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Abstract 

Mass spectrometry is a po w erful and widely used tool for generating proteomics, lipidomics and metabolomics profiles, which is pivotal for elu- 
cidating biological processes and identifying biomark ers. Ho w e v er, missing v alues in mass spectrometry -based omics data ma y pose a critical 
challenge for the comprehensive identification of biomarkers and elucidation of the biological processes underlying human complex disorders. 
To alleviate this issue, various imputation methods for mass spectrometry-based omics data have been developed. However, a comprehensive 
comparison of these imputation methods is still lacking, and researchers are frequently confronted with a multitude of options without a clear 
rationale for method selection. To address this pressing need, we developed omicsMIC (mass spectrometry-based omics with Missing values 
Imputation methods Comparison platform), an interactive platform that provides researchers with a versatile framework to evaluate the perfor- 
mance of 28 diverse imputation methods. omicsMIC offers a nuanced perspectiv e, ackno wledging the inherent heterogeneity in biological data 
and the unique attributes of each dataset. Our platform empowers researchers to make data-driven decisions in imputation method selection 
based on real-time visualizations of the outcomes associated with different imputation strategies. The comprehensive benchmarking and versa- 
tility of omicsMIC make it a valuable tool for the scientific community engaged in mass spectrometry-based omics research. omicsMIC is freely 
a v ailable at https:// github.com/ WQLin8/ omicsMIC . 
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Introduction 

The recent advancements in mass spectrometry-based omics,
such as proteomics, lipidomics and metabolomics, have ush-
ered in a new era of scientific discovery, advancing our un-
derstanding of biological mechanisms ( 1 ) and potentially re-
shaping the discovery of biomarkers ( 2 ,3 ), drug discovery and
precision medicine ( 4 ) for human complex disorders by pro-
viding insights into molecular biology and enabling compre-
hensive molecular analysis. In particular, the integration of
other omics data with mass spectrometry-based omics data
has emerged as a potent strategy for advancing our compre-
hension of complex biological progress ( 5 ). 

However, one of the main drawbacks of mass spectrometry-
based omics data is that they typically contain a large pro-
portion of missing values, even in the range of 30–50% ( 6 ,7 ).
Commonly, these missing values can be attributed to either the
genuine absence of the compound in the measured sample or
the presence of the molecular feature at a concentration be-
low the mass spectrometer’s detection limit. Therefore, many
studies handled missing values with simple value replacement
methods such as zero ( 8 ), half of the minimum value ( 9 ) and
the minimum value ( 10 ). However, the issue of missing data
is a complex problem that can arise in various situations in-
cluding the following. (i) Mass spectrometry techniques may
encounter technical problems during data acquisition, such
as instrument errors, signal interference or instrument mal-
functions ( 11–13 ). (ii) Prior to mass spectrometry analysis,
samples undergo a series of preparation and extraction steps.
These steps may involve chemical reactions, sample handling
or extraction processes, which introduce variability and uncer-
tainty ( 11 , 12 , 14 ). (iii) Processing and interpreting mass spec-
trometry data is a complex process that involves steps such
as signal denoising, background correction and quality filter-
ing. During the processing, certain data points may not meet
specific quality standards or the limitations of the algorithms.
These issues can result in certain data points not being accu-
rately recorded or obtained and thus being treated as missing
data ( 15 ,16 ). Inadequately addressing these missing data can
introduce bias in the subsequent statistical analysis and inter-
pretation of mass spectrometry-based data, potentially com-
promising the reliability of the downstream analysis and the
accuracy of the results. 

Imputation is a common approach to dealing with missing
data, which treats missing values using the information that
is available from the existing data. So far, numerous imputa-
tion methods have been proposed for handling missing val-
ues in -omics studies. In this study, we roughly divide incor-
porated imputation methods into three categories: (i) simple
value replacement; (ii) model-based approaches; and (iii) ma-
chine learning-based approaches. Simple value replacement is
a commonly used technique for handling missing data in vari-
ous fields such as zero, half of the minimum value and the min-
imum value. This strategy can quickly fill in missing values and
allow for downstream analyses to be conducted on complete
datasets. However, it may skew the distribution or underes-
timate measures of variance and lead to more bias ( 16 ,17 ).
To account for this limitation of simple value replacement,
many model-based imputation methods have been developed,
which leverage statistical and computational models to es-
timate missing values, taking into account the patterns and
relationships present in the data. Examples include Bayesian
principal component analysis (BPCA) ( 18 ) and singular value
decomposition (SVD) imputation ( 19 ). Furthermore, machine
learning-based approaches have become increasingly popular,
as they can handle diverse data distributions and complex re- 
lationships. For instance, K-nearest neighbor (KNN) imputa- 
tions ( 20 ) use similarity between samples to predict missing 
values, and random forest-based methods ( 21 ) use the ran- 
dom forest ensemble algorithm to make predictions. 

Numerous imputation methods have been proposed, and 

previous studies suggested that different methods may be re- 
quired to achieve good performance under different circum- 
stances ( 15 , 16 , 22 ). However, a comprehensive and systemic 
comparison of the performance of these imputation methods 
under different conditions is still lacking. In this study, we de- 
velop omicsMIC (mass spectrometry-based omics with Miss- 
ing values Imputation methods Comparison platform), a user- 
friendly platform that provides a versatile framework for sim- 
ulating and evaluating a diverse range of imputation strate- 
gies, tailored to users’ specific datasets. Our platform can help 

users determine the most appropriate imputation method for 
their datasets with specific objectives and allow users to per- 
form the imputation on their datasets once the preferred im- 
putation approach is determined. We anticipate that this plat- 
form will be helpful for the community, particularly for re- 
searchers without an extensive background in computer sci- 
ence or programming within this biomedical field. 

Materials and methods 

Overview of the omicsMIC interactive platform 

omicsMIC is a comprehensive application that allows ad- 
vanced comparison of 28 imputation methods (Table 1 ) for 
mass spectrometry-based omics data in a user-interactive fash- 
ion. The omicsMIC includes Data quality and control, Data 
simulation and Data imputation. It introduces a potent data 
simulation feature, armed with seven customizable param- 
eters. The whole workflow of the omicsMIC is shown in 

Figure 1 A. 

Missing mechanism 

The missing completely at random (MCAR) mechanism ( 23 ) 
describes a process in which missing values cannot be at- 
tributed to either the presence or absence of specific molec- 
ular features in the samples. In simpler terms, this mechanism 

is characterized by the random occurrence of missing data,
which can be considered as a complete absence of correlation 

between the missing and observed portions of the data. In the 
context of omicsMIC, the MCAR missingness will be simu- 
lated by randomly removing values from the dataset using the 
uniform distribution. Different levels of missingness will be 
simulated by removing varying proportions of the values. 

The missing at random (MAR) mechanism ( 23 ) describes 
that the probability of missingness in a variable is related to 

observed data but not to unobserved data. In other words,
the probability of a data point being missing depends on the 
values of other observed variables in the dataset, but it is not 
related to the missing variable itself. In omicsMIC, the MAR is 
modeled where a feature X 1 will lead to the missingness of an- 
other feature X 2 in the same sample. The simulation process 
starts by randomly choosing two different features: X 1 and 

X 2 . The values of X 1 are arranged in ascending order. Next, a 
cut-off percentage point is randomly sampled from a χ2 dis- 
tribution and then normalized by dividing it by 30 ( 24 ). This 
normalized value is employed to determine the proportion of 
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Table 1. Brief description of imputation methods e v aluated in omicsMIC 

Category Methods Source Reference 

Simple value 
replacement 

Zero 

Half-min 
Min 
Mean 
Median 
hotdeck R VIM package ( 27 ) 
Random 

replacement 
Model-based 
imputation 
methods 

BPCA R pcaMethods package https:// github.com/ hredestig/ pcamethods 

QRILC R imputeLCMD package https:// github.com/ cran/ imputeLCMD 

GSimp https:// github.com/ WandeRum/ GSimp ( 26 ) 
mice R mice package ( 28 ) 
mice_cart R mice package ( 28 ) 
svd_PCA R pcaMethods package https:// github.com/ hredestig/ pcamethods 
Regular_PCA R missMDA package ( 29 ) 
EM_PCA R missMDA package ( 29 ) 
PPCA R pcaMethods package https:// github.com/ hredestig/ pcamethods 
aregImpute R Hmisc package https:// github.com/ harrelfe/ Hmisc 
rmiMAE https:// github.com/ NishithPaul/ 

missingImputation/ blob/ main/ rmiMAE.R 

( 30 ) 

wlsMisImp https:// github.com/ NishithPaul/ tWLSA https:// github.com/ NishithPaul/ tWLSA 

NIPALS R pcaMethods package https:// github.com/ hredestig/ pcamethods 
Machine 
learning-based 
imputation 
methods 

mice_RF R missRanger package https:// github.com/ mayer79/ missRanger 

Extra_Trees R missRanger package https:// github.com/ mayer79/ missRanger 
missForest R missForest package ( 21 ) 
NLPCA R pcaMethods package https:// github.com/ hredestig/ pcamethods 
GD_KNN R VIM package ( 27 ) 
Cor_KNN https:// github.com/ WandeRum/ GSimp ( 26 ) 
trunc_KNN https:// github.com/ WandeRum/ GSimp ( 26 ) 
ED_KNN https:// github.com/ WandeRum/ GSimp ( 26 ) 

t  

M  

d
 

s  

o  

o  

t  

i  

t  

i  

c  

i  

t  

p

E

M  

K  

o  

1  

d  

t  

f
 

(  

w  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

he highest X 2 values to be marked as missing, thus simulating
AR missingness. This procedure will be repeated until the

esired level of overall missing data for MAR is achieved. 
The missing not at random (MNAR) mechanism ( 23 ) de-

cribes that the missingness of a variable is related to the un-
bserved data or values that are not included in the dataset. In
ther words, the probability of missingness depends on the ac-
ual value of the variable that is missing, and this missingness
s not explained by the observed data alone. In omicsMIC, fea-
ure X 1 will be randomly selected, and its values will be sorted
n ascending order. Then, a similar process to that of the MAR
ase will be applied, with the key difference being that miss-
ng values will be generated for X 1 when its values fall below
he cut-off point. This process is repeated until the intended
roportion of missing values is achieved. 

valuation of the missingness mechanism 

CAR : in omicsMIC, pairwise correlations (Spearman and
endall) will be computed between the missingness vector
f each feature (where present values were replaced with
 and missing values with 0) and all other features in the
ataset. Features will be categorized as MCAR when no statis-
ically significant correlations are detected between any pair of
eatures. 

MNAR : the Kolmogorov–Smirnov (KS) goodness-of-fit test
or the Cucconi test with Benjamini–Hochberg correction)
ill be used on the remaining features to assess whether their
distributions exhibit left truncation. Features demonstrating
left-truncated distributions in comparison with left-censored
normal distributions will be classified as MNAR. 

MAR : the remaining features will be considered as MAR. 

Performance evaluation 

According to different downstream analysis purposes, five ma-
trices will be applied to quantitatively evaluate the perfor-
mance of different imputation methods: 

Normalized root mean square error (NRMSE) ( 18 ) is used
to comprehensively assess the imputation accuracy of data im-
putation methods. NRMSE calculates the difference in the es-
timation between the imputed and original values: 

NRMSE = 

√ √ √ √ 

mean 

(
( X 

orig − X 

imp ) 2 
)

var 
(
X 

orig 
) , 

where X 

orig represents the original complete data and X 

imp

represents the imputed data. NRMSE ranges between 0 and
1, with a lower value indicating better accuracy. A value of 0
means that the predicted values are a perfect match with the
actual values, while a value of 1 means that the predictions
have no predictive power and are as accurate as simply using
the mean of the actual values. 

PCA–Procrustes analysis (PCA-P) ( 16 ): PCA will be per-
formed on the original dataset and imputed data, to reduce
their dimensionality while retaining the most important pat-

https://github.com/hredestig/pcamethods
https://github.com/cran/imputeLCMD
https://github.com/WandeRum/GSimp
https://github.com/hredestig/pcamethods
https://github.com/hredestig/pcamethods
https://github.com/harrelfe/Hmisc
https://github.com/NishithPaul/missingImputation/blob/main/rmiMAE.R
https://github.com/NishithPaul/tWLSA
https://github.com/NishithPaul/tWLSA
https://github.com/hredestig/pcamethods
https://github.com/mayer79/missRanger
https://github.com/mayer79/missRanger
https://github.com/hredestig/pcamethods
https://github.com/WandeRum/GSimp
https://github.com/WandeRum/GSimp
https://github.com/WandeRum/GSimp
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Figure 1. The workflow ( A ) and main interface ( B ) of omicsMIC. 

 

 

 

 

 

 

 

 

 

 

 

 

terns in the data and extracting the first two principal compo-
nents from the PCA results. Subsequently, Procrustes analysis
will be applied in combination with PCA to evaluate the effec-
tiveness of each imputation method in preserving the under-
lying patterns and relationships present in the original data.
A smaller PCA–Procrustes value indicates better alignment,
signifying that the imputation method is more accurate and
effectively preserves the overall structure of the data. 

Misclassification error rate (MER) is performed to compare
the ability of different imputation methods to correctly re-
cover variables with differences in the imputed data compared
with the original data. It is defined as the proportion of incor-
rectly identified significant differences to the total number of
true significant differences: 

MER = avg 
(

F 
T 

)
, 

where F denotes the total count of false positives for each 

variable, while T represents the total count of true positives 
for each variable. A lower MER value enhances the reliability 
of identifying genuinely significant outcomes while minimiz- 
ing the potential for false discoveries. Considering the practi- 
cal requirements for real-world applications, we evaluate the 
performance of different imputation methods based on t -test 
(MER_tTest) and regression analyses (MER_Reg). 
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The silhouette coefficient ( Si score) ( 25 ) is used to evalu-
te the clustering performance of various imputation meth-
ds. It combines cohesion and separation, which can compare
he quality of clustering outcomes obtained from different im-
utation techniques. It is defined as: 

Si = 

b i − a i 
max 

(
b i , a i 

) , 

�Si = avg 
(∣∣S i imp − S i orig 

∣∣) , 

here a i signifies the average distance between the i -th sample
nd all other samples in the same cluster, b i signifies the aver-
ge distance between the i -th sample and all samples in each
luster, and Si imp and Si orig signify the Si score in the imputed
ataset and original dataset separately. In addition weighted
ene co-expression network analysis (WGCNA) will be per-
ormed to do clustering. The lower the �Si score is, the better
he clustering recovery performance. 

esults and discussion 

he main interface of omicsMIC displays the analysis steps
n an expandable menu on the left side and shows a tutorial
ection that includes recommendations for parameter selec-
ion and explanations of simulated results based on the demo
ata on the right side (Figure 1 B). OmicsMIC starts with up-
oading a data file (Figure 2 A), containing mass spectrometry-
ased quantitative data. The file should be organized in a
ample–feature format, where each row represents a unique
ample, and each column represents a distinct feature. Omic-
MIC accommodates CSV format files. Once the data are up-
oaded, the platform will provide a quick overview of the up-
oaded dataset, allowing users to verify that the correct data
ave been uploaded (Figure 2 B). We also provide a targeted
etabolomics dataset ( 26 ) to help users familiarize themselves
ith the functionalities of the platform (Figure 2 C). 

ata quality and control 

ithin the omicsMIC platform, two vital data quality control
unctionalities are implemented, allowing users to tailor their
ata preparation according to their specific requirements. 

(i) Filter missing data: our platform allows users to con-
trol data quality precisely by customizing the threshold
for removing samples and features with excessive miss-
ing data. Users can specify missing rate thresholds (Fig-
ure 2 D) so that samples and features with missing rates
over the thresholds will be excluded from the subsequent
analyses. Upon user-defined criteria, omicsMIC will gen-
erate a missing data pattern heatmap (Figure 2 E), visu-
ally representing the distribution of missing values across
samples and features. This heatmap offers valuable in-
sights into the data’s completeness and assists users in
identifying patterns or trends in missing data. 

(ii) Statistical summary: in this section, we present a com-
prehensive statistical summary after the removal of sam-
ples and features surpassing the specified missing data
threshold, providing users with essential insights into the
characteristics of their dataset alongside the statistical
metrics and missing mechanisms. Users have the flexi-
bility to select correlation methods and goodness-of-fit
indices (Figure 2 F), tailoring the analysis to identify miss-
ing mechanisms. For each variable in the dataset, omic-
sMIC will calculate and report the following statistical
metrics: missing number, missing %, min, mean, max,
variance, 25th percentile, 50th percentile, 75th percentile
and missingness type (Figure 2 G). Additionally, it will
also provide the user with a summary report of the pro-
portion of different missing mechanisms (Figure 2 H). 

Data simulation 

The omicsMIC platform introduces a potent data simulation
feature, armed with seven customizable parameters. These pa-
rameters have been thoughtfully crafted to equip users with a
versatile toolkit for effectively appraising various imputation
methods. Here, we describe these parameters in detail: 

(i) Simulate data or not : this parameter empowers users
to decide whether they wish to generate simulated data
based on the characteristics of their uploaded dataset for
imputation method assessment. If users want to use real
data to carry out downstream simulations, the missing
value in the uploaded dataset will be excluded by remov-
ing samples and features to obtain a completed dataset
(Figure 2 I). 

(ii) Simulate dataset times : if the previous parameters were
set to require simulated data, users can define the num-
ber of times they wish to generate simulated data. Com-
monly, multiple iterations introduce diversity into the
simulations and thus increase the reliability of the results
(Figure 2 J). 

(iii) Simulate missingness times : users can adjust the parame-
ter for missing data generation, which specifies the num-
ber of missing data instances created in each completed
dataset (Figure 2 K). 

(iv) Missing percentage : users can select pre-defined over-
all missing proportion (5–50%) and / or customize the
overall missing proportion in the simulated dataset
(Figure 2 L). 

(v) Missing type ratios : this parameter defines different miss-
ing mechanism ratio settings (Figure 2 M), pivotal for
evaluating imputation method stability under diverse
missing mechanisms. In this study, we consider three
types of missing mechanisms: missing not at random
(MNAR), missing at random (MAR) and missing com-
pletely at random (MCAR). In omicsMIC, seven differ-
ent ratio combinations of these three mechanisms are
pre-defined (MCAR, MAR, MNAR): (0.6, 0.2, 0.2), (0.2,
0.6, 0.2), (0.2, 0.2, 0.6), (1 / 3, 1 / 3, 1 / 3), (1, 0, 0), (0, 1,
0) and (0, 0, 1). Users can also customize the proportions
of different missing mechanisms. The missing type ratios
calculated from the data quality and control step will be
included as a scenario for the simulation automatically. 

(vi) Imputation methods : in the omicsMIC application, a to-
tal of 28 imputation methods are included. Imputation
methods are categorized into simple value replacement,
model-based and machine learning-based techniques, of-
fering users flexibility tailored to their research needs
(Figure 2 N–P). 

(vii) Evaluation methods : omicsMIC offers various evalua-
tion metrics for assessing imputation methods: NRMSE,
PCA-P, MER_tTest, MER_Reg and Si score. Different
evaluation metrics will help guide users to select methods
that best suit their research objectives (Figure 2 Q). 

The ‘Data Simulation’ section presents unparalleled flex-
ibility and control for imputation method assessment. Lever-
aging these parameters, researchers can conduct rigorous eval-
uations, make informed decisions and select the most appro-
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Figure 2. omicsMIC begins by uploading your data ( A ) or loading demo data ( B ) and a brief re vie w will be provided ( C ). Following the data upload, it 
performs data quality control (QC) through pre-processing based on pre-defined thresholds for missing samples and variables ( D ). A heatmap ( E ) will be 
generated to visually represent the missing data after applying the filtering process. Subsequently, appropriate correlation methods are selected and 
goodness-of-fit tests are conducted ( F ) to e v aluate different patterns of missingness. A descriptive st atistical t able is provided ( G ), with a summary table 
( H ) summarizing the various patterns of missing data. In the simulation section, it provides users with a control panel featuring seven parameters that 
allow customization of the simulation scenario: Simulate data or not ( I ) provides the user with a choice to use simulation data or real data to perform the 
simulation. Simulate dataset times ( J ) and Simulate Missingness times ( K ) configure the times of generating simulated data and times of generating 
missing data corresponding. Missing percentage ( L ) sets up the percentage of missing value. Missing type ratios ( M ) provides different missing type 
combinations. Imputation methods ( N–P ) provides 28 imputation methods for comparison analysis. Five matrices from the Evaluation methods ( Q ) 
configure panel can be used to do carry out imputation performance evaluation. The comparison results ( R ) are presented as interactive figures which 
can be exported as PNG files. Finally, the imputation function ( S ) is provided to use the appropriate method to carry out imputation, and imputed data 
can be downloaded for further downstream data analysis ( T ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

priate imputation methods, thereby enhancing the quality and
trustworthiness of their downstream analysis. The compar-
ison results are presented as interactive figures (Figure 2 R)
which can be exported as static PNG files. 

Data imputation 

Based on simulation results, the users can utilize omicsMIC
to perform the imputation on their quality control-processed
datasets using an appropriate imputation method (Figure 2 S)
and download the imputed dataset (Figure 2 T) for further
downstream data analysis. 

Conclusion 

omicsMIC offers a versatile framework for simulating and
evaluating a wide array of imputation strategies for mass
spectrometry-based omics data. Given the inherent hetero-
geneity of biological data, omicsMIC equips users with real-
time visualizations of imputation outcomes, facilitating in-
formed and rational method selection. Notably, most impu-
tation strategies incorporated in the omicsMIC platform are 
not only for mass spectrometry-based omics data but can also 

be applied to other types of continuous data, and omicsMIC 

has the potential for future updates to accommodate newly 
developed methods and additional evaluation criteria. Fur- 
thermore, as the source codes of omicsMIC will be publicly 
shared, omicsMIC is also a valuable tool for the development 
and evaluation of novel imputation methods. 

Data availability 

omicsMIC is freely available at https:// github.com/ WQLin8/ 
omicsMIC and https:// doi.org/ 10.5281/ zenodo.10016741 . 
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