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Abstract

Background: Individual differences in cognitive abilities provide information that is valuable for vocational
guidance, but there is an ongoing debate about the role of ability factors, including general intelligence (g),
compared to individual tests. Neuroimaging can help identify brain parameters that may account for individual
differences in both factors and tests. Here we investigate how eight tests used in vocational guidance correlate to
regional gray matter. We compare brain networks identified by using scores for ability factors (general and specific)
to those identified by using individual tests to determine whether these relatively broad and narrow approaches
yield similar results.

Findings: Using MRI and voxel-based morphometry (VBM), we correlated gray matter with independent ability
factors (general intelligence, speed of reasoning, numerical, spatial, memory) and individual test scores from a
battery of cognitive tests completed by 40 individuals seeking vocational guidance. Patterns of gray matter
correlations differed between group ability factors and individual tests. Moreover, tests within the same factor
showed qualitatively different brain correlates to some degree.

Conclusions: The psychometric factor structure of cognitive tests can help identify brain networks related to
cognitive abilities beyond a general intelligence factor (g). Correlates of individual ability tests with gray matter,
however, appear to have some differences from the correlates for group factors.

Findings
Individual differences in cognitive abilities provide infor-
mation that is valuable for vocational guidance, but
there is an ongoing debate about the role of a general
factor of intelligence, “g”, that accounts for common
variance among cognitive tests [1]. On the one hand, in
large samples, g predicts job performance very well
[2-4]; on the other hand, specific cognitive ability tests
provide useful information for individuals, especially for
job choice [5-7]. On a practical level, psychometric test-
ing used for vocational guidance assesses both general
intelligence and specific cognitive abilities [8].
A new direction in research into the nature of intelli-

gence and cognitive abilities is the use of neuroimaging
to identify brain parameters that may help account for
individual differences in psychometric test scores [9-11].
Several recent neuroimaging studies of brain structure,
for example, relate variation in regional gray and white
matter to performance on tests with high g-loadings

[12-14]. Colom et al. [15] reported a study of 100 stu-
dents who had completed a battery of cognitive tests
selected to maximize a higher-order structure of cogni-
tive abilities. There was the overall g-factor followed by
primary factors of fluid (abstract), crystallized (verbal),
and spatial (non-verbal) ability, all computed with g var-
iance removed. Correlations between gray matter and
these primary group factors were found in numerous
areas distributed throughout the brain [9]. It was also
the case that gray matter in some brain areas was
uniquely correlated to one factor but not others, indicat-
ing the importance of separate brain networks for gen-
eral and specific cognitive abilities.
In their study of 100 students, Colom et al. [15] used

a hierarchical model of factor analysis to derive the
g-factor at the highest level of factor structure and the
remaining primary ability factors were computed to be
independent of both g and of each other. This approach,
based on Carroll’s model [5,16], is attractive for brain
research because “pure” factors may map onto separate
brain networks, although there are also other factor* Correspondence: rich.haier@gmail.com
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models that may be useful [17,18]. However, indepen-
dent factors constructed by psychometric techniques
may not reflect the way the brain works since neural
networks often have overlapping functions [19].
A complementary approach is to examine each indivi-

dual test, without removing g variance or variance in
common with other tests. This approach makes no
assumptions about the psychometric structure of mental
abilities and allows investigation of how an individual
test score may relate to multiple brain networks. For
example, two different tests of spatial ability likely share
common variance due to a spatial ability factor indepen-
dent of g, but either of the tests may show stronger and
different correlations to gray matter than does the more
general spatial factor. Moreover, if one of the tests mea-
sures mental rotation and the other measures spatial
orientation, they may show differing patterns of brain
correlates. Thus, both factor and individual test corre-
lates of brain parameters may be informative. Note that
factors reflect shared variance, whereas individual tests
include additional sources of variance relevant for speci-
fic test performance.
Here we investigate how eight tests used in vocational

guidance correlate to regional gray matter. Previously,
we used these tests to investigate gray matter correla-
tions to g and to an independent factor of spatial ability
[11]. We also used these tests to investigate intelligence
factors, white matter integrity, and brain function during
a working memory task [20]. Here, we correlate gray
matter to all the factors from that analysis and then, for
the first time, we investigate gray matter correlations
with each test separately. This allows a direct compari-
son between brain networks identified by using ability
factors and networks identified by using individual tests.
The main prediction is that distinguishable findings will
emerge for ability factors and for individual tests
because factors capture shared variance and individual
tests include relevant unique variance.

Materials and methods
Ethics Statement
Each participant gave written informed consent as
approved by the Mt. Sinai Medical Center Institutional
Review Board. This research was conducted in accord
with the Helsinki Declaration.

Subjects and Procedure
During 2002-2003, 6,889 individuals sought consultation
from the Johnson O’Connor Research Foundation
(JOCRF), a non-profit organization dedicated to using
psychometric assessments for vocational guidance. Each
completed the battery of eight cognitive tests listed
below in one of 11 testing centers in major U.S. cities.
The mean age for all subjects was 25.4 years (SD =

10.6); there were 3,722 males (mean age = 25.0, SD =
10.2), and there were 3,207 females (mean age = 25.9,
SD = 11.0). In addition, subjects who completed the
same test battery in 2006 and 2007 in the NYC center
were invited to return for MRI scanning at Mt. Sinai
Medical Center. All who volunteered were screened for
medical and psychiatric illnesses including a history of
head injury and substance abuse. The final 40 subjects
completing MRI included 21 males and 19 females, aged
18-35 years (mean age = 26.6, SD = 4.9).

Cognitive Testing
The eight tests in the JOCRF battery were: Inductive
Speed (IS), Analytical Reasoning (AR), Number Series
(NS), Number Facility (NF), Wiggly Block (WB), Paper
Folding (PF), Verbal-associative Memory (VM), and
Number Memory (NM). Each is described in Additional
file 1: supplemental table S1. These tests have been used
in research on various aspects of cognition and intelli-
gence [21-23]. For this study, test scores were partialled
for sex and age in to eliminate nuisance variance.

Factor Analysis
We started with all 6,929 subjects (6,889 plus the 40
with MRI scans) and followed the same procedures used
by Colom et al. [15] to identify scores for groups of
tests measuring distinguishable constructs. We per-
formed a confirmatory factor analysis (CFA) on the
eight test scores using the model indicated in Additional
file 2: supplemental figure S1, where the resulting load-
ings are shown for g and four factors: Speed of Reason-
ing (Inductive Speed and Analytical Reasoning),
Numerical (Number Series and Number Facility), Spatial
(Wiggly Block and Paper Folding), and Memory (Ver-
bal-associative Memory and Number Memory). Model
fit was reasonable: RMSEA = .08, c2 (16) = 760.6, CFI =
.95. This measurement model informed subsequent
computations.
Next, we computed standardized scores (z-scores) for

the eight tests shown in the measurement model (Addi-
tional file 2: supplemental figure S1) and then we com-
puted average z-scores for each factor. The general
intelligence g-score for each subject was the average of
their z-scores on the eight tests. We then computed
regression analyses using the general score (g) to predict
Reasoning, Numerical, Spatial, and Memory, respec-
tively. This produced residual scores for these latter fac-
tors. Additional file 3: supplemental table S2 shows the
correlations between these factors and the eight tests for
both the full sample of 6,929 and the 40 with MRI
scans. As expected (and desired), the general score (g)
correlated with all the tests in the battery, whereas resi-
dual scores for Speed of Reasoning, Numerical, Spatial,
and Memory factors show the highest correlations with
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their respective measures only. Further, the g score is
unrelated to the residual scores for the group factors.
The g and residualized (that is, g-partialled) factor
z-scores for the 40 subjects with MRI scans were used
to determine the correlations to gray matter, as
described below.

Structural MRI acquisition
A 3T Siemens Allegra MRI scanner (Siemens Medical
Systems, Ehrlangen, Germany) was used at Mt. Sinai
Medical Center, NYC. For each subject, a sagittal T1-
weighted spin echo image was performed first as locali-
zer, with the repetition time (TR) = 500 msec and the
echo time (TE) = 10 msec, FOV = 18cm × 14 cm,
matrix size = 512 × 384, 4.3 mm thick. Based on this
localizer, structural scans were acquired using a 3 D
MP-RAGE pulse sequence with the following para-
meters: TR = 2500 ms, TE = 4.4 ms, FOV = 21 cm,
matrix size = 256 × 256, 208 slices with thickness =
0.82 mm.

Voxel-based-morphometry (VBM) and statistical analyses
We applied VBM to identify brain areas where gray
matter (GM) volumes are correlated to the scores of
interest. We used Statistical Parametric Mapping soft-
ware (SPM5; The Wellcome Department of Imaging
Neuroscience, University College London) to apply the
VBM unified segmentation protocol [24-26]. This
included bias correction and, to preserve the amount of
tissue in any given anatomical region after spatial nor-
malization, the optimal GM partitions were multiplied
by the Jacobian determinants of their respective spatial
transformation matrix. This step allows the final VBM
statistics to reflect local deviations in the absolute
amount (volume) of tissue in different regions of the
brain [24]. The modulated GM partitions were
smoothed (12-mm FWHM isotropic Gaussian kernel) to
account for slight misalignments of homologous anato-
mical structures and to ensure statistical validity under
parametric assumptions. Each individual scan was fitted
to a standardized SPM template created for 3T MRI
scans (tissue probability map provided by the Interna-
tional Consortium for Brain Mapping (T1 452 Atlas, J.
C. Mazziotta & A. W. Toga, http://www.loni.ucla.edu/
Atlases/Atlas_Detail.jsp?atlas_id=6). The General Linear
Model was used in the SPM analyses and age and sex
were entered as nuisance variables. Given the limited
statistical power of 40 subjects, we detail results at p <
.001, uncorrected, in all the tables and provide best esti-
mates of Brodmann areas (BA) for anatomical localiza-
tion using the Talairach & Tourneau Brain Atlas co-
ordinates [27]; figures are shown consistently for all ana-
lyses at p < .01 uncorrected, to allow straightforward
comparisons. Findings corrected using the False

Discovery Rate (FDR) p < .05 are noted; no findings
survived correction using Family Wise Error (FWE).

Results
Gray matter correlations with factor scores
As shown in figure 1 and detailed in table 1, the Speed
of Reasoning factor shows the most positive correlations
with gray matter in areas distributed throughout the
brain including posterior cingulate BA 31, BA 37/38 in
the temporal lobe and frontal BAs 10 and 47. There is
no overlap with any of the other factors, all of which
show few if any areas correlated to gray matter (p <
.001, table 1; see Additional file 4: supplemental figure
S2 for a representative scatterplot). Also shown in figure
1 (lower right), only the Memory factor shows any sys-
tematic negative correlations (p < .05 FDR corrected;
see table 1), where less gray matter is associated with
higher scores. These areas (table 1) include a large clus-
ter in the occipital lobe (BAs 17, 18, 19; p < .025 FDR
corrected), the cingulate gyrus (BAs 31, 32), the post
central gyrus (BAs 3, 43) and frontal BAs 10, 11, 46, 47.

Gray matter correlations with individual tests
Correlations for each of the eight tests (two per factor)
are shown in figures 2 and 3 and detailed in additional
files 5, 6, 7, 8 (p < .001 uncorrected; no findings sur-
vived FDR or FWE correction). For the Speed of Rea-
soning factor, the IR test (figure 2 top and Additional
file 5: supplemental table S3) shows positive gray matter
correlations mostly in frontal areas, but for the AR test,
there are half as many areas, mostly posterior. There are
no negative correlations. These patterns suggest that the
different reasoning tests are related to different brain
networks although the Speed of Reasoning factor corre-
lations show a combination of both patterns.

Figure 1 Gray matter correlations with factor scores .
Correlations between gray matter and scores on each intelligence
factor (see Table 1).
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The two tests comprising the Numerical factor (NS and
NF) both show different, but weak patterns positively
correlated to gray matter (figure 2 bottom and Addi-
tional file 6: supplemental table S4). NS had a cluster in
the thalamus; NF had clusters in occipital BA 18.
The spatial factor was based on the WB and PF tests.

Whereas the WB test showed only one small area of
positive and one small area of negative correlations with
gray matter, the PF test showed many areas with posi-
tive correlations (figure 3 top and Additional file 7:

supplemental table S5). These were distributed cortically
and subcortically. They include a large cluster in the
frontal lobe (BAs 10, 9, 6), a cluster around the globus
pallidus, the caudate, a large midbrain cluster, and a
large cluster in the cerebellum. The PF findings alone
are stronger than the Spatial factor findings.
Both tests comprising the Memory factor show

numerous negative correlations with gray matter. VM
scores show a large cluster in the occipital lobe (BA 18,
19), the middle temporal lobe (BA 38) and the posterior

Table 1 Brain areas with significant gray matter correlations (p < .001 uncorrected) with each intelligence factor (all
correlations are positive except for the Memory factor)*

Factor Name B A Region Name x y z Z Cluster FDR

g-factor (+) BA 9 Middle Frontal Gyrus -36 23 30 4.02 165

Substania Nigra 12 -22 -7 3.17 272

Speed of Reasoning (+) BA 37 Sub-Gyral 48 -45 -5 3.47 895

BA 47 Inf. Frontal Gyrus -50 42 -16 3.08 35

BA 10 Inf. Frontal Gyrus 57 41 -2 3.07 66

BA 38 Sup. Temporal Gyrus -42 5 -17 3.03 416

BA 31 Posterior Cingulate -24 -63 14 3.03 700

BA 18 Lingual Gyrus 30 -74 -8 2.97 147

Inf. Semi-Lunar Lob. 6 -65 -49 3.59 598

Numerical Factor (+) BA 18 Mid. Occipital Gyrus 26 -81 6 3.16 76

BA 24 Cingulate Gyrus -12 2 31 3.03 33

Spatial Factor (+) BA 8 Mid. Frontal Gyrus -30 14 40 3.64 186

Lat. Geniculum Body -26 -23 -2 3.03 178

Memory Factor (-) BA 17 Cuneus 24 -91 1 4.29 12,856 .025

BA 19 Mid. Occipital Gyrus 28 -81 15 4.21 .025

BA 18 Lingual Gyrus 14 -68 5 4.21 .025

BA 31 Cingulate Gyrus 20 -47 23 3.66 136 .025

BA 37 Sub-Gyral -50 -45 -8 3.52 371 .025

BA 47 Inf. Frontal Gyrus -50 38 -17 3.51 196 .028

BA 32 Anterior Cingulate 10 30 -12 3.46 5,131 .030

BA 11 Sup. Frontal Gyrus -16 54 -15 3.30 .037

BA 11 Med. Frontal Gyrus -6 61 -17 3.28 .037

BA 21 Mid. Temporal Gyrus -44 2 -34 3.27 737 .038

BA 38 Sup. Temporal Gyrus -34 6 -27 3.03

BA 3 Postcentral Gyrus 57 -18 29 2.74

BA 10 Mid. Frontal Gyrus -30 52 1 3.13 140 .046

BA 46 Inf. Frontal Gyrus 55 43 2 3.11 104 .048

BA 43 Postcentral Gyrus 69 -9 17 2.98 136

Thalamus -24 -23 1 3.01 752

Thalamus -16 -31 2 2.98

* BA is Brodmann Area, Talairach x, y, z co-ordinates; positive × values are in right hemisphere; Z is z-score; cluster size is number of voxels (blank entry denotes
part of previous cluster); FDR is False Discovery Rate (blank entry denotes not significant p < .05).
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cingulate (BA 30) (figure 3 top; Additional file 8: supple-
mental table S6). The NM test scores show a different
pattern with clusters both in occipital (BAs 17, 18, 19)
and frontal lobes (BAs 11, 45, 8) (figure 3 bottom, Addi-
tional file 8: supplemental table S6). These patterns have
some overlap with each other and both contribute to
the strong pattern of gray matter negative correlations
seen with the Memory factor.

Discussion
Scores from individual tests offer some advantages in
the practice of vocational guidance. In addition to being
more transparent and related to specific performance
than factor scores, individual tests also can provide mea-
surement of more-specific abilities than broader factors
allow. The results of this study suggest that patterns of
brain correlates may be distinct for tests of specific abil-
ities and factors. These observations are based on quali-
tative comparisons but they illustrate the potential value

of examining separate indices of performance. There are
also meaningful results at the levels of group factors and
g, and so it appears that analysis of all three levels is
important for understanding brain/cognitive relation-
ships [28]. The results for g are consistent with other
findings, especially the P-FIT model of brain areas
hypothesized to underlie general intelligence [9] and are
detailed elsewhere [11].
Specifically for the other factors, in this sample, Speed

of Reasoning and Memory showed relatively strong gray
matter correlates. The two individual tests for the Speed
of Reasoning factor showed different patterns and both
contributed to the factor pattern. For the Memory fac-
tor, both tests showed similar results. One test in the
Spatial factor was informative (PF) and the other not so
much. Neither test in the Numerical factor showed
informative gray matter correlates.
The inverse direction of the gray matter correlations for

the Memory factor was evident in both component tests,
although we are unaware of any previous reports of inverse
correlations between gray matter and other similar tests.

Figure 2 Gray matter correlations with test scores comprising
Speed of Reasoning and Numerical factors. Correlations between
gray matter and scores on Inductive Reasoning (IR) and Analytical
Reasoning (AR) tests comprising the Speed of Reasoning Factor, and
scores on Number Series (NS) and Number Facility (NF) tests
comprising the Numerical Factor; see Additional files 5 and 6:
Supplemental Tables S3 and S4.

Figure 3 Gray matter correlations with test scores comprising
Spatial and Memory factors. Correlations between gray matter
and scores on Wiggly Block (WB) and Paper Folding (PF) tests
comprising the Spatial Factor, and scores on Verbal-associative
Memory (VM) and Number Memory (NM) comprising the Memory
Factor; see Additional files 7 and 8: supplemental tables S5 and S6.
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No individual subjects showed anomalies that could
account for this direction of relationship. Inverse correla-
tions between performance on some cognitive tests and
functional imaging has been interpreted as evidence for the
importance of efficient use of neural resources, and it has
been hypothesized that efficient function may result from
more gray matter [9]. There is no specific evidence, how-
ever, that this is the case here [20]. Since there are previous
reports of sex differences in the patterns of gray matter
correlates to intelligence test scores [29-31], we recom-
puted these analyses for males and females separately. Only
the males showed the inverse pattern. Why this should be
the case is not clear. Lynn and Irwing [32] reported a small
average advantage for males in two memory measures after
the analysis of large samples taken from worldwide stan-
dardizations of the Wechsler scales (WPPSI, WISC, and
WAIS). This small difference could reflect different brain
correlates for the memory factor but it does not explain
the inverse correlations. Since the sample sizes, however,
were quite small for VBM stability (21 males, 19 females),
we cannot interpret this finding with confidence. In gen-
eral, VBM requires larger samples than 40 for stability, so
this report is offered as an exploratory account of factor
versus test correlates with gray matter in a sample uniquely
characterized with a comprehensive test battery.
In summary, individual test results suggested some

degree of consistency with their respective factors, but also
some differences. Separating sources of variance contribut-
ing to participants’ performance on intelligence measures
is especially important [11]. The influence of g is pervasive,
but it changes for different group (lower order) factors and
individual tests. Participants’ scores result from g, broad
cognitive abilities (group factors), and specific cognitive
skills (test specificities). Brain correlates for any given cog-
nitive performance are influenced by all these sources of
variance. We did not have sufficient statistical power in
this pilot study to determine these different contributions,
but our results suggest that, while individual tests share
some relevant variance with their corresponding ability
factors, they also may have informative uniqueness for
understanding underlying brain networks.

Additional material

Additional file 1: Description of the eight cognitive tests.
Supplemental table S1.

Additional file 2: Factor Structure of the test battery according to a
confirmatory factor analysis (N = 6929). Supplemental figure S1.

Additional file 3: Correlations between factors and the eight tests
for both the full sample of 6,929 and the 40 with MRI scans.
Supplemental table S2.

Additional file 4: Scatterplot showing the general factor (g)
correlation with gray matter in BA9 (normalized scores; N = 40; see
table 1 for maximum voxel location). Supplemental figure S2.

Additional file 5: Gray matter correlations with IR and AR.
Supplemental table S3.

Additional file 6: Gray matter correlations with NS and NF.
Supplemental table S4.

Additional file 7: Gray matter correlations with WB and PF.
Supplemental table S5.

Additional file 8: Gray matter correlations with VA and NM.
Supplemental table S6.
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