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Mesoscale air motion and
thermodynamics predict heavy
hourly U.S. precipitation

Check for updates

Mark T. Richardson 1 , Brian H. Kahn1 & Peter M. Kalmus1,2,3

Predicting heavy precipitation remains scientifically challenging. Here we combine Atmospheric
Infrared Sounder (AIRS) temperature and moisture soundings and weather forecast winds to predict
the formation of thermodynamic conditions favourable for convection in the hours following satellite
overpasses. Here we treat AIRS retrievals as air parcels that aremoved adiabatically to generate time-
varying fields. Over much of the Central-Eastern Continental U.S. during the non-winter months of
2019–2020, our derived convective available potential energy alone predicts intense precipitation. For
hourly precipitation above the all-hours 99.9th percentile, performance is marginally lower than
forecasts from a convection permitting model, but similar to the ERA5 reanalysis and substantially
better than using the original AIRS soundings. Our results illustrate how mesoscale advection is a
major contributor to developing heavy precipitation in the region. Enhancing the full AIRS record as
described here would provide an alternative approach to quantify multi-decade trends in heavy
precipitation risk.

Heavy precipitation increases flood risk and is anticipated to become more
frequent and intense due to ongoing human-caused global warming. In
climatemodels, daily heavy precipitation intensifies at the 7%K−1 Clausius-
Clapeyron rate of atmospheric moistening1,2 while mean precipitation is
limited to 1–3% K−1 due to the efficiency with which the atmosphere can
lose the additional latent heat3–5. The heaviest precipitation intensification is
offset by lengthening dry periods and less intense moderate precipitation2,6

although precise results depend on event rarity and space- or time-
averaging7–14. Here we investigate hourly afternoon-to-evening heavy pre-
cipitation, gridded at 1° × 1° over much of the central-east Continental
United States (CE-CONUS; land within 32–55°N, 160–130°W). Heavy
precipitation is defined from percentiles relative to all hours, both dry and
wet15, duringMarch–November of 2019 and 2020 (seeMethods).We focus
specifically on the hours following the 1:30 pm local time (LT) AIRS over-
pass rather than the 1:30 am LT overpass, to capture the hours in which the
heaviest precipitation is most frequent16.

Rain gauge data support rapid local increases in intensity with tem-
perature (T) or near-surface specific humidity (q)17–19, or regional time
trends in heavy precipitation20–25, with evidence for some sub-daily events
exceeding the Clausius-Clapeyron rate26–28. Rain gauge networks are spa-
tially sparse, so larger-scale trends have been identified using satellites29 or
reanalysis8. Products (e.g. refs. 30–32) include data artifacts from changes in
satellites, calibration or overpass time, which can cause data discontinuities

or drift that reduce confidence in conclusions about climate trends. By
contrast, AIRS33 had exceptional instrument stability34 and constant over-
pass times from2002–2021.However, it retrieves 3-Dfields ofT andq rather
than precipitation, and then only in clear and partly-cloudy conditions at
overpass times of approximately 1:30 and 13:30 local time35.

Here we present a case study showing that the AIRS T and q retrieved
fields can be predictive of heavy precipitation detected by a surface radar
network for hours following local overpass time. Our contribution is to
account for mesoscale atmospheric motion in the evolution of the ther-
modynamic fields.

Theprediction skill is drastically improvedover the standardproximity
sounding method in which observations or forecast model outputs of
thermodynamics are directly used. The results are remarkable since our
method currently does not explicitly account for surface fluxes, radiation or
convection, andmay unlock the development of a full AIRS-FCST record to
complement studies of multi-decade trends in convection-related risk over
large geographical regions.

Results and discussion
Linking sounder-retrieved thermodynamics to convection
The atmospheric thermodynamic state drives convective development,
although factors such as aerosols may contribute36–38. Proximity sounding
research was initially based on radiosonde or rawinsonde profiling near
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storms, typically within 3–6 h of the event. Extreme phenomena of interest
include downburst-related severe winds39, derechos40, andmany others41–45.
The aimhasbeen to relate convective indices such asCAPEorwind-shear in
the pre-convective environment to the likelihood, intensity, or type of
subsequent convective event.

AIRS retrievals have an advantage over sondedata thanks to the greatly
increased spatial sampling, and have been applied in a similar manner46–48,
or as a source of input data to improve numericalweather prediction49. Field
campaigns have shown that small-scale, near-surface processes in the
boundary layer are critical for convection initiation (CI)50. We do not
address these processes, however, as we only address mesoscale thermo-
dynamic variations above the surface that are among the observing
strengths of satellite-based infrared sounders.

Proximity soundings are typically applied to hazards such as hail and
tornadoes rather than precipitation, and in contemporary forecasting it is
common to use thermodynamic fields from a combination of observations
and forecastmodel output to relate atmospheric thermodynamics to risk. In
this study we are particularly motivated to exploit the spatial coverage and
temporal length of theAIRS data record to studymulti-decade trends in the
risk of heavy precipitation. AIRS’ observed distribution of thermodynamics,
Pðq;TÞ, is related to the distribution of convection PðconvÞ through:

P convð Þ ¼ P convjq;T� �
Pðq;TÞ ð1Þ

Fundamentally, all studies of climate change that evaluate changes in
thermodynamics in the context of convective risk implicitly assume a
relationship akin to Eq. (1), with our case using precipitation as a proxy for
PðconvÞ and CAPE as ourmetric of Pðq;TÞ. In order for the approach to be
useful, then Pðconvjq;TÞmust be informative, in the sense that knowledge
of Pðq;TÞ should result in a narrower P convð Þ distribution than would be
assumed a priori. If convection were unrelated to thermodynamics, then
Pðconvjq;TÞwould be uniform, and knowledge ofP q;T

� �
would not affect

our understanding of the probability of convection. On the other hand, if
thermodynamics is informative of our convective proxy, then Pðconvjq;TÞ
will be nonuniform, and increasing nonuniformity represents increased
information. Themost extreme case would be a delta-function distribution,
where convection only occurs for a particular combination of (q,T) and
perfect knowledge of thermodynamics would lead to perfect prediction of
convection. For our primary analysis, we therefore select a statistical mea-
sure of the nonuniformity of Pðconvjq;TÞ. Our intent is to use the limited
overlap time between reliable products to establish Pðconvjq;TÞ which can
be used to generate a longer-term estimate of PðconvÞ over the full AIRS
record. Since convection is associatedwith intense precipitation inour study
time and region (seeMethods), we use heavy precipitation as our convective
proxy. After examiningmultiple indices of (q,T), we found that CAPE alone

accounts for nearly all prediction skill (Supplementary Notes 1, Supple-
mentary Fig. 1).CAPErepresents the energy available fromparcel buoyancy
that could be converted to vertical motion (w≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2×CAPE

p
), then as

buoyant parcels are lofted into the upper atmosphere the local CAPE is
consumed. Sub-hourly profiling from surface radiometers has revealed how
convective indices evolve during storm lifecycles, including changes of over
1000 J kg−1 h−1 in CAPE51,52. The rapid atmospheric changes hinder inter-
pretation of relationships between convective indices and convection, as
they are derived from atmospheric profiles that do not instantaneously
match those with CI.

CAPE changes are driven by atmospheric motion, surface fluxes,
radiation and convection. To capture the impacts associated withmesoscale
atmospheric motion, trajectory enhancement was introduced with pro-
mising results for severe weather events53. In trajectory enhancement, every
point in a 3-D field of soundings is treated as an air parcel. Parcels are then
moved in 4-D using weather forecast winds as inputs for the Hybrid Single-
Particle Lagrangian Integrated Trajectory (HYSPLIT54) model; T and q are
modified following thermodynamic rules for adiabatic parcels (see Meth-
ods).A3-DgridofT andq is producedandconvective indices such asCAPE
are derived. Unlike individual profiles from sondes, the spatial coverage of
sounders such as AIRS ensures that even after parcel motion, there are
sufficient data at each location to define profiles and therefore derive con-
vective indices.

Trajectory enhancement first yielded promising results for nowcasting
in proof-of-concept case studies with NOAA operational sounders55,56. The
analyses related thermodynamic conditions when severe weather events
occurred, and therefore reported Pðq;TjconvÞ, in contrast to Eq. (1)’s
required Pðconvjq;TÞ. The next step in justifying trajectory enhancement
was a simulation experiment, which demonstrated the ability to capture
most of the time variance in T and q over six hours in ERA5 over CE-
CONUS57. The CAPE fields derived from trajectory-enhanced ERA5 T and
q were predictive of ERA5 heavy precipitation, establishing evidence for
useful Pðconvjq;TÞ in a forecast system. In the present study, we extend the
results to real-world observations from AIRS for thermodynamics and the
Multi-RadarMulti-Sensor (MRMS) rain gauge-corrected product for heavy
precipitation events58. MRMS provides excellent time- and space coverage
and performs well at quantitative precipitation estimation (QPE) even in
extreme events59–61. Our analysis focusses on one-hour accumulations
averaged over 1° × 1° grid cells, and so only captures some aspects of
convective risk.

Figure 1 shows the development of intense precipitation observed by
MRMSoverKansas beginning at 23UTCon26th July 2020, a date selected to
illustrate typical AIRS-FCST performance. Note the minor data gaps over
northern Kansas, representing cloud cover that is too dense to permit AIRS
retrievals. AIRS retrieves the clear-sky profiles in partially cloudy scenes, but

Fig. 1 | Development of an intense convective
storm over Kansas beginning on 26th July 2020.
Colours are Multi-Radar Multi-Sensor (MRMS)
1° × 1° grid-cell mean quantitative precipitation
estimtes (QPE). Contours are “moderate”
CAPE > 90th percentile and “high” CAPE > 99th

percentile. Shaded grey areas are where Atmo-
spheric Infrared Sounder AIRS retrievals were
obtained, the white area represents the gap between
the two successive satellite swaths.
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approximately 13% of 1° × 1° grid cells do not return valid retrievals during
our study period. Our final section will discuss the consequences of this
sampling issue.

Nearer to overpass time (pre-2100UTC), there is only a small region of
CAPE > 99th percentile. The AIRS-FCST high-CAPE area expands to
encompass the intense precipitation that occurs at midnight UTC. A
proximity sounding approach using the AIRS values before 21 UTC would
not have reliably identified the storm extent. Figure 1 shows howknowledge
ofmesoscale atmospheric motion alone improves the identification of areas
likely to experience heavy precipitation. However, there are large areas
where CAPE exceeds its 90th percentile but precipitation is not observed, a
common problem with thermodynamics based prediction of convection
andwhichwill be discussedbelow.The results at 01–02UTCalsohighlight a
feature of trajectory enhancement: since AIRS-FCST does not account for
small-scale convective updrafts, theAIRS-FCSTCAPE is not consumedas it
is in reality, and the high values persist after CI.

Statistical performance for predicting heavy precipitation
We are motivated to determine whether AIRS-FCST thermodynamics
inform about heavy precipitation risk by an amount that justifies develop-
ment of a full 2002–2021 record. AIRS-FCST would complement radio-
sondeprofiles62–64, reanalysis65,66 or climatemodel outputs67whichhavebeen
widely used to infer changes in convective risk or precipitation. These suffer
from the same issue as proximity soundings, in that the reported fields are
not coincident in timewithCI.Asmodelled hourly or daily precipitation are
used in other research68–71, we compare our performancewith ERA5and the
High-Resolution Rapid Refresh (HRRR72) version 3 convection permitting
model. All data are regridded to 1° × 1° in latitude and longitude, a coarser

resolution than any individual product (see Methods). Results may be
sensitive to horizontal resolution, but our selection is consistent with
datasets typically used in climate trend analysis.

Events at the Xth percentile are henceforth labelled using subscripts, for
example QPE >QPEX, where percentile thresholds are derived from the
entire sample of all times and locations. The full sample size isN > 1million
(>160k per forecast hour), so QPE99.95 corresponds to the top ~600 events.
Ideally, percentileswouldbedefinedmore locally and for individual seasons,
but local calculation would reduce the sample size to the point where sta-
tistics of rarer events cannot be reliably determined. By targeting events that
reach or exceedQPEX, we face a classification problem. A commonmethod
for scoring classifier skill is based on the receiver operating characteristic
(ROC73–75), but we primarily use the closely related Gini coefficient76,77,
which gives the same conclusions (Supplementary Notes 2, Supplementary
Fig. 2) and canbemore intuitively interpreted.Bootstrapped standard errors
are of order ±0.01 in Gini coefficient for QPE99.95 (Supplementary Notes 3,
Supplementary Fig. 3), sufficiently tight to support our primary conclusions.
Tests with regional or seasonal subsets also suggest that our results are not
greatly sensitive to our choice of using the full sample for deriving QPEX
thresholds (Supplementary Figs. 4, 5, Supplementary Table 1).

Figure 2a illustrates the Gini coefficient calculation, and from the
cumulative distribution function (CDF) QPE >QPEX curve it is apparent
that most of the heavy precipitation events occur when CAPE exceeds its
90th percentile (CAPE90). The Gini coefficient is derived from the CDF of
Pðconvjq;TÞ introduced in Eq. (1). A Gini score of zero represents an
uninformative, uniform Pðconvjq;TÞ equivalent to random guessing. A
Gini score approachingonewouldmeanallQPE >QPEXevents occur at the
highest CAPE.

Fig. 2 | Derivation of Gini coefficient, and the coefficients of individual products
and event rarity. a Derivation of Gini coefficient from the cumulative distribution
function (CDF) of the occurrence of Multi-Radar Multi-Sensor quantitative pre-
cipitation estimate (MRMS QPE) above threshold QPEX, in this case QPE99.95,
plotted byAIRS-FCSTCAPE. bGini coefficient calculated forQPEX,where X ranges

from the 95th to 99.95th percentile. c CDFs for the select QPEX thresholds using
Atmospheric Infrared Sounder-Forecast (AIRS-FCST) convective available poten-
tial energy (CAPE), dCDFs for two QPEX thresholds comparing AIRS-FCST CAPE
(solid) with High-Resolution Rapid Refresh (HRRR) QPE (dashed).
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Other measures of classifier skill include the false alarm ratio (FAR)
and probability of detection (POD) used in forecast skill diagrams78, which
require selecting a predictor threshold (e.g. CAPE>CAPEX) in addition to
the QPE threshold. The scores are very sensitive to selected thresholds
(Supplementary Notes 4, Supplementary Fig. 6) although AIRS-FCST
CAPE is consistently similar in skill to ERA5QPE and consistently exceeds
the skill scores of the other thermodynamic predictors (Supplemen-
tary Fig. 7).

In Fig. 2a, 80% of QPE >QPE99.95 events occur for CAPE >CAPE90,
meaning a probability of detection of 0.80. However, changing the CAPEX
threshold allows a user to select almost anyPOD.On theother hand, intense
precipitation very rarely occurs even in areas of highCAPE, leading tomany
false alarms when using thermodynamic thresholds alone. For example,
Fig. 1 has large areas of CAPE>CAPE90 that do not coincide with pre-
cipitation. The triggering of convection is still not fully understood and
remains an ongoing area of research79–81, and for forecasting individual
events the high false-alarm ratio is a serious challenge. However, to better
understand climate-related trends in risk, we simply require that
Pðconvjq;TÞ be informative, as discussed when introducing Eq. (1).

The product comparison in Fig. 2b shows howHRRRQPE is themost
skilful predictor for all intensities beyondQPE99, but at or aboveQPE99.9 the
AIRS-FCST CAPE displays similar or better skill than all other CAPE
products or even ERA5 QPE. AIRS proximity sounding CAPE is con-
sistently the worst performer. In general, CAPE is less predictive of lighter
precipitation, which can include larger contributions from stratiform pre-
cipitation or shallow convection (Supplementary Notes 5, Supplementary
Fig. 8). However, CAPE is necessary for themost intense events, with Fig. 2c
showing almost zero QPE >QPE99.9 events for CAPE <CAPE75 (binned

distributions of CAPE andQPE are shown in Supplementary Figs. 9 and 10
and discussed in Supplementary Notes 6). Figure 2d shows the CDFs using
AIRS-FCST CAPE or HRRRQPE as predictors, and demonstrates how the
forecast model is far superior than AIRS-FCST for the lightest events, but is
less notably superior for the most intense. A potentially surprising result in
Fig. 2b is the lower Gini coefficient for HRRR CAPE compared with ERA5
CAPE, despite its finer resolution. This may in part be due to the averaging
over different spatial resolutions in each product, or due to the selection of
surface-parcel CAPE in HRRR versus most-unstable parcel in ERA5 (see
Methods).

For the rarest (QPE99.95) events, the AIRS-FCST Gini coefficient in
Fig. 3a significantly improves with forecast hour (p < 0.05, see Methods).
Meanwhile, the AIRS overpass CAPE degrades with time as expected, and
by the latest timesteps AIRS-FCST outperforms ERA5 but not HRRRQPE.

We propose two factors for the weaker AIRS-FCST performance at
earlier timesteps. Firstly, precipitation at or before overpass time could
continue through 21 UTC. Such cases would result in high precipitation at
lowerAIRS-observedCAPE, as seen at 21UTC in Fig. 3a. A second factor is
a potential shift in the cause and type of events. Earlier hours include more
frequent precipitation near the east coast and theGulf ofMexico, while later
hours feature more precipitation in the Great Plains (Supplementary
Notes 7, Supplementary Fig. 11). Data south of 32°N was excluded due to
poorer performance (see Supplementary Fig. 12), even including other
convective indices as predictors. In addition to the more intense ongoing
Gulf Coast precipitation at overpass time, convective indices could be a
poorer predictor of the coastal precipitation types, or processes neglected in
trajectory enhancement could play a larger role near the coastline. Anotable
example could where air is advected onshore from the Gulf Coast, as AIRS-

Fig. 3 | Changes in Gini coefficient with forecast hour. Progression of detection
cumulative distribution function (CDF) for quantitiative precipitation estimates
over the 99.95th percentile (QPE99.95) by hour, along withGini coefficient (in legend)
for (a) convective available potential energy (CAPE) derived from Atmospheric

Infrared Sounder-Forecast (AIRS-FCST), b CAPE derived from the AIRS field at
overpass time, c European reanalysis 5 (ERA5) precipitation, d High-Resolution
Rapid Refresh (HRRR) model precipitation.
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FCSTwould account for the advection, but not themoistening of parcels by
extensive evaporation from the warm Gulf waters. Stronger performance
inland fits this hypothesis, since surface fluxes play a smaller role in parcel
evolution over drier land surfaces. The performance over these locations
could be tested using trajectory enhancement of MetOp satellite overpasses
at 9:30 am Local Time.

Understanding the mechanics of trajectory enhancement
performance
Wehave shown that CAPEplays a larger role in intense hourlyCE-CONUS
precipitation than is revealed by proximity soundings. Figure 2 raises a
mystery, however.ERA5andHRRRaccount forprocesses that areneglected
in AIRS-FCST, and HRRR is at a convection-permitting resolution, yet
AIRS-FCST CAPE appears to outperform ERA5 or HRRR CAPE for
QPE >QPE99.5. The results are also potentially surprising since ERA5
assimilates AIRS radiances at 13:30 local time, and yet by later hours it is
outperformed by AIRS-FCST. Here we argue here that one way in which
ERA5 and forecast model performance could degrade is through inap-
propriate triggering of convection.

We now use a case study to illuminate how trajectory enhancement
CAPE compares with other datasets, including a hypothetical forecast
modelwhich is representativeofHRRRor the forecast systemused inERA5.
In Fig. 4a, b, an earlier proximity sounding returns CAPE far below the
initiationvalue. InFigure 4a the forecastmodel accurately captures the event
timing and strength. Standard practice is to extract model timestep
outputs67,82,83, or to take an interpolated or timestep-mean value. In Fig. 4a,
the pre-initiation hour reports high CAPE, but using the later hour or an
interpolation would falsely report low-to-moderate CAPE. ERA5 or HRRR
CAPE is taken from the instantaneous fields at a given hour, and matches
one of the filled magenta circles. The idealised AIRS-FCST output shows
performance similar to the pre-convective hour value from the model.
However, since AIRS-FCST does not explicitly account for convection, the
CAPE is not consumed and ends up artificially high in later hours. Such
behaviour explains themaintenance of the expansive areas of high-CAPE at
02 UTC in Fig. 1, and is what would also occur in ERA5 or forecast models
when their convection fails to trigger, or triggers late.

Figure 4b represents a hypothetical case inwhich themodel convection
triggers prematurely, during the earlier CAPE peak. Model CAPE is con-
sumed and is therefore artificially low at the point of true CI. Cases akin to
Fig. 4b, inwhichCI ismistimed in amodel, have beendiscussed previously84

and are plausible explanations of why AIRS-FCST CAPE shows equivalent
or better performance than ERA5 CAPE for the most intense events.

Conclusions
CAPE is often used in model convective schemes85–87 but observational
studies have not universally reported a simple relationship between ther-
modynamic measures of instability (e.g., CAPE) and convection88–90. Here
we have shown strong evidence that mesoscale air motion reveals a far
stronger relationship between local CAPE and the heaviest precipitation
than when using standard observational methods. In the context of Eq. (1),
the results show a far more informative Pðconvjq;TÞ than for commonly
used products, and support using a full AIRS-FCST record to document
changes in convective risk over CE-CONUS. Such a record will offer
improved spatial coverage compared with radiosondes or surface
radiometers.

Future work could expand results to the nighttime overpass, and other
geographical regions or convective proxies. The present study considered
hourly accumulations averaged over 1° × 1° grid cells only, and future work
could extend to different measures of hazard such as longer-term accu-
mulations, using longer records for a greater sample size that would allow
study of rarer events, of the stability of Pðconvjq;TÞ through time, or of
accumulations over longer time periods or larger areas. One notable avenue
is that theGini coefficient is higher for usingCAPE topredict theQPE inside
precipitating areas, rather than averaging over 1° × 1° grid cells (Supple-
mentary Notes 8, Supplementary Fig. 13).

Trajectory enhancement could enable investigation of less-intensively
instrumented regions, perhaps exploitingmeteorological satellites’ lightning
mapper coverage of SouthAmerica91 and Africa92. Trajectory enhancement
is anticipated to work best in conditions akin to Fig. 4, where the pre-
convective atmosphere is sampled by the sounder and the thermodynamics
have not already been perturbed by ongoing convection. Ongoing con-
vection results in cloudiness, and while AIRS retrieves the clear-sky part of
partially cloudy scenes, it doesnotwork in totally overcast scenes. Trajectory
enhancement of combined infrared and microwave data55,56 could include
fully overcast scenes, and would allow study of whether the ~13% of AIRS
non-retrieved grid cells results in meaningful biases in performance.
However,wenote that our statistics are derivedbymatchingproductswhere
AIRS returns valid data, and so our results showing the large improvements
in performance related to trajectory enhancement are not caused by sam-
pling biases. The utility of AIRS analysis will, however, depend onwhere the
overpass time falls within a regional diurnal cycle, for example the frequent
occurrence of ongoing convection at overpass time caused us to exclude the
Gulf Coast in this study.

For CE-CONUS global warming is expected to increase CAPE and
convective inhibition (CIN), and decrease wind shear93–95. These may

Fig. 4 | Timelines of forecast CAPE, actual CAPE
and convection initiation. Two hypothetical cases
of convective available potential energy (CAPE)
estimation for a single storm. In each case, the real-
world evolution is in blue with convection initiation
(CI) starred. Potential model output is shown in
magenta, in a the model matches the real-world CI
while in b the model convection triggers too early,
consuming CAPE so that by the time of the real-
world event, the model CAPE is too low. a, b show
the same estimates of proximity sounding (red) and
Atmospheric Infrared Sounder-Forecast (AIRS-
FCST, black) outputs, where it is assumed that the
large-scale winds driving AIRS-FCST are not
strongly affected by CI.

https://doi.org/10.1038/s43247-024-01614-1 Article

Communications Earth & Environment |           (2024) 5:472 5

www.nature.com/commsenv


interact in complex and time-varyingways, for exampleCIN can restrictCI,
perhaps reducing moderate events but allowing CAPE to build to relatively
higher levels resulting in more explosive events. We therefore emphasise
that our results are solely for predictive skill of intense hourly precipitation,
and provide only a narrow description of the link between convective
indices and convective risks. Far more complex quantification of pre-
cipitation properties is possible, has been applied to HRRR and MRMS96,
and could be extended to thermodynamics-convection research.

Despite these limitations, trajectory enhancement of satellite sounder
data have provided a major step toward nowcasting intense hourly pre-
cipitation and for tracking multi-decadal changes in risk through time.

Methods
Data
We use AIRS Version 7 L2Sup infrared only retrievals for temperature (T)
and specifichumidity (q) onup to100vertical levelswith a typicalhorizontal
resolution of ~50 km. Numerical Weather Prediction winds are from the
WRF27km runs held at the NOAA Atmospheric Research Laboratory
(ARL) forHYSPLIT.AIRS retrievals are includedduringMarch–November
2019 and 2020 for footprints within 17–21 UTC, and within the latitude-
longitude box of 25–53°N, 107–64°W. All valid “good” or “best” flagged
retrievals are included, regardless of whether they are land or ocean, or fall
within our CE-CONUS region or not. The western limit was selected to
exclude the Rockies, where orography is expected to cause larger issues for
the relatively coarse resolution forecastwinds. The other limitswere selected
to capture the typical AIRS afternoon orbits that intersect CONUS. The
main analysis was then restricted to north of 32°N based on poorer per-
formance near the Gulf of Mexico. The trajectory-enhancement method
described below requires that the first forecast step (21 UTC in this case)
occurs after the final AIRS sounding that’s included. Expanding west of the
Rockies would include a third overpass, necessitating a delay in the first
forecast timestep to 23 UTC or 00 UTC, missing much of the development
of convection over CE-CONUS.

ERA5 CAPE and total precipitation (labelled QPE in the main
manuscript), MRMS gauge-corrected QPE, and HRRR version 3 QPE are
time matched and re-gridded to the AIRS-FCST grid and times.

HRRR grib2 data were obtained using the Herbie package and then
extracted to netCDF using NOAA’s Weather and Climate Toolkit (https://
www.ncdc.noaa.gov/wct). For our time period the Total_precipita-
tion_surface variable was not found by the WCT command line tool, so
hourlyQPEwas determined from instantaneous rain rates (mm/s) available
every 15min. The relevant variable, Precipitation_rate_surface was multi-
plied by 900 s then the four 15-min accumulations were summed into an
hourly QPE, including zero values. Some uncertainty will be introduced by
the use of instantaneous rates rather than the true accumulations.

The years 2019 and 2020were selected since they are the only two years
with complete March–November output from all datasets with constant
versions. The primary limitation is version changes in HRRR, with the only
two-year stints being July 2018–December 2020 (v3) and December
2020–recent (v4). All HRRR data over CONUS was selected and down-
loaded using the freely available Herbie Python package. The latter period
was ruled out by an AIRS deep space manoeuvre in September 2021, which
has led to an increase in erroneous thermodynamic retrievals that are not
well understood at this time.

Trajectory enhancement to generate 3-D T and q fields
AIRS L2 data are treated as representing parcels distributed along the 3-D
retrieval grid. Firstly, height above ground is calculated using the hypso-
metric equation with the product pressure levels (P) and retrieved T and q
profiles as inputs. The parcel locations are then input into theHybrid Single-
Particle Lagrangian Integrated Trajectory (HYSPLIT) model with
WRF27kmwinds for parcelmotion. Parcels aremoved forwardwith hourly
resolution until 0200 UTC of the following day. The hours 21–02 UTC are
reported as the forecast hours, with the first timestep being 0.5–3.5 h after
AIRS overpasses. The large accepted range allows some days to capture two

AIRS overpasses for more complete spatial coverage. At each hour, T and q
of the parcels within a given 1° × 1° × 30 hPa latitude-longitude-pressure
grid cell are averaged to generate 3-D fields.

The horizontal resolution is sufficiently fine to capture features of
interest, as shown by the improved skill in terms of predicting heavy pre-
cipitation. It is also sufficiently coarse to ensure that sufficient air parcels are
assigned to each grid cell to allow robust calculation of CAPE values and
prevent data gaps from appearing. For an example of results at finer, 0.5°
resolution, see Fig. 4 of ref. 57.

Calculation of thermodynamic indices and selection of data for
analysis
In each latitude-longitude grid cell, and for eachhour, convective indices are
calculated using SHARPpy module97, for the most-unstable (MU), mean-
mixed layer (MML) and surface (SFC) parcels. The calculated indices are
CAPE,CIN, equilibrium level (EL), lifted condensation level (LCL) and level
of free convection (LFC). Sensitivity tests showed thatCAPE alone provided
effectively all prediction skill, and among the variablesMU_CAPEwasmost
consistently predictive (Supplementary Fig. 2). ThereforeMU_CAPE alone
is used in the analysis.

Grid cells are included for a day if, for all time steps, there are (i) >20
AIRS-FCST parcels within the profile and (ii) MU_CAPE, MU_EL,
MU_LCL and MU_CIN have valid values calculated by SHARPpy
(including 0). In addition, the latitude-longitude range is limited to 32–53°N,
107–64°W and grid cells are excluded if their land fraction is below 50 %.

All properties, including those from ERA5, HRRR and MRMS, are
matched in time and space to those fromAIRS-FCST, andby requiring valid
indices across all timesteps, the geographic sample is the same for all forecast
hours and all panels of Fig. 3 contain consistent datasets. For Figures 1–3
and all reported statistics, only the forecast hours 21–02 UTC are included.
For the AIRS CAPE values, the values calculated at overpass time are
replicated for each of the 21–02UTC forecast timesteps and the calculations
proceed in the same way as other methods.

ERA5 CAPE is extracted from the ERA5 files rather than calculated
from its profiles, and the ERA5 calculationmethod approximates themost-
unstable parcel but does not exactly match standard calculations. Conclu-
sions are not greatly affected since the ranking of CAPE values is similar
when calculated from the profiles (see Fig. S2 of ref. 57). The HRRR hourly
files by default provide surfaceCAPE, so our values forHRRRCAPEare the
surfaceparcel values.Note that bothERA5andHRRRcalculateCAPEat the
native horizontal resolution, andwe average those values to 1° × 1°, whereas
AIRS and AIRS-FCST T and q profiles are first spatially averaged and then
CAPE is calculated.

Gini and significance calculations
For a selected threshold (e.g. QPE >QPE99.95, which is QPE > 5.1mmh−1),
entries are flagged as 1 or 0, where 1 is QPE >QPEX. In all cases, thresholds
are based on all data, including all locations, all seasons, and both wet and
dry hours. The flags are then sorted by the predictor (CAPE or QPE from
another product), and the normalised cumulative distribution function
(CDF) is calculated for 100 equally sized bins, each of which contains 1% of
the sample data.

For low rankings, predictors are zero, and these entries have a small
random perturbation added, of order ±1 × 10−10, to allow unambiguous
sorting. The overall results are unaffected by this, and the consequences are
that theCDF shows an appropriate linear format lowvalues of predictor, for
example at CAPE below the 65th percentile in Fig. 2b.

For the Fig. 3 discussion, we commented on significant changes or
differences inGini coefficient. Thiswas confirmed in twoways:firstly, for an
individual hour we use bootstrapping, by randomly sampling (with repla-
cement) all values of the predictor from all six forecast hours down to a
sample size equal to one hour. TheGini coefficient is then calculated for this
new sample, and the resampling procedure is repeated 500 times and the
standard deviation of the 500 Gini coefficients is assumed to be the 1σ
standard error in the Gini coefficient. Individual hours were assumed to be
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independent, so the standard error in the difference between two hours is
calculated from quadrature as

ffiffiffiffiffiffiffi
2σ2

p
¼ ffiffiffi

2
p

σ. The p < 0.05 confidence level
is then estimated as twice this value, or 2

ffiffiffi
2

p
σ. For the hourly samples, this is

approximately a difference of ±0.08 in Gini coefficient. Secondly, ordinary
least squareswas used to calculate the hourly trend inGini coefficientwithin
each product and twice the slope standard error was treated as significant at
p < 0.05. Using either the bootstrapped-differencing or the trend approach,
theGini coefficients show significant improvements in hour inAIRS-FCST,
and significant declines in AIRS.

Figure 4 generation
Figure 4 is only intended as an illustrative example. The “observed” time
series is digitised from the event in Fig. 4a of a study of lightning initiation
during storms over China51, whereCAPEwas estimated by regular profiling
with a surface-basedmicrowave radiometer. The “model” field in (a) are the
observed fields with random Gaussian white noise (σ of ± 50 J kg−1). In (b)
the “model” is assumed to initiate convection early, at the magenta cross
point, and then the subsequent CAPE is artificially lowered. The proximity
sounding is the true value at 06 time, and the AIRS-FCST values are
illustrative.

Data availability
The combined dataset with time- and space-matched AIRS-FCST, HRRR
andERA5variables is available online at the JPLOpenRepository98, which is
open and freely available to all users at https://doi.org/10.48577/jpl.XXISLE.

Code availability
The HRRR data were downloaded and processed using code generously
provided by Brian Blaylock’s Herbie python package92 (https://doi.org/10.
5281/zenodo.4567540, freely accessible). Convective parameters in AIRS-
FCST were calculated using the SHARPpy package97 (https://github.com/
sharppy/SHARPpy, freely accessible). Trajectory enhancement was based
on theHybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT)
model (https://www.ready.noaa.gov/HYSPLIT_linux.php, freely accessible
after registration and upon request).
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