19 

[211212] 

PRM-151 (human recombinant protein) Pentraxin-2 (PTX-2) Clinical Phase II completed 
(NCT02550873) 
Phase III ongoing 
(NCT04552899) 

IPF [125] 

IW001 (oral immunotherapy) Col(V) collagen 
autoantibodies 

Clinical Phase I completed 
(NCT01199887) 

IPF [213] 

Brazilian green propolis (natural compound) Various targets Clinical Phase II completed 
(NCT04480593) 

PF in COVID-19 [214] 

GB0139 (other name TD139) (small 
molecule inhibitor) 

Galectin-3 Clinical Phase I-IIa completed 
Phase IIb ongoing 
(NCT03832946) 

IPF [215] 

CC-930 and CC-90001 (small molecule 
inhibitors) 

JNK Pre-clinical (animal) Clinical Phase I completed 
Phase II ongoing 
(NCT03142191) 

IPF [216217] 

BMS-986278 (small molecule inhibitor) LPA1 Pre-clinical (cellular, and animal) 
Clinical 

n.d. 
Phase II ongoing 
(NCT04308681) 

IPF [218] 

GLPG1690 (small molecule inhibitor) Autotaxin (ENPP2) Clinical Phase IIa completed 
(NCT02738801) 

IPF [219] 

Saracatinib (small molecule inhibitor) Src tyrosine kinase Clinical Phase Ib/IIa ongoing 
(NCT04598919) 

IPF [220] 

Talagedib, ENV-101 (small molecule 
inhibitor) 

Hedgehog pathway Clinical Phase II ongoing 
(NCT04968574) 

IPF n.d. 

ORIN1001 (small molecule inhibitor) IRE1α/XBP1 Clinical Phase Ib ongoing 
(NCT04643769) 

IPF n.d. 

Colchicine (small molecule inhibitor) Inflammasome 
machinery 

Clinical Phase 3, randomised, 
double-blind, completed  
Phase 4, ongoing 
(NCT04818489) 

PF in COVID-19 [221] 

MSC (mesenchymal stem cell) therapy ATII-cell intratracheal 
transplantation 

Clinical phase Ib. Moderate/ 
Progressive IPF 

[222] 

Bone-marrow MSC intravenous infusion Clinical Phase I/IIa ongoing 
(NCT02594839) 

IPF [129] 

Lung Spheroid Stem Cells (LSCs) intravenous infusion Clinical Phase I ongoing 
(NCT04262167) 

IPF n.d. 

siRNA TRK-250 TGF-β1 Clinical Phase I ongoing 
(NCT03727802) 

IPF [223] 

siRNA nanoparticle and prostaglandin2 MMP3, CCL12, and 
HIFα mRNAs 

Pre-clinical (animal) n.d. IPF [224] 

siRNA liposome SART1 Pre-clinical (animal) n.d. IPF [225]  
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2.4. Inside the extracellular matrix deposition 

The plethora of mechanisms described above has as main conse-
quence the deposition of ECM that in turn modulates the myofibroblast 
formation in a self-amplifying activation loop. In the era of omic sci-
ences, the study of the “matrisome” has considerably accelerated the 
discovery of mechanosensor mechanisms of extracellular stiffness. The 
matrisome includes all the genes encoding structural ECM components 
and ECM-associated components [82]. The increase of stiffness and an 
excessive lung stretch activates different signalling pathways implicated 
in the mechanical transduction, including Rho/Rho-associated protein 
kinase (ROCK), myocardin-related transcription factor-A (MRTF-A), and 
yes-associated protein 1 (YAP)/transcriptional coactivator with PDZ- 
binding motif (TAZ) signalling pathways. The increase of stiffness me-
diates the Rho-mediated actin polymerization that results in myocardin- 
related transcription factor A (MRTF-A) nuclear translocation causing 
the increase of α-SMA and COL1 gene expression and promoting the 
fibroblast-to-myofibroblast transformation. Similarly, Rho induction of 
YAP/TAZ nuclear translocation promotes the gene expression of ECM 
genes such as PAI-1, connective tissue growth factor (CTGF), and COL1 
[83]. 

The connective tissue stiffening directly drives the progression of 
fibrosis too, by controlling the integrin-mediated activation of latent 
TGF-β1 that, upon activation, promotes myofibroblast formation [84]. 
Finally, it has been evidenced that a stiff microenvironment is critical to 
enable TGF-β1 activation of non-canonical pathways such as focal 
adhesion kinase (FAK) and YAP/TAZ signalling [85]. 

2.5. Genetic and epigenetic modifications involved in fibrotic process 

Several genetic modifications have been related to fibrosis suscep-
tibility thank to the onset of genome-wide association studies (GWAS). 
The main genetic risk factors have been recently reviewed by Michalski 
et al. [86]. For example, the rs35705950 single nucleotide poly-
morphism (SNP) in the promoter region of mucin 5B (MUC5B) has been 
linked to increased risk of IPF as well as of other ILDs associated with 
rheumatoid arthritis and chronic hypersensitivity pneumonitis, too 
[87]. The MUC5B encodes a precursor protein that contributes to airway 
mucous production and has an important role in bacterial host defence; 
thus the MUC5B SNP leads to altered related protein production in the 
bronchiolar epithelium [88]. Mutations in genes responsible for telo-
mere shortening (e.g. TERT, TERC, RTEL1, and PARN) and genes asso-
ciated with surfactant dysfunction (SFTPC and SFTPA2) have been 
related to the progression of IPF, too [89,90]. 

The genetic modifications alone are not sufficient to explain the 
fibrosis progression. Indeed, epigenetic alterations can contribute to the 
activation of fibroblasts and EMT processes. In the last decades, several 
authors report the involvement of micro RNA (miRNA) in one or more 
mechanisms of lung fibrosis from the EMT, EndMT induction, and ECM 
production ending to the activation of immune cells [91–94]. Recently, 
other types of non-coding RNAs, the lncRNAs, are attracting great 
attention. lncRNAs can act as competing endogenous RNAs (ceRNAs), 
thus causing the inhibition of miRNA activity. In the attempt to discover 
possible targets to reduce the fibrotic process, LncRNA ZEB1-AS1, 
LncRNA MALAT1, and LncRNA-ATB have been reported to enhance 
the EMT process. As expected, these LncRNA silence the expression of 
specific miRNA, miR-141-3p/ZEB1, miR-503, and miR-29b-2 and miR- 
34c, respectively, which regulate the expression of proteins involved 
in EMT [95–97]. 

The highly complex regulatory network of circular RNA (circRNA)/ 
miRNA/mRNA has been emerging as another important epigenetic 
control of fibrosis. However, to date, little is known about the effects of 
circRNA in lung fibrosis compared with lncRNA and miRNA. Only a few 
reports investigate the expression and the processes influenced by 
circRNA [98,99] demonstrating the need for further investigation in this 
field. 

2.6. Extracellular vesicles and fibrosis process 

Considering the mechanisms of cell-cell communication, peculiar 
carriers of signal molecules, miRNA included, are the extracellular 
vesicles (EVs). During the last decades, several authors have tried to 
elucidate the role of these particles in the pathophysiology of lung 
fibrosis [100]. EVs are a class of particles that can be divided into exo-
somes (EXs), microvesicles or microparticles (MPs), and apoptotic 
bodies based on their dimension and biogenesis [100–102]. EVs can load 
different cargos and based on their origin and production stimuli can 
produce different effects in recipient cells. Xie et al. have demonstrated 
that EXs released from pulmonary vascular endothelial cells in a mouse 
model of bleomycin-induced PF have lower let-7d miRNA levels. The 
authors demonstrate that this reduction drives the stimulation of peri-
cyte transdifferentiation and fibrogenesis through the TGFβRI/FoxM1/ 
SMAD/β-catenin pathway [103]. Similarly, human lung epithelial cells 
release EVs enriched with miR-21when fibrosis is induced with arsenite. 
The miR-21-enriched EVs are transferred into fibroblasts where they 
activate the PTEN/AKT signalling pathway promoting glycolysis-related 
myofibroblast differentiation [104]. In this scenario, also macrophages 
are able to secrete EVs with different cargo based on the received 
stimuli. EXs derived by silica-induced macrophages have high levels of 
both SPP1 and miR-125a-5p that can promote myofibroblast differen-
tiation when transferred to fibroblasts [105,106]. 

EVs have been also proposed as a therapeutic option for different 
pathologies. Indeed, EVs loaded with specific miRNAs, lncRNAs, and 
RNA Piwi-interacting (piRNA) can modify the response of recipient cells 
by targeting key cellular and molecular players in lung fibrosis. How-
ever, the research in this field is still mostly at the pre-clinical level 
(Table 1), thus still far too soon translate into a clinical therapeutic 
option. 

3. Approved and future therapeutic approaches to IPF 

In agreement with the numerous molecular mechanisms described 
above, the identification of therapeutic targets in IPF has also revealed 
to be a long-lasting and complex process. Only two antifibrotic drugs, i. 
e. nintedanib and pirfenidone, have been so far approved by the United 
States Food and Drug Administration (FDA) and the European Medicines 
Agency (EMA) to treat IPF. Both drugs have been demonstrated to slow 
down the decline in lung function and reduce the risk of acute respira-
tory exacerbations in patients with IPF [107,108]. Since their first 
approval in 2014, several clinical trials [109] and observational data 
[110] have supported the safety and efficacy of these two drugs, which 
provided a noteworthy amelioration of the IPF patient management. 
Importantly, these studies not only corroborate the efficacy of ninteda-
nib and pirfenidone as IPF drugs, but also identify a series of potentially 
harmful (e.g., prednisolone, azathioprine, and warfarin) or ineffective 
(e.g. bosentan and acetylcysteine) drugs for IPF patients [90]. Consid-
ering that some of the harmful/ineffective drugs had constituted the 
standard of care for IPF only a few years before [111], it can be un-
derstood that the IPF treatment paradigm has totally changed since the 
2010s. 

Nintedanib is a small molecule inhibitor of multiple receptor tyrosine 
kinases (RTKs), namely the FGFR, PDGFR, and vascular endothelial 
growth factor receptor (VEGFR) [112]. It had been designed as a binder 
of the ATP-binding pocket of these RTKs and, similarly to most RTK 
inhibitors, and had been initially developed as a potential anti- 
proliferative and anti-angiogenic agent in cancer[113]. Interestingly, 
the separate inhibition of PDGFR, FGFR, and VEGFR, which was useful 
in pre-clinical studies, failed to slow down IPF progression in clinical 
trials, explaining why the research has begun to explore a multi-target 
therapeutic strategy [114]. 

On the other hand, pirfenidone is an orally administered pyridine 
with combined anti-inflammatory, antioxidant, and antifibrotic actions. 
Its clinical use has preceded by far the full characterization of its 
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mechanism of action, which is still nowadays not completely under-
stood. Data obtained from cultured primary human lung fibroblasts have 
demonstrated that pirfenidone can inhibit fibroblast proliferation and 
attenuate TGF-β-induced expression of α-SMA and COL1, two crucial 
mediators of fibrosis [115]. More generally, this small molecule drug has 
been demonstrated to decrease TGF-β1, TNF-α, PDGF, and COL1 
expression in several cell models, which was related to its ability to 
prevent or remove excessive deposition of scar tissue in several organs 
[116]. Furthermore, pirfenidone has been found to upregulate the gene 
expression of regulator of G-protein signalling 2 (RGS2), an endogenous 
anti-fibrotic protein present in pulmonary fibroblasts [117]. More 
recently, pirfenidone has been demonstrated to inhibit the phosphory-
lation of transmembrane mucin 1 (MUC1-CT) affecting the formation of 
a nuclear complex of phospho-SMAD3/MUC1-CT/active β-catenin 
necessary for the TGF-β1-induced fibrotic processes [118]. 

Despite the recognized advantage brought by the clinical use of 
pirfenidone and nintedanib, they are not able to revert the disease but 
only to decrease the rate of IPF progression [119], and thus they have 
been classified as disease-modifying therapies for IPF [90]. Long-term 
studies will be required and new clinical trials are currently recruiting 
patients to assess whether these drugs will slow IPF progression on the 
long time scale, thus providing a true benefit for life expectancy. At the 
moment, for both drugs, a trend in favour of a reduction in mortality is 
reported [110]. Meanwhile, new diagnostic and therapeutic options for 
IPF patients are actively being explored, as it has become clear that lung 
transplantation is not a sustainable solution [120]. 

Thanks to the discovery of new molecular mechanisms, innovative 
approaches designed on novel targets, including the use of monoclonal 
antibodies [121] and stem cell therapies [122], are being explored for 
IPF treatment, some of which are already in clinical testing. The most 
promising of these solutions is probably Pamrevlumab (FG-3019), a fully 
recombinant human monoclonal antibody raised against CTGF, a 
secreted glycoprotein acting as a common driver of fibrosis and 
cancerous conditions. Pamrevlumab already have passed a phase II 
clinical trial [199] and is currently undergoing a phase III clinical trial. 
Similarly, PRM-151 is a fully recombinant version of human serum 
amyloid P or pentraxin 2 (PTX2) protein [123] that holds great promise 
for IPF treatment. Unlike other therapies that work by blocking a single 
target downstream fibrotic signalling, this protein works by reversing 
and possibly healing the fibrotic tissue. It targets the immune system 
and, in particular, macrophages to turn off M2 polarization and reverse 
the process of fibrosis [124]. PRM-151 injected intravenously showed 
efficacy in IPF patients in a phase II trial [125] and has recently entered 
the phase III trial. 

Recently, the use of autologous or allogenic stem cell transplantation 
has emerged as an innovative therapy to slow down IPF progression. 
Phase I clinical studies demonstrate the safety and some beneficial ef-
fects of MSCs derived by different tissue (e.g. placenta, adipose, and 
bone marrow) in patients with mild to moderate IPF [126–128]. The 
stem cells produce a large number of biologically active substances with 
anti-inflammatory, immunosuppressive, and angiogenic properties 
supporting their use as anti-fibrotic agents. The use of bone-marrow- 
derived MSC has been also translated in phase IIa clinical trials; the 
intravenous administration of a high-cumulative dose of stem cells 
proves to slow down the lung function decline in IPF patients [129]. 
Most recently, the use of a heterogeneous population of lung spheroid 
stem cells (LSCs) has been proposed in a pre-clinical rat model of PF 
[130]. This peculiar type of cells expresses the progenitor markers 
(cluster of differentiation 90, CD90, cluster of differentiation CD105, 
CD105, surfactant protein C, SFTPC, club cell secretory protein, CCSP, 
and aquaporin 5, AQP 5) and derived by a specific three-stage adher-
ence-suspension-adherence culture method that from tissue biopsy 
generates three-dimensional (3D) cell agglomerations in suspension, 
termed lung spheroids (LSs). The ability of an intravenous infusion of 
LSCs to reduce the progression of fibrosis in the rat model has opened the 
way to the translation in Phase I clinical trial that is still ongoing 

(ClinicalTrials.gov, identifier NCT04262167). 
These and other significant examples of advanced IPF therapies are 

summarized in Table 1. Noteworthy, some of them are currently being 
investigated also as potential therapy of PF resulting from COVID-19. In 
this regard, it is worth noticing that also pirfenidone and nintedanib are 
currently undergoing a phase II (ClinicalTrials.gov, identifier 
NCT04607928) and III (ClinicalTrials.gov, identifier NCT04541680) 
clinical trial, respectively, for the treatment of SARS-CoV-2 induced PF. 

4. What about the lung lesions in post-COVID-19 patients? 

Infectious agents (i.e. bacteria and viruses) have emerged as one of 
the causes of PF development for several years [131]. Recently, the 
SARS-CoV-2 has further supported this hypothesis. The SARS-CoV-2 is a 
positive-sense single-stranded RNA virus [132] associated with exten-
sive lung involvement, in the worst cases represented by ARDS, that can 
be complicated by PF, due to the substantial fibrotic consequence of 
infection [133,134]. 

Although the infection by SARS-CoV-2 can be eradicated in 
numerous cases, the consequent development of pulmonary fibrotic 
complications cannot be precluded [135]. About 40% of patients with 
COVID-19 develop ARDS, in some cases resulting in lung fibrosis as a 
long-term outcome [136]. PF occurs more frequently in patients with 
severe or critical COVID-19 [134]. Recently, some risk factors leading to 
the development of severe SARS-CoV-2 infection have been identified 
including age, smoking status, ethnicity, and male sex. In addition to 
these risk factors, some comorbidities contribute to increasing hospi-
talization and mortality in COVID-19 disease, like a chronic obstructive 
pulmonary disease (COPD), hypertension, diabetes, and obesity [137]. 
Also, the transcriptome analysis of cells derived by patients with chronic 
lung diseases revealed the higher levels of genes linked directly to the 
efficiency of viral replication and to an improved inflammatory micro-
environment supporting the susceptibility of these subjects to severe 
COVID-19 infection [137]. Conversely, the home use of drugs able to 
control cholesterol such as statins and anti-diabetic drugs such as met-
formin have been evidenced to lower the risk of death of COVID-19 
patients[138,139]. 

Recent literature data have confirmed that COVID-19-associated 
fibrotic alterations are still persistent after 4 and 6 months from 
COVID-19 symptoms onset [140,141] and in some cases they are not 
resolved in the first year following the virus infection [142]. The 
insurgence of the fibrotic lesions is mainly associated with older age, 
ARDS, longer hospital stays, tachycardia, mechanical ventilation, and 
higher initial chest CT score [141]. More in general, Marvisi et al. have 
highlighted that among COVID-19 patients, more than one out of three 
developed fibrotic lesions, with prevalence in patients displaying the 
same comorbidities, including hypertension, diabetes, chronic obstruc-
tive pulmonary disease (COPD), and chronic renal failure [143]. 

Of note, the severity of residual functional or imaging pulmonary 
abnormalities, as well as the probability of residual scar, is strictly linked 
to the SARS patient’s age [144], seeing as aging confers a profibrotic and 
irreversible senescent phenotype to fibroblasts [145,146]. 

Recently, Solomon et al. have reviewed the main papers about post- 
acute lung complications of COVID-19 [147]. They have summarized 
the etiology of lung fibrosis after COVID-19 in different mechanisms: i) 
known consequence of ARDS; ii) effects of mechanical ventilation with 
direct injury of lung alveoli; iii) improved response to fibrotic stimuli 
due to virus damage; iv) direct virus induction of fibrosis. 

In a small subgroup of patients, post-COVID-19 fibrosis has been 
related to an exacerbation of underlying ILD. Interestingly, these results 
were derived by a follow-up no longer than 6 months, and data con-
cerning the long-term impact of COVID-19 infection on lung health are 
still lacking. The fibrotic disease resulting from virus dependent-ARDS 
has been already investigated for other coronaviruses, i.e. middle east 
respiratory syndrome coronavirus (MERS-CoV) and severe acute respi-
ratory syndrome coronavirus 1 (SARS-CoV) infections, for which the 
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onset of lung fibrosis has been reported to occur to a similar extent to 
SARS-CoV-2 (33% and 27.8–62% of patients, respectively) [6]. In 
particular, SARS-CoV patients have lung interstitial abnormalities and 
functional decline that are recovered over the first 2 years after infection 
and then remained stable; of note, in 4.6% of survivors, the alterations 
persisted after 15-year follow-up long-term studies [135,148]. 

COVID-19 pathogenesis is characterized by the stimulation of 
adaptive immunity after the early infection and respiratory dysfunction 
resulting from lung injury and hypoxemia. The disease results in a local 
cytokines storm and systemic hyperinflammation phase [149,150]. 
Indeed, several pathological features of COVID-19 patients are shared 
with PF such as the epithelial alterations and diffuse alveolar damage 
(DAD), impairment of vascular and microvascular systems with the 
presence of microthrombi, acute fibrinous pneumonia, ECM accumula-
tion, and activation of the immune system with persistent inflammatory 
processes. Generally, epithelial and vascular alterations occur in the 
early infection, while fibrotic features arise after 3 weeks from the onset 
of the symptoms [151]. 

The key factors that mediate the profibrotic processes in response to 
coronaviruses infection, especially to SARS-CoV-2, are currently un-
known, but surely an innate immune response, altered gene expression 
profile in myeloid population, hyperactivation of alternatively activated 
macrophages, and high level of proinflammatory and profibrotic factor 
production contribute to the lung pathological processes [6]. Indeed, 
from a molecular point of view, the lung inflammation caused by SARS- 
CoV-2 infection has been related to the infiltration of immune cells into 
the lung with the resulting development of lung hyperinflammation and 
fibrosis [152,153]. The fibrotic event results from the excessive 
macrophage activation that occurs in severe COVID-19 patients, thus 
leading to dysregulation of mechanisms involved in the tissue repair 
[154]. Interestingly, it is now clear that the deadly COVID-19 infection is 
defined by two main patterns: a lung high viral load and cytokine 
expression with limited morphological alterations or low viral load and 
cytokine expression with elevated numbers of immune cells [155]. 

The mechanisms by which COVID-19 infection mediates PF seem to 
partially overlap those already reported for PF in paragraph 2.2, in 
particular concerning the role of epithelial cells: basically, the alveolar 
epithelial cell injury leads to fibroblast infiltration and activation/ 
release of pro-fibrotic mediators such as TGF-β and PDFG with the 
consequent ECM synthesis and accumulation [156]. Specifically, once 
the damage occurs in the lung, AT2 cells express and release numerous 
growth and fibrogenic factors as well as cytokines, including monocyte 
chemoattractant protein-1 (MCP-1), TGF-β1, TNF-α, IL-1β, and IL-6. 
Subsequently, these factors stimulate hyperproliferation of AT2 cells, 
recruit fibroblasts to the fibrotic loci, and induce trans-differentiation/ 
activation of fibroblasts into myofibroblasts, leading to alveolar function 
loss, especially concerning alveoli-capillaries gas exchange [157,158]. 

However, these mechanisms implicated in PF are not specifically 
triggered by viral infection. On the contrary, some recent evidence have 
highlighted possible characteristic mechanisms by which SARS-CoV-2 
infection leads to PF onset. One of these is focused on the role of 
angiotensin-converting enzyme-2 (ACE2), the pivotal enzyme necessary 
for the binding and entrance of SARS-CoV-2 into the host cells [159]. 
Indeed, genetic as well as acquired factors, such as chronic lung disease, 
diabetes, heart failure, and the use of ACE inhibitors, lead to increased 
expression of ACE2 in target organs. Since the expression of ACE2 in-
creases susceptibility to SARS-CoV-2 infection, all these factors are 
associated with a predisposition to COVID-19 infection [160,161]. The 
major sources of ACE2 are AT2 pneumocytes [162]. The viral infection 
has a cytolytic effect on AT2 cells, resulting in their differentiation to-
ward AT1 pneumocytes together with their active proliferation, with the 
consequent replacement of AT2 pneumocytes that is associated with the 
pathogenesis of lung injury [163–166]. Furthermore, the SARS-CoV-2- 
mediated ACE2 internalization leads to a reduction of ACE2 on the 
cellular surface and the consequent increased angiotensin II (Ang II)/ 
angiotensin 1–7 (Ang 1–7) ratio, the substrate and the product of ACE2, 

respectively [167]. To this regard, the renin-angiotensin-system (RAS) 
has been proven to be altered in COVID-19 patients as well as in IPF 
ones, since it is involved in acute lung diseases development, i.e. ARDS, 
mainly due to the implication of ACE2 [164,168], whose expression is 
altered in IPF lung fibroblasts [169]. The lack of ACE2 expression in 
ACE2-KO animals increases ARDS susceptibility, while the inactivation 
of ACE in ACE2-deficient mice attenuates ARDS [170]: indeed, ACE 
activity is increased in ARDS-lungs, while ACE2 activity is reduced 
[171,172]. Of note, SARS-CoV-2 infection leads to RAS imbalance and 
tissue damage by reducing ACE2 levels. In this context, RAS-blocking 
drugs (i.e. ACE inhibitors and angiotensin II receptor blockers) have 
been employed for COVID-19 treatment to restore the RAS balance 
[173]. In particular, there are different pathways related to the RAS axis: 
the ACE/Ang II/angiotensin II type 1 receptor (AT1R) pathway, i.e. 
“classical pathway”, and ACE2/Ang (1–7)/Mas receptor (MasR) 
pathway, i.e. “non-classical pathways” [174], which are inversely 
correlated. The ACE/Ang II/AT1R axis mainly increases the inflamma-
tion (e.g. IL-1β, TNF-α, and IL-8), fibrosis (e.g. TGF-β and α-SMA), 
apoptosis, and ROS production, while the ACE2/Ang(1–7)/MasR axis 
decreases the phosphorylation of ERK1/2, c-Jun, MAPK, and SMAD 
family, mitochondrial damage, and ROS/NOS production [174]. Over-
all, the SARS-CoV-2-mediated depletion of ACE2 and Ang-(1–7) in tis-
sues alters the balance of RAS axes, favoring the ACE/Ang II/AT1R 
pathway, which is manifested by the clinical characteristics of COVID- 
19, i.e. inflammation, oxidative stress, tissue injury, multi-organ 
dysfunction and coagulopathy [160,175,176]. Thus, the restoration of 
balanced RAS by ACE-2/Ang-(1–7)/MasR stimulation, as well as AT1R 
activation, could be a promising therapeutic approach. Interestingly, 
SMAD3 and ERK1/2 coordinately mediate the TGF-β-induced release of 
CTGF by fibroblasts. The crosstalk between SMAD3 and ERK1/2 plays 
an important role in regulating CTGF expression, i.e. in wound repair 
and tissue fibrosis, and could be exploited in therapeutic targeting of 
fibrotic conditions [177]. Indeed, TGF-β, together with CTGF/CCN2 and 
PAI-1, is a pro-fibrotic factor released in response to a lung injury. In 
particular, increased CTGF and TGF-β were found in the alveolar 
epithelial cells inoculated with SARS-CoV-2 [178], as well as elevated 
plasma tissue-type plasminogen activator (tPA) and PAI-1 levels were 
found in COVID-19 hospitalized patients and they were associated with 
worse respiratory status, indicating that fibrinolytic homeostasis in 
COVID-19 is complex with a subset of patients expressing a balance of 
factors that may favor fibrinolysis [179]. These data provide the ratio-
nale for the possible clinical use of Pamrevlumab, a monoclonal anti-
body against CTGF in patients with severe COVID-19 (Table 1). 

Among the numerous activities in which TGF-β is implicated, the 
control of ECM synthesis/degradation as well as production/turnover of 
its components is critical, especially in pathological conditions such as 
IPF [180]. Indeed, the ECM changes attributed to IPF development have 
been related to ECM remodelling in COVID-19 patients [181,182]. In 
particular, since the fibrogenesis in IPF reflects an imbalance between 
synthesis and degradation of collagen, the matrix metalloproteinases 
(MMPs) degraded type I, III, and VI collagen, the MMPs degraded C- 
reactive protein (CRPM), and the type III and VI collagen formation have 
been found altered in COVID-19 patients, underling their putative role 
as useful markers to predict the PF development related to SARS-CoV-2 
infection [181–183] and probably mediated by the TGF-β stimulation 
[184]. Among MMPs, MMP7 has been described as a main profibrotic 
metalloproteinase, which promotes a fibrotic response via regulatory 
effects on epithelial repair and release of latent TGF-β. Even if its role in 
PF has been considered pleiotropic, since it is implicated in apoptosis, 
inflammation, fibroproliferation, and innate immunity, a recently pub-
lished study has demonstrated that plasma MMP7 measured at 9 weeks 
in severe COVID-19 survivors is strongly correlated with pulmonary 
function impairment [185]. 

Generally, since the ECM and ECM-related glycoprotein alterations 
are characteristic features of IPF, their involvement in the development 
of IPF starting from SARS-CoV-2 infection has been highly considered in 
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the last two years especially as putative biomarkers for the prediction of 
COVID-19 severe disease progression. For instance, one important 
biomarker for ILDs is represented by Krebs von den Lungen-6 (KL6), a 
glycoprotein classified as human MUC1 mucin: specifically, the MUC1 
extracellular region contains the KL-6 epitope domain, which is cleaved 
from the cell surface in response to injury and released into the sur-
rounding environment [186]. Indeed, increased concentrations of serum 
KL-6 have been correlated with lung epithelial damage, involved in 
interstitial lung disease including IPF, caused by damaged AT2 pneu-
mocytes [187,188]. To this regard, it has been demonstrated that KL-6 
concentrations were increased in COVID-19 patients with fibrotic lung 
alterations than in the non-fibrotic group; in particular, COVID-19 pa-
tients, who developed severe persistent fibrotic lung complications at 
HRCT, showed persistent high levels of KL-6 during the follow-up [189]. 
Thus, high concentrations of serum KL-6 in the early stage of COVID-19 
should be highly taken into account for the early prevention of PF 
development [188]. 

The mucin MUC1 is expressed ubiquitously on epithelial surfaces and 
it has been considered as a key element in the host response to infection, 
particularly after the release of inflammatory cytokines such as IL-1β 
and IL-6 [190]. To this regard, elevated MUC1 mucin protein levels were 
found in airway mucus of critical ill COVID-19 patients [191] as well as 
interleukins [164], though no significant differences have been revealed 
in baseline levels of IL-1β, IL-6, and TNF-α between patients with 
COVID-19 and critically ill subjects with ARDS [192]. On the contrary, 
high levels of IL-18 were found in 85% of the COVID-19 patients that 
had ARDS and 78% of those that developed PF [193]. Further, levels of 
IL-13, one of the major factors implicated in lung fibrosis, have been 
demonstrated to be elevated in patients with severe COVID-19, under-
lining its ability in identifying COVID-19 patients who needed of me-
chanical ventilation [194]. 

Recently, the implication of NETs has been considered even con-
cerning to SARS-CoV-2 infection, which seems to mediate NETosis. 
Several authors report the presence of NETs in the plasma and lungs of 
COVID-19 patients [195–198]. Interestingly, soluble and cellular factors 
triggering NETs were significantly increased in COVID-19 patients and 
pulmonary autopsies confirmed NET-containing microthrombi with 
neutrophil-platelet infiltration [195]. Generally, the cytokine storm and 
ARDS have been demonstrated to be promoted by NETs that play the 
main role in the interaction between neutrophils and macrophages 
during the early acute phase of acute lung injury [199]. Indeed, NETs 
contribute to acute respiratory failure in COVID-19 and the use of tools 
able to degrade NETs may reduce inflammation and improved oxygen-
ation in patients [200]. However, the mechanisms regulating NET for-
mation are currently unclear as is its implication in COVID-19-induced 
PF. SARS-CoV-2 generates NETs inducing NFκB pathway activation in 
alveolar epithelial cells that triggers the IL1β release with a consequent 
strong cytokine storm release and inflammatory event as well as 
increased ROS production. These events are more evident in older 
experimental animals than in younger ones, trying to explain the more 
severe progression of COVID-19 in older people [201,202]. Veras et al. 
deeply investigated the direct role of SARS-CoV-2 in NETs induction. 
They demonstrate that only viable but not inactivated viruses can pro-
mote a huge release of NETs in neutrophils. Interestingly, the ACE2/ 
transmembrane Serine Protease 2 (TMPRSS2) pathway is crucial for 
SARS-CoV-2 entry and release of NETs [198]. Thus SARS-CoV- 
2–activated neutrophils contribute to tissue injury in COVID-19 patients 
and specifically promote lung epithelial cell death in vitro [198]. 
Furthermore, NETs can induce the EMT in lung epithelial cells, thus 
further supporting NET role in fibrosis pathogenesis [196]. 

Interestingly, the evaluation of blood NETs in COVID-19 patients has 
allowed discriminating survivor patients, i.e. a decrease of NETs for-
mation from day 1 of admission to intensive care unit to day 3 was 
strongly correlated with survival after 28 days [203], underlying the 
pivotal role of NETs in the COVID-19 development and lung alterations. 
These data show off a possible crucial role of NETs in the 

pathophysiology of COVID-19 and the inhibition of NETs could repre-
sent a potential therapeutic target for COVID-19. 

For certain, the lung alterations that occur as a consequence of SARS- 
CoV-2 infection are involved in the development of PF, and, even if the 
relative pathological mechanisms are not completely elucidated, 
possible pathways are proposed and schematically presented in Fig. 3. 

Taking these data together, it is still premature to know whether lung 
changes occur as a temporary response to COVID-19 infection and they 
will spontaneously be resolved over time or rather they represent an 
irreversible pathological feature caused by the virus infection and they 
will persist in survivors patients. Surely, the data collected until now 
suggested that fibrosis persists for many months after the COVID-19 
recovery in some patients [140,142]. Finally, whether the PF devel-
oped following COVID-19 infection is stable or progressive is still un-
known, especially considering possible genetic, aging, and metabolic 
risk factors, and further investigations are needed [156]. 

5. Conclusions 

PF is a complex and multifactorial pathology. For several decades, 
scientists have attempted to elucidate the molecular mechanisms 
involved in the initiation and propagation of fibrotic lesions. Despite the 
knowledge has been largely improved, several issues remain to be 
clarified. On the other hand, the recent pandemic has prompted the need 
to identify from scratch the mechanisms at the basis of COVID-19 dis-
ease progression as well as the characteristic features of the post-COVID 
lesions, in order to ameliorate the prognosis of millions of infected pa-
tients and also limit the effects after the infection is resolved. Thus, at 
this point, the question is: can the knowledge about pulmonary fibrosis 
teach how to handle COVID-19 and post-COVID-19 lesions or vice- 
versa? This question is not trivial to be solved. What is evident is that 
fibrosis and pulmonary lesions derived by SARS-CoV-2 infection share 
several mechanisms, namely i) an over-activation of the immune system; 
ii) the secretion of pro-inflammatory and pro-fibrotic cytokines; iii) 
epithelial and endothelial damage; iv) overproduction of ECM compo-
nents; v) decreased lung functionality. The most obvious thought is that 
the bulk of information gained from the study and therapy of PF can be 
used to handle post-COVID-19 lesions when the progression of fibrotic 
lesion occurs. However, on the other hand, the impressive ability of 
SARS-CoV-2 to induce ARDS and fibrotic lesions has corroborated the 
idea that infective agents play a pivotal role in the initiation of PF, a 
pathology whose aetiology has long been thought to be mostly idio-
pathic. This may be explained by the fact that the initial lung injury can 
occur several years earlier than the insurgence of the clinical symptoms 
hampering the finding of a direct link between the presence of a viral 
infection and the PF. This pandemic has prompted the attention on this 
aspect, highlighting the importance to better understand the molecular 
dynamics of virus-lung cell (from epithelial to immune cells) interplay. 
This could lead to the discovery of new targets for the management of 
COVID-19 and post-COVID-19 patients and could be hopefully trans-
lated into the handling of PF, too. 

Herein, the comparison of these two pathologies has certainly led to 
two other considerations. First, COVID-19 has stressed the correlation 
among lung infection, alveolar damage, and circular thrombosis [204]. 
In this context, scientists have acquired awareness of the causal role of 
neutrophils and their activation (NETosis) in the promotion of lung le-
sions, prompting the investigation of the role that this process could play 
in PF progression. This has also revealed the possibility to find new 
targets to cure or slow down COVID-19, post-COVID-19 lesions, and IPF. 
The second consideration regards the importance of age in the fibrotic 
process. Most of the COVID-19 patients that develop lung fibrosis lesions 
are elderly. This is not surprising considering that some authors high-
light ageing as a key feature to discriminate between reversible or 
irreversible PF [18,205,206]. However, the pandemic has underlined 
this difference raising the need to investigate which mechanisms, 
probably related to immune system control, can switch off the process. 
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In conclusion, despite the impressive progress of these few years, 
multiple challenges need to be overcome to translate the knowledge into 
effective therapies for both fibrosis and COVID-19 lung lesions. The 
translation from bench to the bedside is possibly slowed down by a 
paucity of preclinical models able to recapitulate the heterogeneity of PF 
and also of effective clinical parameters and peripheral biomarkers able 
to stratify ILD and COVID-19 patients. Research has to try to close these 
gaps to drive the therapy in the new era of personalized medicine also 
considering that the number of people suffering from lung pathologies is 
expected to increase in the next future. 
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