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Transcriptome data of temporal 
and cingulate cortex in the Rett 
syndrome brain
Kimberly A. Aldinger   1,2 ✉, Andrew E. Timms3, James W. MacDonald4, Hanna K. McNamara2, 
Jennifer S. Herstein5, Theo K. Bammler4, Oleg V. Evgrafov1,5,6, James A. Knowles1,5,6 & 
Pat Levitt7

Rett syndrome is an X-linked neurodevelopmental disorder caused by mutation in the methyl-CpG-
binding protein 2 gene (MECP2) in the majority of cases. We describe an RNA sequencing dataset 
of postmortem brain tissue samples from four females clinically diagnosed with Rett syndrome 
and four age-matched female donors. The dataset contains 16 transcriptomes, including two brain 
regions, temporal and cingulate cortex, for each individual. We compared our dataset with published 
transcriptomic analyses of postmortem brain tissue from Rett syndrome and found consistent gene 
expression alterations among regions of the cerebral cortex. Our data provide a valuable resource to 
explore the biology of the human brain in Rett syndrome.

Background & Summary
Rett syndrome (RTT) is an X-linked neurodevelopmental disorder mostly caused by heterozygous de novo muta-
tion in the methyl-CpG-binding protein 2 gene (MECP2) and predominantly affecting females1. MECP2 duplica-
tions have been identified in males with developmental encephalopathy, seizures, autistic features, and recurrent 
infection2. These clinical disorders illustrate the critical requirement for proper MECP2 expression in human 
brain development, though how MeCP2 dysfunction leads to the RTT phenotype is unclear.

MeCP2 acts as a global transcriptional regulator by recruiting chromatin-remodeling complexes or regulating 
higher-order chromatin structures3–8. Thus, MeCP2 may be required for fine-tuning the gene expression for a 
network of protein-coding genes through both direct and indirect mechanisms. Consistent with this hypothesis, 
small magnitude changes in gene expression have been detected in brain tissue from either human postmortem 
RTT samples or mouse Mecp2-mutants9–12. However, most transcriptional studies of postmortem RTT brain have 
used microarray platforms with small numbers and a lack of age-matched control samples, which impact the sen-
sitivity for detecting transcriptional changes. One study used both microarrays and RNA sequencing (RNA-seq) 
to examine frontal and temporal cortex from individuals with RTT compared to controls and identified over 200 
differentially expressed genes after normalizing data for neuron versus glia composition of samples13. Another 
larger study used RNA-seq to examine motor cortex and cerebellum and identified over 2,000 differentially 
expressed genes with a global increase in expression14.

We generated RNA-seq data using brain samples for two distinct brain regions, temporal cortex and cingulate 
cortex, from four female RTT and four age-matched female donors. Reduced volume and dendritic branch-
ing of neurons in the temporal cortex and reduced connectivity of the cingulate cortex have been reported in 
RTT, indicating the importance of these brain regions in the disorder15–18. We also compared our data with the 
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transcriptomic profiles of RTT brain samples from published RNA-seq datasets13,14. The composite analysis will 
be useful to facilitate interpretation and further understanding of MECP2-mediated changes in human brain.

Methods
Brain samples.  Postmortem brain tissue samples were obtained from the Harvard Brain Bank (http://hbtrc.
mclean.harvard.edu/) and the National Institutes of Health (NIH) NeuroBioBank (https://neurobiobank.nih.
gov), with approval from the coordinating foundation (https://www.rettsyndrome.org). Consent was obtained 
from next of kin and tissue was collected with approval from the Partners Human Research Committee for the 
Harvard Brain Bank and from The University of Maryland Institutional Review Board (IRB) and The Maryland 
Department of Health and Mental Hygiene IRB for the NeuroBioBank. Work was approved by the University of 
Southern California and is compliant with all ethical regulations. Frozen temporal (BA36/38) and cingulate cor-
tex samples were obtained from four RTT and four control (CTL) brain donors that were matched in age (Fig. 1). 
The Harvard Brain Bank sequenced MECP2 coding exons and reported intragenic mutations in two of the four 
brains. Brain donor characteristics are described in Table 1.

MECP2 variant confirmation.  Genomic DNA was isolated from brain samples for 7773 and 7783 using 
the PureLink Genomic DNA Kit (LifeTechnologies) according to the manufacturer’s protocol. We performed 
Sanger sequencing of MECP2 to verify the reported variants (Table 1). Chromatograms were aligned to MECP2 
(ENSG00000169057) using MAFFT v719. No additional genes were screened.

Fig. 1  Overview of the experimental workflow.

Brain Group Gender Age PMI Source

MECP2

NM_004992.3

cDNA Protein

1038 CTL F 24 7 NBB NA NA

1614 CTL F 27 18 NBB NA NA

4724 CTL F 16 15 NBB NA NA

4725 CTL F 32 17 NBB NA NA

6355 RTT F 16 28 HBTRC NR NR

7773 RTT F 24 25 HBTRC c.473 C > T p.Thr158Met

7783 RTT F 26 39 HBTRC Exon Del

B7992 RTT F 31 30 HBTRC NR NR

Table 1.  Brain Donor Characteristics. Abbreviations: CTL, control; F, female; HBTRC, Harvard Brain Tissue 
Resource Center; NA, not applicable; NBB, NIH NeuroBioBank; NR, no mutation in MECP2 reported; PMI, 
postmortem interval in hours; RTT, Rett syndrome.
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RNA sample and library preparation.  Total RNA was previously isolated using the Qiagen RNeasy Kit 
according to the manufacturer’s instructions20. Double stranded cDNA fragments were synthesized from mRNA, 
ligated with adapters, and size-selected for library construction according to the TruSeq Sample Preparation 
v2 protocol using 0.5–1.5 μg of total RNA (Table 2). ERCC RNA spike-in controls were not included in this 
experiment. Library quality was measured using an Agilent 2100 Bioanalyzer and concentration was assessed by 
PicoGreen incorporation. Barcoded libraries were pooled and sequenced in two lanes using an Illumina HiSeq 
2000 sequencer.

RNA-Seq data analysis.  Single-end reads (100 bp) were aligned to the Human reference genome (NCBI 
build 37/hg19) using STAR v2.5.3a21 (see Code Availability 1). Aligned reads mapping to the exons of a gene were 
summarized into gene counts using featureCounts v1.622 (see Code Availability 2). Picard CollecteRnaSeqMetrics 
was used to measure the 3′ bias of genes in the RNA-seq data (see Code Availability 3). Gene-level differential 
expression was analyzed using DESeq223 specifying ~ region + group + bias as the experimental design (see Code 
Availability 4). Aligned reads mapping to MECP2 isoforms were also summarized using featureCounts v1.622 (see 
Code availability 2) by substituting isoforms for gene name.

Data Records
Count matrix and normalized count matrix were submitted to the NCBI Gene Expression Omnibus (GEO) under 
accession number GSE12838024. The raw FASTQ files can be downloaded from the Sequence Read Archive (SRA) 
under accession number SRP18855525.

Technical Validation
MECP2 variant confirmation.  We verified the presence of the MECP2 c.473 C > T (p.Thr158Met) intra-
genic variant using DNA isolated from brain 7773 (Supplemental Fig. 1). No MECP2 variants were detected 
in exons 2–4 of brain 7783. Since we were unable to amplify exon 1 in 7783, we infer exon 1 is likely to be 
the deleted exon. We also examined RNA-seq data for presence of MECP2 variants (Supplemental Fig. 2). The 
MECP2 c.473 C > T (p.Thr158Met) intragenic variant was also detected in RNA-seq data from CCTX and TCTX 
for brain 7773. MECP2 variants were not detected in RNA-seq data for other RTT brain samples, possibly due 
to low sequencing read depth of MECP2 (Supplemental Fig. 3), or because causal variants are present in another 
gene26,27.

RNA and data quality.  RNA quality was determined using the Agilent 2100 Bioanalyzer and the RNA 
6000 Pico Kit and high-quality RNA was obtained from all samples (RNA integrity number [RIN] > 8.0; median 
RIN = 9.4 [Table 2]). At the time the experiment was performed, the TruSeq RNA Sample Prep v2 protocol (Part # 
15026495 Rev.C, May 2012) was optimized for 0.1–4 μg of total RNA. Although the quantity of RNA input varied 
among the samples in our experiment, it was equivalent within each age- and tissue- matched case-control sample 
pair, and all samples were within the optimized range. On average, RNA-seq generated 21.9 million high-quality 
reads per sample, 70.3% of which mapped uniquely to the Human reference genome (NCBI build 37/hg19) 
(Table 3). RIN and RNA quantity were each correlated with the number of uniquely mapped reads (Fig. 2). Cook’s 
distance was calculated to test for outliers, with none detected (Fig. 3a). The first principal component explained 
over 50% of the variance (Fig. 3b). A correlation matrix based on the gene expression data indicated that samples 
mostly cluster by individual and diagnostic group, but also by 3′ bias (Fig. 3c).

Brain Group Region RIN RNA (μg) GEO SRA

1038 CTL CCTX 9.8 1.50 GSM3673208 SRX5527579

1614 CTL CCTX 9.2 0.70 GSM3673209 SRX5527580

4724 CTL CCTX 9.1 0.60 GSM3673210 SRX5527581

4725 CTL CCTX 9.5 1.50 GSM3673211 SRX5527582

6355 RTT CCTX 8.6 0.60 GSM3673212 SRX5527583

7773 RTT CCTX 9.8 1.50 GSM3673213 SRX5527584

7783 RTT CCTX 8.6 0.70 GSM3673214 SRX5527585

B7992 RTT CCTX 10 1.50 GSM3673215 SRX5527586

1038 CTL TCTX (BA38) 10 1.50 GSM3673216 SRX5527587

1614 CTL TCTX (BA36) 8.3 0.51 GSM3673217 SRX5527588

4724 CTL TCTX (BA38) 9.7 1.28 GSM3673218 SRX5527589

4725 CTL TCTX (BA38) 9.3 1.00 GSM3673219 SRX5527590

6355 RTT TCTX 8.6 1.28 GSM3673220 SRX5527591

7773 RTT TCTX 9.7 1.50 GSM3673221 SRX5527592

7783 RTT TCTX 8.7 0.51 GSM3673222 SRX5527593

B7992 RTT TCTX 9.6 1.00 GSM3673223 SRX5527594

Table 2.  RNA Sample Characteristics. Abbreviations: BA, Brodmann area; CCTX, cingulate cortex; CTL, 
control; RIN, RNA integrity number; RNA, quantity of total RNA used as input for library preparation; RTT, 
Rett syndrome; TCTX, temporal cortex.
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MECP2 and MET differential expression.  We previously used quantitative reverse transcription 
PCR to compare expression of MECP2_e1 (NM_004992.3), MECP2_e2 (NM_001110792.1), and MET 
(NM_000245.3) in the temporal cortex between RTT and CTL brains28. Consistent with our previous results, 
the RNA-seq data showed no significant difference in MECP2 expression between RTT and CTL brains (FDR 
adjusted p-value = 0.16 and 0.59, respectively), while MET expression was significantly reduced in RTT brains 
(FDR = 1.07 × 10−05; Fig. 4).

Compatibility with published transcriptional profiles.  Two RNA-seq datasets of postmortem brain 
from females with RTT compared to controls have been published13,14 (Table 4). The first dataset examined 
pooled frontal and temporal cortex (FTTX) for each of three individuals with RTT compared to three CTL and 
is available from the Sequence Read Archive under accession number PRJNA30268529. The second larger dataset 
examined motor cortex (Motor) and cerebellum (Cblm) for nine females and six females with RTT, respectively, 
compared to eight CTL of each tissue, but the primary data were not accessible14. We downloaded the FASTQ files 
for the available dataset, aligned reads using salmon30 (see Code Availability 6), summarized the aligned reads 
into gene counts using tximport v1.12.131 (see Code Availability 7), and retained genes with ≥10 counts in ≥3 
samples. Count data were converted to logCPM to adjust for the total counts per sample using limma v3.40.232 
(see Code Availability 8), then observation-level and sample-level weights were estimated using voom32,33. We 
also reanalyzed our data using this workflow. Analysis of variance models were fit separately for each of three 
brain regions (CCTX, FCTX, FTTX), then combined in a random effects meta-analysis using GeneMeta v1.56.034 
(see Code Availability 9). Our meta-analysis identified 1,455 genes that were significantly differentially expressed 
(FDR < 0.05) between brain samples from control individuals and those with RTT.

Brain Group Region Total Reads % Bases ≥ Q30
Mean Base 
Quality

Uniquely 
Mapped Reads

Mapping 
Rate

Median 5′ to 
3′ Bias

1038 CTL CCTX 22,666,185 77.09 31.71 18,508,346 81.66 2.16

1614 CTL CCTX 20,406,028 76.18 31.42 13,966,751 68.44 0.76

4724 CTL CCTX 17,775,778 76.21 31.45 12,903,748 72.59 0.51

4725 CTL CCTX 17,152,400 76.58 31.57 13,787,313 80.38 1.36

6355 RTT CCTX 16,799,774 76.38 31.49 11,754,027 69.96 0.71

7773 RTT CCTX 22,119,416 77.01 31.70 17,627,391 79.69 1.36

7783 RTT CCTX 32,207,239 77.16 31.72 22,511,241 69.89 0.43

B7992 RTT CCTX 21,882,359 76.58 31.56 17,048,617 77.91 1.09

1038 CTL TCTX (BA38) 23,689,678 77.72 31.88 16,671,042 70.37 1.34

1614 CTL TCTX (BA36) 17,569,738 78.01 31.97 11,367,085 64.70 0.44

4724 CTL TCTX (BA38) 22,429,527 77.84 31.93 15,519,596 69.19 0.98

4725 CTL TCTX (BA38) 24,262,545 78.03 31.97 16,322,635 67.28 1.04

6355 RTT TCTX 25,330,544 76.95 31.64 14,294,799 56.43 0.36

7773 RTT TCTX 22,557,491 77.85 31.92 15,330,591 67.96 0.97

7783 RTT TCTX 17,060,381 77.82 31.92 11,301,790 66.25 0.82

B7992 RTT TCTX 26,211,057 77.11 31.70 16,434,103 62.70 1.01

Table 3.  RNA-seq Data Mapping Statistics.

Fig. 2  RNA quality or RNA quantity versus number of uniquely mapped reads.
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To verify these results, we compared the results from our meta-analysis with differential gene expression results 
from previous RTT RNA-seq analyses13,14 (Fig. 5). We compared the Z-score for each of the significantly differen-
tially expressed genes from our meta-analysis with the log2 fold change from our previous analysis (GEO DESeq2) 

Fig. 3  RNA-seq data quality assessment. (a) Boxplots showing Cook’s distance calculated for each sample. (b) 
Principal component analysis with samples colored by diagnostic group (CTL, RTT), brain region (CCTX, 
TCTX), or brain donor. (c) Heatmap of the sample distance matrix. Presence (black) or absence (grey) of 3′ bias 
in RNA-seq data is indicated for each sample.

Fig. 4  Boxplots showing the expression of MECP2_e1, MECP2_e2, and MET in RTT and CTL brain. 
Expression values are shown as normalized counts.

Dataset Brain Region # Cases # Controls SRA PMID

Lin
FTTX 2 3

PRJNA302685 27267200
TCTX 1 –

Gogliotti
Motor 9 8

– 29523700
CBLM 6 8

Table 4.  Published RTT Brain RNA-seq datasets. Abbreviations: CBLM, cerebellum; FTTX, pooled frontal 
cortex and temporal cortex from the same individual; Motor, motor cortex; TCTX, temporal cortex; SRA, 
sequence read archive; PMID, PubMed unique identifier for published reference article.
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and from each of the three published RNA-seq datasets (Lin et al., Gogliotti et al. Motor, and Gogliotti et al.  
Cblm; Fig. 5a). We found strong concordance among RTT transcriptional profiles from regions within the cer-
ebral cortex, while RTT transcriptional profiles from the cerebellum were least correlated with the regions from 
the cerebral cortex (Fig. 5b). We aggregated the gene-wise correlation coefficients among datasets and found an 
overall positive correlation for 63% of the comparisons among datasets, indicating an overall agreement among 
the differential gene expression per dataset (Fig. 5c). Not only do our data represent an independent technical 
and biological replication of molecular alterations in RTT brain, but our meta-analysis demonstrates the power 
of combining datasets to maximize detectable results among several smaller studies.

Code availability
We used the following software and versions to process our dataset as described in the text:

1. �STAR v2.5.3a was used for mapping reads to the Human reference genome NCBI build 37/hg19: https://
github.com/alexdobin/STAR

2. featureCounts v1.6 was used to summarize gene counts: http://bioinf.wehi.edu.au/featureCounts/
3. Picard v2.15.0 was used to measure 5′ to 3′ bias: http://broadinstitute.github.io/picard
4. �DESeq2 v1.20.0 was used for differential expression analysis: https://bioconductor.org/packages/release/

bioc/html/DESeq2.html.
5. �IGV v2.8.2 was used to visualize MECP2 coding regions for sequence variation: http://software.broadinsti-

tute.org/software/igv/
6. �Salmon was used to align reads to the Human GRCh38 reference transcriptome and estimate counts for each 

transcript: https://combine-lab.github.io/salmon/
7. �tximport v1.12.1 was used to summarize gene counts: https://bioconductor.org/packages/release/bioc/html/

tximport.html
8. �limma v3.40.2 was used to convert count data to log counts per million (logCPM) and to estimate weights: 

https://bioconductor.org/packages/release/bioc/html/limma.html
9. �GeneMeta v1.56.0 was used to perform a random effects meta-analysis: https://www.bioconductor.org/pack-

ages/release/bioc/html/GeneMeta.html

Fig. 5  Replication of differential gene expression between RTT and CTL brain. (a) Meta-analysis Z-Score 
compared to log2 fold change (FC) between RTT and CTL from our initial analysis (GEO), Lin et al. combined 
frontal and temporal cortex (from Table S5)13, Gogliotti et al. motor cortex (from Table S2)14, and Gogliotti et al. 
cerebellum (from Table S3)14. Genes with significant differential expression (False Discovery Rate [FDR] < 0.05) 
in the dataset represented on the X-axis are in red. (b) Spearman’s correlation between meta-analysis Z-score 
and logFC for each of the other datasets. Color intensity and circle size are proportional to the correlation 
coefficients with values displayed below the diagonal. (c) Density of gene-wise correlation coefficients among 
datasets in (b).
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