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Abstract

Walking is a complex motor function requiring coordination of all body parts. Parkinson’s dis-

ease (PD) motor signs such as rigidity, bradykinesia, and impaired balance affect move-

ments including walking. Here, we propose a computational method to objectively assess

the effects of Parkinson’s disease pathology on coordination between trunk, shoulder and

limbs during the gait cycle to assess medication state and disease severity. Movements dur-

ing a scripted walking task were extracted from wearable devices placed at six different

body locations in participants with PD and healthy participants. Three-axis accelerometer

data from each device was synchronized at the beginning of either left or right steps. Canon-

ical templates of movements were then extracted from each body location. Movements pro-

jected on those templates created a reduced dimensionality space, where complex

movements are represented as discrete values. These projections enabled us to relate the

body coordination in people with PD to disease severity. Our results show that the velocity

profile of the right wrist and right foot during right steps correlated with the participant’s total

score on the gold standard Unified Parkinson’s Disease Rating Scale (UPRDS) with an r2

up to 0.46. Left-right symmetry of feet, trunk and wrists also correlated with the total UPDRS

score with an r2 up to 0.3. In addition, we demonstrate that binary dopamine replacement

therapy medication states (self-reported ‘ON’ or ‘OFF’) can be discriminated in PD partici-

pants. In conclusion, we showed that during walking, the movement of body parts individu-

ally and in coordination with one another changes in predictable ways that vary with disease

severity and medication state.

Introduction

The generation of commands to initiate and coordinate whole body movements during walk-

ing [1,2] is based on an interaction of cortical and subcortical structures (including basal gan-

glia and brainstem) [3]. Dopaminergic deficiency in the basal ganglia associated with

Parkinson’s disease (PD) generates canonical motor signs such as rigidity, bradykinesia,
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dystonia, and impaired balance which affect movements including walking [4]. The ability to

control movements in PD [5] is evaluated in a clinical setting—once or twice per year—as part

of an extensive semi-quantitative motor and cognitive assessment of disease progression per-

formed by a movement disorder specialist according to the Movement Disorder Society Uni-

fied Parkinson’s Disease Rating Scale (MDS-UPDRS, 2008 version) [6]. Motor impairment is

evaluated in part 3 of the UPDRS. Gait and other tasks are scored (with a value between 0–4)

by the specialist based on the observation of the task. Thus, the results vary with the training of

the physician [7] and are not objectively captured. Tools to assist physicians in quantification

and analysis of movement are currently limited to expensive gait labs but they are not part of a

standardized process. The possibility of using inexpensive technology and computational

methods to measure and quantify whole body motor behavior will allow objective quantifica-

tion of disease state phenomenology in normal clinical settings.

Although coordination between limbs is not explicitly assessed in the standardized

MDS-UPDRS test, it is well known that both upper and lower limb coordination during walk-

ing are affected in people with PD both in natural [8,9] and treadmill walking [10]. Typically,

due to various PD related impairments, posture and arm swing become asymmetric [8,11–13].

Different laboratories have assessed and quantified these impairments using high definition

motion capture analysis and electromyographic recordings [9,14]. These methods are

restricted to complex and expensive research laboratories settings, which makes them unsuit-

able to monitor participants outside the clinic and to understand the effects of medication and

interventions on the progression of the disease [4,5] in a more typical setting [15].

Outside the clinical setting, wearable technology [16] offers a solution for continuous moni-

toring of people with PD [15,17,18]. Gait has been characterized and measured from the trunk

[19,20], and feet [21] (see Del Din et al. for a comprehensive review [20]). Various techniques

have quantified features of body movement based on one [19,21–25] or multiple sensors attached

to different body locations [19,26,27]. Typically, studies have used descriptive features of the sig-

nal i.e. discrete measurements such as frequency, stride length, entropy, arm swing, etc. to charac-

terize PD. Those discrete measurements provide a snapshot of step or body coordination, which

although easy to understand, do not capture most of the temporal information of how the whole

body moves during the walking task e.g. left-right symmetry, limb/core coordination etc. Also,

only a few of those discrete analyses looked into measurements of left versus right symmetry

[19,27], and step coordination [28]. Recently a study measured coordination between body parts

as the variability of the maximum angular extention [29] but no study has looked into overall

body coordination during individual steps. We believe that a measurement built from temporal

profiles of whole-body readjustment at each step is not only closer to the way a specialist intui-

tively evaluates patient movements, but it can also enable rating with quantitative granularity.

In this work, we propose a novel method which characterizes the temporal profile of move-

ments across body parts rather than single point metrics to characterize PD. We used data

acquired from different parts of the body starting at the point of weight redistribution i.e. dur-

ing whole body adjustment following a step. By analyzing this temporal profile, we aim to

answer the following questions: (i) are the individual movements in different parts of the body

during walking affected by disease severity or drug intake in people with PD? (ii) is the symme-

try of the body parts during walking affected by either of these factors?

Results

Single body part kinematics relative to PD severity

To test how body part coordination during walking related to disease severity we collected

acceleration information at the feet, wrist, lumbar and sternum during unconstrained walking
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(see Methods). Those positions provided overall information for movements at lower and

upper extremities, core (lumbar) and trunk (sternum, see Figs 1 and S1). We used step events

as the start point for the whole-body coordination (see Methods and Fig 1B and 1C) and built

a reduced dimensionality space (RDS) at each step (see Methods) to summarize acceleration,

velocity and time to a three-dimensional value (see S2 Fig).

Projections of movements during walking into the RDS clearly distinguished between

movements of healthy versus PD participants. As shown in Fig 2A, projections into the RDS

show that the average walking movements from PD participants were clearly separable from

movements of healthy participants (at least in one of the projections, U-test, p< 0.05 corrected

by 12–6 sensors and 2 conditions). Movement statistics showed that projections of all move-

ments aligned with either left or right steps were able to discriminate healthy with respect to

PD participants in at least one of the RDS projections with p< 0.05 (U-test), with the excep-

tion of right wrist movements aligned with the right steps. In addition, we fed these movement

projections into 4 different classifiers (logistic regression, decision trees, random forest, and

Naïve Bayes) to evaluate their ability to discriminate PD from healthy participants. All classifi-

ers were able to achieve high accuracy, with the best results obtained using logistic regression

and random forest (see Tables 1 and S1). We were also able to estimate PD severity from an

estimate of motor impairment (based on the UPDRS total score) with r2 values up to 0.41

using the acceleration signal (see Fig 2C-Acceleration). When velocity was used instead of

acceleration to generate the movement profile, the correlation results with the UPDRS scores

were slightly better reaching r2 values up to 0.46 (see results for right wrist during right-foot

steps in Fig 2C-Velocity). Furthermore, we obtained a higher r2 of 0.54 (at right wrist during

right-foot steps) when we combined profiles obtained from velocity and acceleration.

Personalized single body part kinematics with medication states (ON vs.

OFF)

To understand if the proposed solution would discriminate movements in the same body part

in ON versus OFF medication states, we created a personalized model for each participant and

each body part (see Methods). Fig 3A shows an example of steps from one participant pro-

jected into a 2D RDS for each of the body parts for ON and OFF medication states. It can be

seen that movements appear to be completely different at each body part. Table 2 shows the

percentage of PD participants in which there is a significant difference between medication

states for all the analyzed body parts. Overall, we could significantly distinguish ON vs. OFF in

at least 85% of the participants. Percentage values obtained using velocity were slightly better

than acceleration, ranging from 88% to 100% (see Table 2 for the complete breakdown).

Although the model built for each participant is very sensitive to differences between

ON-OFF, those differences are also visible at a population level (Fig 3B). For population com-

parisons we used a generalized model built on the healthy participants in order to have a com-

mon reference (as done for the previous analysis).

Body symmetries and coordination in PD progression

Finally, we wanted to quantify the relationship between the left-right symmetry of body move-

ments (see for example S3 Fig). Fig 4A shows an example of projecting movement for both feet

at each step during ON vs. OFF sessions. It is noticeable that when the participant was ON,

both left and right feet had a similar movement pattern (i.e. overlapping clusters), while in the

OFF state, movement patterns in both feet are clearly different. Furthermore, left foot move-

ments appeared to have greater differences than right foot. When symmetrical behavior in

terms of similarity (see Methods) was plotted against the motor impairment scores (Fig 4B), a
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Fig 1. Walking task and movement trajectories aligned at step start. A–Walking task route. B–Absolute value of acceleration traces along frontal

and vertical axis during steps, aligned with heel lift off. C—Accelerations recorded at different body parts aligned to left heel lift off events (see S1 Fig

for location of sensors and orientations).

https://doi.org/10.1371/journal.pone.0244842.g001
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significant correlation of the symmetry of the steps and core (both trunk and sternum) during

left versus right steps emerged (r2 = 0.36, p< 0.001, n = 66). Similarly, lumbar and trunk

movements during left and right steps produced a significant estimation of disease severity

(lumbar r2 = 0.31, sternum r2 = 0.34, p< 0.001). A weaker correlation was observed in the

Fig 2. Movements in participants with PD diverge from healthy movements proportional to disease severity. A–Projection of healthy movement templates in

healthy volunteers HV (gray) and PD (orange) participants. B–Projection of age matched healthy movement templates in gray and PD participants color coded

according to the UPDRS score. C- Results of a linear regression model applied to the 3D of the RDS projections against the UPDRS score for each sensor aligned either

with left or right step. The same analysis was repeated both for acceleration (left) and velocity (right). Only values with a p< 0.05 after correction for multiple

comparisons (24: 6 sensors x 2 triggers x 2 conditions—velocity and speed) with Bonferroni method are shown.

https://doi.org/10.1371/journal.pone.0244842.g002

Table 1. Discrimination results of healthy vs PD participants for using acceleration, velocity and the combination of both.

Position Trigger Acceleration Velocity Acceleration + Velocity

Best

Classifier

Accuracy AUC Precision F1 Best

Classifier

Accuracy AUC Precision F1 Best

Classifier

Accuracy AUC Precision F1

Left

Wrist

Left LR 0.83 0.68 0.28 0.02 LR 0.82 0.70 0.29 0.03 LR 0.82 0.70 0.29 0.03

Right

Wrist

LR 0.83 0.67 0.27 0.02 LR 0.83 0.66 0.23 0.00 LR 0.83 0.66 0.23 0.00

Left Foot RF 0.86 0.84 0.63 0.55 LR 0.83 0.72 0.28 0.03 LR 0.83 0.72 0.28 0.03

Right

Foot

RF 0.86 0.85 0.63 0.55 LR 0.84 0.65 0.29 0.00 LR 0.84 0.65 0.29 0.00

Lumbar LR 0.81 0.79 0.34 0.19 LR 0.81 0.77 0.34 0.08 RF 0.82 0.88 0.63 0.54

Sternum LR 0.83 0.76 0.36 0.17 LR 0.81 0.76 0.30 0.04 LR 0.81 0.76 0.30 0.04

Left

Wrist

Right LR 0.81 0.71 0.35 0.11 LR 0.81 0.70 0.28 0.01 LR 0.81 0.70 0.28 0.01

Right

Wrist

LR 0.83 0.63 0.23 0.00 LR 0.83 0.62 0.21 0.00 LR 0.83 0.62 0.21 0.00

Left Foot LR 0.84 0.73 0.46 0.14 RF 0.83 0.79 0.54 0.46 RF 0.83 0.79 0.54 0.47

Right

Foot

RF 0.83 0.86 0.66 0.58 LR 0.82 0.76 0.33 0.04 LR 0.82 0.76 0.33 0.04

Lumbar RF 0.82 0.88 0.66 0.57 RF 0.83 0.90 0.72 0.64 RF 0.83 0.90 0.73 0.64

Sternum RF 0.85 0.89 0.71 0.62 RF 0.83 0.89 0.69 0.61 RF 0.83 0.89 0.69 0.61

The best results among 4 classifiers (logistic regression—LR, decision trees—DR, random forest—RF, and Naïve Bayes—NB) were reported in terms of accuracy, AUC,

precision and F1-score.

https://doi.org/10.1371/journal.pone.0244842.t001
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symmetrical behavior of the arm swing as captured by wrist movements (r2 = 0.13, p = 0.0139,

uncorrected).

Discussion

In this work, we presented a technique for capturing temporal profiles of body movement dur-

ing walking from wearable sensor data. When the method is applied to people with PD, we

showed how coordinated and symmetric behavior is affected by disease severity. The sensitiv-

ity of the method is such that: 1) it can discriminate self-reported medication states at each

body part, 2) it provides a measurement of motor impairment proportional to disease severity.

Asymmetric deficits are a well-known feature of PD [30]. For example, Sant’Anna et al. [27]

achieved high AUC classification of healthy participants from participants with PD by calculat-

ing a symmetry index using sensors to determine if symmetry of both upper and lower limbs

of 11 early-to-mid-stage PD participants while walking is different from 15 control partici-

pants. In agreement with Sant’Anna, our method is able to distinguish people with PD from

Fig 3. Discrimination of ON versus OFF states. A–Example of projecting acceleration data for each body part in both medication states (ON in blue and OFF in

orange) using participant-specific templates. B–Mean population differences of ON vs. OFF medication states by sensor position triggered either by left (red) or right

step (blue). The same analysis was repeated both for acceleration (upper) and velocity (lower) signals.

https://doi.org/10.1371/journal.pone.0244842.g003

Table 2. Summary of 33 PD participants during the discrimination of ON versus OFF state by sensor position triggered either by left or right step. The same analy-

sis was repeated both for acceleration (left) and velocity (right).

Velocity Acceleration

Left Step Right Step Left Step Right Step

Left Wrist 30/33 (90.91%) 30/33 (90.91%) 32/33 (96.97%) 30/33 (90.91%)

Right Wrist 30/33 (90.91%) 28/33 (84.85%) 30/33 (90.91%) 29/33 (87.88%)

Left Foot 33/33 (100%) 32/33 (96.97%) 31/33 (93.94%) 32/33 (96.97%)

Right Foot 32/33 (96.97%) 31/33 (93.94%) 32/33 (96.97%) 33/33 (100%)

Lumbar 31/33 (93.94%) 33/33 (100%) 31/33 (93.94%) 33/33 (100%)

Sternum 31/33 (93.94%) 32/33 (96.97%) 32/33 (96.97%) 31/33 (93.94%)

https://doi.org/10.1371/journal.pone.0244842.t002
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healthy participants with a very high accuracy and at the same time, to provide a proxy for

medication state and disease severity. This result was achieved because we used step move-

ments to characterize body coordination. In fact, when we tested these methods using random

events during walking as reference to build the RDS, the movement projections showed nei-

ther significant difference between healthy and PD participants (p> 0.05, U-Test) nor correla-

tion for PD participants of the RDS with respect to the UPDRS score (p> 0.05). It should be

noted that determining the difference between healthy and people with Parkinson’s is outside

the scope of this paper since the healthy subject cohort was neither age matched nor evaluated

with the UPDRS to assess a lack of pathological signs of PD. Nevertheless, given those prelimi-

nary observations we expect the method to be generalizable to detect early stages of divergence

from healthy behavior.

Specifically for disease progression, we found only a few specific metrics for gait assessment

that correlated with UPDRS III scores. For example, Rodrı́guez-Molinero et al. [31] found a

correlation r2 = 0.31, p< 0.001 with the frequency content of strides during walking. Better

correlations were found when the metrics were compared with UPDRS motor subscores for

gait and balance such as angular velocity [32] in both early PD (r2 = 0.17, p< 0.01) and PD

+ freeze of gait participants (r2 = 0.61, p< 0.01). For EMG data, Spasojević et al. [14] obtaining

significant correlations between their estimated features and UPDRS scores (r2 > 0.25) by ana-

lyzing the movement of the arm/hand in 17 PD participants. In a study more aligned with

ours, Huang et al. [11] explored body coordination of the arms in 8 PD participants while

walking. In their study, they found high correlation between their estimated features and the

UPDRS scores of limbs (equal to the sum of UPDRS akinetic/rigidity and tremor scores of

upper and lower extremities) r2 = 0.58, p = 0.049 for all limbs, and r2 = 0.69, p = 0.021 for most

affected limbs. Our results are consistent with these previous publications as we obtained high

correlation with UPDRS III total scores. The strength of our study relative to previous work is

a larger study population (33 PD), the use of wearable sensors that make at-home monitoring

feasible, and the inclusion of body parts (e.g. feet) whose movement is more stereotypical in

everyday walking than wrist movement.

Our approach better characterized lower limb symmetry compared to movement descrip-

tions made by aggregating measurements such as step length, and swing velocity as a way to

Fig 4. Effects of PD severity on movement symmetry during walking. A–Projection of the steps from one participant—accelerometer traces shown in S3 Fig—on the

template built on healthy participants during ON versus OFF medication states. B—Similarity of the average projections with respect to different body parts and

correlation with the score of total impairment.

https://doi.org/10.1371/journal.pone.0244842.g004
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assess disease progression. For example, while Lewek et al. [12] showed that lower limb sym-

metry was not significantly different across 12 participants using arm swing magnitude, stride

time, and side-to-side asymmetry in a video recording, our study shows that the lower limb

coordination (analyzed only at each step while walking) is increasingly impaired with disease

severity, as indicated by a high correlation (r2 = 0.36) of this measure with the total UPDRS

score. This suggests that lower limb movement can be used to monitor PD severity when steps

can be identified (see also Del Din et al. [19]). In fact, Penko et al. [33], in their study of lower

extremity coordination patterns in people with PD during cycling, suggested that the UPDRS

sub scores of lower extremities are not sensitive enough to estimate lower limb function.

When we analyzed body coordination by checking symmetry through vector similarity, we

found that similarity was higher for participants with lower UPDRS score (see intensity plot in

Fig 4B). Therefore, as disease severity increases (higher UPDRS scores), the symmetry between

limbs decreases. This behavior is very pronounced for feet, sternum and lumbar areas but not

for arm swing (wrist movement, bar plot in Fig 4B) in spite of its vital role in maintaining sta-

bility during gait [34]. This finding is supported by the fact that arm swing asymmetry is one

of the earliest signs of PD [35], and it is reflected by the low similarity distance obtained for

participants with low UPDRS scores (intensity plot in Fig 4B). In other words, wrist similarity

deteriorates early (lower UPDRS scores) and remains poor as participants progress to higher

scores.

Among our findings, we observed that results obtained with velocity were slightly better

than acceleration. Our interpretation was that since walking triggers ballistic movement, the

change in velocity is better suited to capture changes in PD during walking [36].

In addition to its good performance, the proposed methodology has two main advantages:

simplicity and scalability. Since we only used accelerometer data, our method is well-suited for

low-power devices that can be embedded in clothes, and/or wearables. In fact, most con-

sumer-grade wearables collect accelerometer data, which can be used to apply our methodol-

ogy. In addition, our method is based on unassisted walking, which can be performed in most

locations. Therefore, we feel that our proposed methodology could be easily deployed for lon-

gitudinal studies in large cohorts of patients in their home settings without complex instruc-

tions or scripted tasks. Furthermore, we show that our method is also able to detect divergence

from healthy movement, which could be used to assess other neurodegenerative diseases

affecting movement or having a movement phenotype.

Although completely speculative because of the lack of physiological correlates, changes in

gait during walking in PD might be related to basal ganglia connections to the brainstem,

which control different aspects of movement initiation and control of locomotion [37,38].

Indeed, the Peduncolopontine nucleus in the brainstem is the major relay of the basal ganglia

to spinal and cerebellar nuclei for the control of locomotion [39] and skill learning [40]. Recent

experimental [38,41] and computational [42] studies have shown that manipulations of this

pathway have effects on both the initiation and control of walking, suggesting that progressive

degeneration in these connections could result in alteration of the commands for movement

coordination. Indeed, those regions are targets for deep brain stimulation interventions aimed

at restoring motor functions in people with PD [43].

Limitations of this work include the number of participants, which although greater than

typical studies in the field, is still not big enough to generalize to all the possible variants of PD

phenotypes, and the cross-sectional nature of the experiment. However, given that our method

incorporates clinical intuition by analyzing the continuous nature of the movement, and that

our results show high correlation with UPDRS scores and can accurately distinguish medica-

tion states, we feel that the proposed method could be used as a candidate digital biomarker

for prospective or longitudinal studies. In addition, our methodology is not restricted to
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Parkinson’s disease and can be used for monitoring other neurological diseases that affect

body symmetry during walking inside and outside clinical settings.

In summary, we have demonstrated a method based on movement templates using accel-

erometry from different parts of the body that can be used as a surrogate to evaluate disease

severity and identify ON vs. OFF medication states. This method has the potential to generate

novel digital biomarkers for PD.

Methods

Participants

This study was approved by the Tufts Health Sciences Campus Institutional Review Board

(IRB number 12371) and it was conducted at the Tufts Medical Center, Boston, Massachusetts.

All participants were over 18 years of age and gave their written, informed consent prior to the

start of the study. All of the methods were carried out in accordance with the relevant guide-

lines and regulations as documented in the IRB submission. All PD participants had a clinical

diagnosis of idiopathic Parkinson’s disease consistent with the United Kingdom (UK) Parkin-

son’s Disease Society Brain Bank Clinical Diagnostic Criteria. All responded to L-DOPA treat-

ment and were able to recognize “wearing-off” symptoms. Exclusion criteria consisted of

psychiatric illness that would interfere with the tasks, other neurological diseases, treatment

with an investigational drug within 30 days or 5 half- lives (whichever was longer) preceding

the enrollment in this study, alcohol consumption exceeding 7 drinks/week for females or 14

drinks/week for males, and participants with cardiac pacemakers, electronic pumps or any

other implanted medical devices (including deep brain stimulation devices). More details

about the study can be found in [44].

Healthy participants were recruited, and the protocol was run at IBM and Pfizer sites. The

study protocol was approved by the Schulman Independent Institutional Review Board (now

Advarra) IRB # 201500837. All participants were over 18 years of age and gave their written,

informed consent prior to the start of the study. The protocol was carried out in accordance

with the relevant guidelines and regulations documented in the IRB submission.

We included in this analysis only data from 31 healthy participants and 33 PD participants

having reliable data from all 6 sensors (see Recording Protocol). Due to technical malfunc-

tions, a participant was excluded when one or multiple sensors did not record any data. Partic-

ipants with PD were diagnosed in stages 1 (N = 2), 2 (N = 24), or 3 (N = 7) of the Hoehn and

Yahr scale [45]. Table 3 provides demographic and clinical information of both cohorts. All

participants were able to walk unaided. All evaluations (Hoehn and Yahr, UPDRS) were per-

formed by one of the authors who is a neurologist specializing in movement disorders (Dr.

Ho).

Recording protocol

Each participant underwent two sessions. In one session, data was collected after participants

took their usual dopamine replacement therapy and were self-reportedly (and confirmed by

the neurologist) in the ON-state. In the other session, data was collected when participants

were in the self-reported (and confirmed by the neurologist) OFF-state, meaning their medica-

tion had washed out. The order of the sessions was randomized among participants. To ensure

that data acquired from PD participants in ON-state were acquired during peak effects, all par-

ticipants arrived in OFF-state to the clinic. They took their scheduled dopamine dose and

began the ON evaluation after confirmation by both participant and neurologist (state ON/

OFF questioning was performed every 0.5 hours until ON or 1.5 hours post-dose, whatever

PLOS ONE Walking to monitor Parkinson’s disease

PLOS ONE | https://doi.org/10.1371/journal.pone.0244842 February 17, 2021 9 / 15

https://doi.org/10.1371/journal.pone.0244842


was earlier). If the first session was in ON state, the second session began between 0.5 to 1

hour before their next scheduled levodopa dose the same day or up to 14 days later.

In each session the motor examination of the UPDRS was administered by the neurologist.

It was comprised of 33 sub-scores based on 18 items, several with right, left or other body dis-

tribution scores. In addition, a set of tasks simulating various activities of daily living (ADLs)

were performed. As part of the gait tasks, participants performed an instrumented walking

task where they walked 10 meters at their normal pace back and forth in a closed hospital cor-

ridor as shown in Fig 1A for a duration of 31.32 ± 29.71 seconds for healthy and 120.94 ± 5.27

seconds for PD participants (see [46] for details).

We used Opal Version 1 wearable sensors (APDM Wearable Technologies) to capture body

part movement. These devices record acceleration, angular velocity, and magnetic flux density.

Mancini et al. [47] have studied the reliability of these sensors by assessing temporal and spatial

measurement showing good reliability with an intra class coefficient higher than 0.55. In our

study we used acceleration measurements recorded at 128 Hz. To cover most of the body,

these sensors were located on 6 different body parts as shown in Fig 1C (see also S1 Fig for

location of sensors and orientations): both feet, both wrists, lumbar and sternum. Informed

consent from one of the authors was obtained for the use of the picture illustrating sensor

placement in S1 Fig.

Clinical variables

The UPDRS motor examination (part 3) score can be broken down into five main categories:

speech, facial expression, bradykinesia, tremor, and postural instability and gait disorder

(PIGD). In this work, we use the total UPDRS-part 3 score because it better captures the over-

all disease severity. Average total UPDRS for all PD participants 40 ± 17 and 54 ± 16 for ON

and OFF state, respectively.

Data analysis and statistics

Natural walking results from a pendulum motion of the body over each leg as the ankle dorsi-

flexes during the stance phase. Displacement of the center of mass during a step produces an

Table 3. Demographics and clinical information of the participants.

PD participants Controls

Number of participants 33 31

Age 69 ± 8 years 49±9 years

Gender (%male) 49% 67%

Height 171 ± 9 cm 175 ± 10 cm

Weight 84 ± 24 Kg 79 ± 18 Kg

Education level (post-graduate) 49% 77%

Dominant hand (%right) 90% 88%

Disease duration 6 ± 4 years - -

Daily levodopa dose 380 ± 304 mg - -

UPDRS part III (ON/OFF) 40 ± 17 / 54±16 - -

UPDRS Gait (ON/OFF) 1.03 ± 0.95 / 1.45 ± 0.97 - -

UPDRS Posture Stability (ON/OFF) 1.36 ± 1.11/ 1.76 + 0.90 - -

Hoehn and Yahr scale 2.15 ± 0.51 - -

Clinical symmetry (Right/Left/None) 13/18/3 - -

Asymmetry index: |L-R|/(L+R) 0.19 ± 0.17 - -

https://doi.org/10.1371/journal.pone.0244842.t003
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unstable equilibrium and different parts of the body need to interact in a coordinated way to

prevent an individual from falling [48]. At each step, synchronization can be observed at both

core/shoulder (measured at lumbar and sternum level), upper (measured at the wrists level)

and lower extremities (measurable at the feet level). Movements at each step have a complex

3-dimensional (3D), stereotypical behavior that we analyzed at 6 different body positions

using sensors with three-axis accelerometer signals. As it was mentioned before, the scripted

walking task included steps and turnings (see Fig 1A). However, in this study, we did not

include turning since these are asymmetric movements with different dynamics than natural

walking [27].

Sensor data was initially filtered to remove unwanted noise using a 2nd order band-pass

Butterworth filter with low cut-off frequency = 1Hz and high cut-off frequency = 10 Hz. To

identify the interval for each step (right and left), the acceleration-magnitude detector algo-

rithm was used. Here, steps are identified based on a threshold for the acceleration of the foot

of more than 2 m/s2 in the sagittal plane. This threshold captured the start of the heel lift phase

(see Fig 1B). This algorithm is similar to the zero-velocity algorithm which uses a combination

of both accelerometer and gyroscope [49]. We considered a step successful if its duration was

greater than 625 ms. Furthermore, for each foot, we performed a principal component analysis

(PCA) on the sagittal acceleration profile: steps in which the first projection was greater than

the projection average minus its standard deviation were excluded. This criterion allowed us

to identify most of the steps during rotational movement which did not follow a stereotyped

dorsiflexion sequence. We validated the procedure to identify steps by visual inspection from

videos recorded during the task. Once each step start was identified, the temporal signal for

the accelerometer for the timeframe from 250 ms before to 1000 ms after the event was

extracted for further analysis. Velocity was obtained by cumulative trapezoidal numerical inte-

gration of the accelerometer profiles for each timeframe.

For our study of walking in people with PD, we divided the analysis into two stages: single

body part kinematics, and body symmetry and coordination. At each stage, we examined the

association between disease severity based on UPDRS score and the effects of dopaminergic

replacement therapy on movement.

In most of the cases, data was found to be non-normally distributed and for consistency

non-parametric methods were used through the paper. Non-parametric tests were used (U-

test or sign-rank test for paired observations) and Bonferroni corrections for multiple compar-

isons were adopted when needed. We used linear regression for correlating signals and

reported the results in terms of r2. A threshold of p = 0.05 for significance was adopted.

Single body part kinematics in PD progression. To measure and quantify divergence

from stereotypical behavior, we constructed a template of the 3D movement produced by

healthy volunteer (HV) participants during left or right steps for each body part. To create

those templates, we first created a 1D signal by concatenating the 3 axes (X, Y and Z) of the

acceleration signal for each sensor (body part, see S2A and S2B Fig). Then, for each sensor, we

generated a matrix in which each row was the time series of steps from the same side (right or

left) of each of the 31 healthy volunteers. We applied PCA (see S2A and S2B Fig) to the above

matrix to extract the main components of the movements. PCA is an invertible method to

decompose the original signal into uncorrelated primitives of movement: PCs (principal com-

ponents) represent dimensions of the movement of a healthy participant. In general, a limited

number of PCs (e.g. 2–3 dimensions) were able to capture most of the variance in continuous

movements. In this study, the first 3 PCs accounted between 42 and 70% (average ± std = 58%

± 9%) of the variance of the data (see Fig 2C). Capturing most of the signal allowed us to use

most of the intra-subject similarity ignoring the inter-subject variability. Once we obtained the

template of the stereotypical movements of the whole population of healthy participants, we
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projected the movements of PD participants into the same RDS. This allowed us to capture

abnormalities with respect to HV. In addition, we use these projections as features to assess

disease burden (see Figs 2 and 3). This procedure was performed independently for each step

and for each body part, as well as for each type of signal (acceleration and velocity). As shown

in S2D Fig, the use of an RDS allowed us to reconstruct movements to inspect the effect of the

disease on the movement profile.

As an initial assessment of the capability of the extracted features (projections) to character-

ize PD phenomenology we performed a U-test (corrected for multiple comparisons) to check

if the projections in each of the body parts were different in HV vs. PD participants. To quan-

tify the associations with PD progression, we calculate r2 values after performing a linear

regression using the projected data in 3 PCs and UPDRS scores.

Single body part kinematics relative to medication (ON vs. OFF). To analyze the effects

of dopamine replacement therapy on movements, we modified the previous design to create

templates of body part movements for each participant during either ON or OFF medication

states. This means that for each participant we generated templates of movements specific to

that individual using the above-mentioned approach. By creating participant specific tem-

plates, we only need 2 PCs to represent more than 62% of the variance of the data. After pro-

jecting the signal on the 2-dimentional template, we compared the distribution of movements

of each body part during the ON versus OFF periods.

Body symmetry and coordination relative to PD severity. We wanted to quantify the

symmetry of body movement to produce a granular metric for subtle changes in body move-

ments. First, we transformed the data to make left and right movements comparable by invert-

ing the axes to project in the same directions. Then we created templates using the same

procedure as for single body kinematics (see previous section). To characterize movement sym-

metry between body parts, we computed a similarity value by calculating the dot product of the

average cluster of movements between two body parts. We were interested in four combinations

that captured coordination: a) right vs. left foot at right and left steps respectively, b) right wrist

at left step vs. left wrist at right step, c) lumbar at right step vs. lumbar at left step, and d) sternum

at right step vs. sternum at left step. After computing the similarity for each participant regard-

less of the session, we computed the r2 values between the similarity and the UPDRS scores.

Supporting information

S1 Fig. Coordinate system of the wearable sensor and illustration of their location on the

body on one of the authors of the manuscript.

(DOCX)

S2 Fig. Analysis of sensor data. A—Analytic Pipeline. B—Three-dimensional data extracted

by each sensor at each step (see Methods) were converted to a 1D signal by concatenating the

3 axes (x, y and z). C–For each sensor for either left or right steps, we extracted the coefficients

of the first three principal components. Projection of the temporal profile on the coefficients of

the principle components produced the reduced dimensionality values used in the main analy-

sis. D—Reconstruction of the acceleration trajectories (main panel) from movements in the

RDS space (inset).

(DOCX)

S3 Fig. Acceleration profiles of the left and right foot of a PD participant without (OFF) or

after (ON) medication. Values of the acceleration are shown after adjusting signs (see Meth-

ods).

(DOCX)
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S1 Table. Discrimination PD vs. healthy participants by means of logistic regression, deci-

sion tree, random forest and Naïve Bayes classifiers with 10-fold cross validation.
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